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Abstract: Analytical solutions to a variety of simplified versions of the restricted three-body problem
in celestial mechanics possess long running history that encompasses several centuries. Most of the
successes were limited either to the planar configuration of the three bodies, to the motion around
the Lagrange points, or to the Kozai–Lidov effect. We review some analytical advances obtained
by separating rapid and slow subsystems as presented in recently published papers concerning the
non-planar motion of the three bodies unrelated to the Lagrange points and to the Kozai–Lidov
effect. Most (but not all) of the discussed advances correspond to the bound motion in the considered
celestial systems.

Keywords: binary stars; circumbinary planet; star-planet-moon system; interstellar interloper; dark
matter objects

1. Introduction

It is well-known that the classical three-body problem, which has the history of several
centuries, does not have a general analytical solution. Analytical advances were made
for the restricted three-body problem, i.e., for the situation where the third body has a
negligible mass.

Most of the successes in the restricted three-body problem were limited either to the
planar geometry, to the motion around the Lagrange points, or to the Kozai–Lidov effect.
The interested reader can refer to books, e.g., by Butikov [1], Brouwer and Clemence [2],
Smart [3], Fitzpatrick [4], Sterne [5], Koon et al. [6], Beutler [7], Celetti [8], and Valtonen
and Karttunen [9] (and the references in these books); and reviews by Naoz [10] and
Musielac and Quarles [11] (and the references in these reviews); as well as recent papers
by Napier et al. [12], Vashkov’yak [13], Wang et al. [14], Quarles et al. [15], Gao and
Wang [16–18], Mittal et al. [19], Abouelmagd et al. [20], Li and Liao [21], Sindik et al. [22],
Vinson and Chiang [23], Naoz et al. [24], Orlov et al. [25], Lei and Xu [26], and the references
in these papers.

In the last several years, there have been published papers presenting analytical
results, obtained by separating rapid and slow subsystems on the non-planar motion of
the three bodies unrelated to the Lagrange points and to the Kozai–Lidov effect. These
advances in the restricted three body problem concern both the bound motion and the
unbound motion in the considered celestial systems. The review is structured as follows.

In Section 2, we review the analytical results from a paper by Oks [27] on the non-
planar motion of a planet around a binary star. In Sections 3 and 4, we overview the
analytical results from a paper by Kryukov and Oks [28] on relativistic corrections to the
results from Section 2 and on the non-planar motion of a moon in a star-planet system.
In Section 5, we review the analytical results from paper by Oks [29] on the non-planar
motion of a circumbinary planet. These results represent an extension of the corresponding
analytical results obtained by Farago and Laskar [30] and the results previously obtained
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by Schneider [31]. In Section 6, we overview the analytical results from a paper by Oks [32]
on the motion of an interstellar interloper in the vicinity of the circular binary star. In
Section 7, we review the analytical results from paper by Oks [33] on an alternative method
for detecting and measuring parameters of a compact dark matter object that constitutes a
component of a binary system—the results involving the non-planar motion of a planet
in this system. In Section 8, we overview analytical results from a paper by Oks [34]
on the circular Sitnikov problem in a more general setup and compare them with the
corresponding analytical results obtained by Belbruno et al. [35] only for the special case of
the circular Sitnikov problem. In Section 9, we provide concluding remarks. In Appendix
A, we relax the assumption of the circular orbits of the stars in the binary—the assumption
used in Section 5—and present analytical results on the effect of a low-eccentricity of the
orbits of the stars on the motion of the circumbinary planet.

2. Non-Planar Motion of a Planet around a Binary Star: Nonrelativistic Motion

In the papers by Oks [27,36], the author started by analyzing a model system consisting
of two fixed stars of masses µ and µ′ that are separated by a distance R and a planet of a
unit mass revolving in a circular orbit in the plane perpendicular to the interstellar axis (the
circle being centered at the interstellar axis). The analytical treatment was performed in the
cylindrical coordinates (z, ρ, and ϕ) with the z-axis directed from the mass µ (located at the
origin) to the mass µ′ (located at z = R). Due to the cylindrical symmetry, the z-motions
and ρ-motions were separated from the ϕ-motion.

The following notations were introduced:

w ≡ z/R, v ≡ ρ/R, b ≡ µ′/µ, Z = Gµ, m ≡M/(ZR)1/2, (1)

where G is the gravitational constant and M is the projection of the planet angular momen-
tum on the interstellar axis. Here w, v, and m are the scaled and dimensionless counterparts
of the coordinate z, coordinate ρ, and the projection M of the planet angular momentum,
respectively; b is the ratio of the stellar masses.

In the scaled notations, the effective potential energy can be represented in the follow-
ing form.

Ueff ≡ (Z/R) ueff(w, v, m, b), ueff(w, v, m, b) = m2/(2v2) − (w2 + v2)−1/2 − b[(1 − w)2 + v2]−1/2 (2)

After the derivatives of the effect potential energy with respect to w and with respect
to v were equated to zero, it was found that the locus of the equilibrium points in the plane
(w, v) is the line v0 (w, b) defined by the following equation.

v0(w, b) = {[w2/3(1 − w)4/3 − b2/3w2]/[b2/3 − w2/3/(1 − w)2/3]}1/2. (3)

As an example, Figure 1 shows the dependence v0(w) for b = 2 (we note that the ratio
of masses b = µ′/µ in the observed binaries ranges from ~1 to ~102). It is observed that
there are two ranges of the scaled coordinate w where the equilibria exist. For an arbitrary
b > 1, these two ranges are as follows: 0 ≤ w ≤ 1/(1 + b1/2) and b/(1 + b) < w ≤ 1.

The dependence of the equilibrium value of the scaled projection of the angular
momentum on the scaled coordinate w turned out to be the following.

m0(w, b) = v0
2(w, b)/{(1 − w)1/2[w2 + v0

2(w, b)]3/4} (4)

Figure 2 illustrates this dependence for b = 2.
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Figure 1. The dependence of the equilibrium value of the scaled radius v ≡ ρ/R of the planetary or-
bit on the scaled axial coordinate w ≡ z/R of the planet for the ratio of the stellar masses μ′/μ = 2. 
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Figure 2. The dependence of the equilibrium value of the scaled projection of the planet angular 
momentum m ≡ M/(ZR)1/2 on the interstellar axis versus the scaled coordinate w ≡ z/R of the planet 
for the ratio of the stellar masses μ′/μ = 2. 

A scaled total energy e was defined as follows: 

E ≡ (Z/R) e(w, b),  (5)

where e(w, b) turned out to be the following. 

e(w, b) = − [w(1 − w) + v02(w,b)/2]/{(1 − w)[w2 + v02(w,b)]3/2} (6)

From this point on, the angular momentum projection was considered as a param-
eter possessing some positive value. The interstellar distance R and the coordinate w, as 
well as the parameters b and M, are interrelated by the following formula. 

R(w, b, M) = M2/[Z m02(w, b)] (7)

The substitution of R(w, b, M) from Equation (7) in Equation (5) results in the fol-
lowing expression for the energy E. 

Figure 1. The dependence of the equilibrium value of the scaled radius v ≡ ρ/R of the planetary
orbit on the scaled axial coordinate w ≡ z/R of the planet for the ratio of the stellar masses µ′/µ = 2.
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Figure 2. The dependence of the equilibrium value of the scaled projection of the planet angular
momentum m ≡ M/(ZR)1/2 on the interstellar axis versus the scaled coordinate w ≡ z/R of the
planet for the ratio of the stellar masses µ′/µ = 2.

A scaled total energy e was defined as follows:

E ≡ (Z/R) e(w, b), (5)

where e(w, b) turned out to be the following.

e(w, b) = − [w(1 − w) + v0
2(w, b)/2]/{(1 − w)[w2 + v0

2(w, b)]3/2} (6)

From this point on, the angular momentum projection was considered as a parameter
possessing some positive value. The interstellar distance R and the coordinate w, as well as
the parameters b and M, are interrelated by the following formula.

R(w, b, M) = M2/[Z m0
2(w, b)] (7)

The substitution of R(w, b, M) from Equation (7) in Equation (5) results in the following
expression for the energy E.

E(w, b, M) = (Z/M)2 m0
2(w, b) e(w, b) (8)
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For any b > 0 and M≥ 0, the combination of Equations (7) and (8) provides parametric
dependence (via the parameter w) of the energy E on the interstellar distance R. Due to
the analogy with the corresponding problem from molecular physics, this dependence is
named “classical energy terms”. We remind the reader that in molecular physics, quantum
energy terms (i.e., the dependence of the energy on the internuclear distance R) show, in
particular, how the frequency of radiative transitionsω(R) = ∆E(R)/h̄, where ∆E(R) is the
difference of two energy terms, depends on R.

As an example, Figure 3 presents the scaled energy ε = (M/Z)2E as the function
of the scaled interstellar distance r = (Z/M2)R for the ratio of the stellar masses b = 2.
Figure 3 shows the following: (1) There exist three classical energy terms (for any fixed
positive value of the angular momentum projection M); (2) two of the classical energy
terms undergo a “V-shape” crossing (V being rotated clockwise by 90 degrees). At the
V-shape crossing, just as it would be at the usual X-shape crossing of the terms, the system
can switch from one energy term to another.
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Figure 3. Classical energy terms: the dependence of the scaled energy (M/Z)2E of the planet on the
scaled interstellar distance (Z/M2)R for the ratio of the stellar masses µ′/µ = 2.

At this point it might be useful to clarify the following. The energy E and its scaled
counterpart ε are related as E = (Z/M)2ε. Kryukov and Oks [28] clarified the following:
“The projection M of the angular momentum on the interstellar axis is a continuous variable.
The energy E depends on both ε and M. Therefore, while the scaled quantity ε takes a
discrete set of values, the energy E takes a continuous set of values (as it should be in classical
physics)”.

Next, Oks [27] considered small deviations from equilibrium values (wi, v0i, m0i) for
some fixed ratio b of the stellar masses.

δw ≡ w − wi, δv ≡ v − v0i. (9)
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After some calculations, it was found that under the following condition:

v0(w, b) ≥ {w(1 − w) − 1/2 + [9w2(1 − w)2 − w(1 − w) + 1/4]1/2}1/2 ≡ vcrit(w), (10)

the effective potential energy has a two-dimensional minimum at the equilibrium values of
w and v; this ensures that the equilibrium is stable. Furthermore, for this stable motion, the
planetary trajectory is a helix on the surface of a conical fulcrum for which its axis coincides
with the interstellar axis: the conic-helical state.

Next, it was necessary to take into account the effect of the stars’ rotation when
proceeding to the real system. For this purpose, Oks [27] employed the analytical method
using the separation of rapid and slow subsystems (concerning the general formalism of
this method and a number of its applications, refer to, e.g., the book by Oks [37].

In the system under the consideration, for a sufficiently small w, the rapid subsystem
was the planetary motion while the slow subsystem was the stars’ rotation. The ratio of the
primary frequency of the planetary motion to the Kepler frequency of the stars rotation
was the following.

k = 1/{(1 + b)1/2(1 − w)1/2 [w2 + v0(w, b)2]3/4}. (11)

As an example, Figure 4 shows this ratio versus w for the ratio of the stellar masses
b = 10. It is observed that this ratio reaches very large values if the projection of the
planetary orbit on the interstellar axis is relatively close to the star of the smaller mass
(w << 1).
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Figure 4. The ratio k of the frequencies of the rapid and slow subsystems versus the scaled projection
w of the planetary orbit on the interstellar axis for the ratio of the stellar masses b = 10.

It turned out that the stars’ rotation only results in relatively small oscillations of the
scaled radius of the planetary orbit v and of the scaled projection w of the planetary orbit
on the interstellar axis as long as the ratio of the stars’ masses b is greater or of the order of
10 and the averaged plane of the planetary orbit is much closer to the lighter of the two
stars (w << 1). This is illustrated by Figures 5 and 6, which is adopted from the paper by
Kryukov and Oks [28]. (Kryukov and Oks [28] also corrected some misprints from Oks
paper [27]. Unfortunately, this fact has been missed by Egan [38], whose paper was almost
entirely devoted to correcting the same misprints from Oks [27] paper. Egan [38] also
missed the simulations performed by Kryukov and Oks [28]. This renders Egan paper [38]
superfluous in both its analytical and simulative parts).
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dotted line (Kryukov and Oks [28]). Copyright Kryukov and Oks, 2017.
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values of the ratio b of the stellar masses: b = 100, solid line; b = 30, dashed line; b = 10, dotted line
(Kryukov and Oks [28]). Copyright Kryukov and Oks, 2017.

Thus, for sufficiently small w and sufficiently large b, the conic-helical orbit of the
planet would remain stable for a very long period of time despite the stars’ rotation. This is
a novel analytical result on the non-planar relatively stable configuration with respect to
the restricted three-body problem.

We note that Naoz [10] and Naoz et al. [24] analytically considered the situation where
the planet (the lowest mass body) orbits one of the stars in the binary (star 1), while the
other star (star 2) is much further away compared to the average separation between the
planet and star 1. While the results from these two publications are useful, their authors
missed the conic-helical planetary orbits discussed in the present section of this review.

3. Non-Planar Motion of a Planet around a Binary Star: Relativistic Corrections

Kryukov and Oks [28] studied a possible role of relativistic effects in the non-planar
restricted three-body problem described in Section 2. They found that the amplitudes of
small oscillations of the scaled axial w and radial v coordinates about their equilibrium
values (the oscillations caused by the stars rotation) in the relativistic case are the same as
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in the non-relativistic case. What turned out to be different in the relativistic case compared
to the non-relativistic case was the ratio k of the primary frequency of the planetary motion
about the interstellar axis to the frequency of the stars’ rotation:

k =
(b 2/3γ2 − 1)

3/4
(γ 3 +1)

5/4

√
1 + b γ3/2(γ 3 − 1)

3/4

√√√√√1− µs
R

(γ 4 − b2/3
)√

(b 2/3γ2 − 1)(γ 3 +1)

γ(γ 3 − 1)3/2 (12)

where the quantity s = GMSun/c2 is equal to one half of the Schwarzschild radius of the
Sun (approximately 147,700 cm) and MSun is the Sun’s mass. The parameter γ represents
the equilibrium value of the scaled projection of the planetary orbit on the interstellar axis
in the following manner.

γ =

(
1
w
− 1
)1/3

(13)

The combination of Equation (12) for k(w, b), employing the notation γ(w) from
Equation (13) for brevity, and Equation (3) for the equilibrium value of the scaled radius of
the orbit v(w, b) constitutes the parametric dependence of k on v for any fixed ratio b of the
stellar masses.

Figure 7 presents the ratio of the quantity k to its non-relativistic counterpart kNR
versus the scaled radius of the orbit v for the interstellar distance R = 100 a.u. (wide binary
system) and the stars’ masses µ = 1 and µ′ = 100 (in the units of the Sun mass). One can
observe that the relativistic effects become important for v~10–9 or smaller. (Figures 7–9
are adopted from the paper by Kryukov and Oks [28]).
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For R = 100 a.u., the values of v = (1 ÷ 2) × 10−9 correspond to the values of the radius 
of the planetary orbit ρ = (15 ÷ 30) km. From the obvious requirement for the radius of the 
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system would be stable for a very long period of time. 

Figure 7. The ratio of the relativistic and non-relativistic k (each k being the ratio of the frequencies of
the revolution of the planet about the interstellar axis and the frequency of the revolution of the stars
about their barycenter) versus the scaled radius of the planetary orbit v = ρ/R, for the interstellar
distance R = 100 a.u. (wide binary system) and the stars’ masses µ = 1 and µ′ = 100 in the units of the
mass of the Sun (Kryukov and Oks [28]). Copyright Kryukov and Oks, 2017.
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Figure 8. The ratio of the revolution frequency of the planet and the Kepler frequency of the rotation
of the stars versus the scaled orbit radius v = ρ/R in the relativistic case, for the example where the
interstellar distance is R = 100 a.u. (wide binary system) and the stars masses are µ = 1 and µ′ = 100
in the units of the mass of the Sun (Kryukov and Oks [28]). Copyright Kryukov and Oks, 2017.
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Figure 9. The scaled amplitude δw0 of the oscillations of the planetary orbit along the interstellar
axis versus the scaled orbit radius v = ρ/R for the example where the heavier star mass µ′ = 100 and
the lighter star mass µ = 1 in the units of the mass of the Sun (Kryukov and Oks [28]). Copyright
Kryukov and Oks, 2017.

For R = 100 a.u., the values of v = (1÷ 2)× 10−9 correspond to the values of the radius
of the planetary orbit ρ = (15 ÷ 30) km. From the obvious requirement for the radius of the
planet to be smaller than ρ, it follows that in this situation that it should be a planetoid.
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Figure 8 presents the dependence k(v) for the same example as in Figure 7. It shows
that, for the range of v < 2 × 10−9, the ratio of the frequencies exceeds 1012 and, thus, such
system would be stable for a very long period of time.

Figure 9 presents the dependence of the scaled amplitude δw0 of the axial oscillations
of the planetary orbit on the scaled radial coordinate v for the example where the heavier
star mass µ′ = 100 and the lighter star mass µ = 1 in the units of the mass of the Sun. It
shows that the amplitude of the oscillations is about quadrillion (!) times smaller than the
interstellar distance. Thus, the system would be stable for a huge amount of time.

4. Non-Planar Motion of a Moon in a Star-Planet System

Kryukov and Oks [28] considered an example that included an Earth-like planet and
a Sun-like star: the corresponding ratio of the masses µ/µ′ of the planet and the star is
3 × 10−6. The planet and the star are separated by the distance R = 1 a.u. There is also a
moon moving in the vicinity of the planet.

The stable non-planar configuration is similar to that discussed in Section 2. The star
here plays the role of the “heavier star” from Section 2. The planet here plays the role of
the “lighter star” from Section 2. The moon plays the role of the “planet” from Section 2.
The motion of the moon represents the rapid subsystem, while the rotation of the planet
and of the star around their barycenter represents the slow subsystem.

Figure 10 displays the ratio Ω/ω of the frequencies of the rapid and slow subsystems
versus the scaled projection w = z/R of the average plane of the moon’s orbit on the
planet-star axis. It shows that in the range of 0 < w < 10–4, the ratio of the frequencies
is much greater than unity: the analytical method based on the separation of rapid and
slow subsystems is applicable. (Figures 10–13 are adopted from the paper by Kryukov and
Oks [28]).
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Figure 13. Simulated 3D-trajectory of the moon in scaled xyz-coordinates: nmw-coordinates
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Figure 11 shows the scaled amplitude δw0 of the oscillations of the moon’s orbit along
the planet-star axis (the oscillations caused by the rotation of the star-planet subsystem)
versus the scaled coordinate w = z/R. Analogously, Figure 12 displays the scaled amplitude
δv of the oscillations of the scaled radius v = ρ/R of the moon’s orbit occurring in the
plane perpendicular to the planet-star axis (the oscillations caused by the rotation of the
star-planet subsystem) versus the scaled coordinate w.

Figure 13 presents the simulated 3D-trajectory of the moon. The coordinates (n, m,
and w) are the scaled counterparts of the coordinates (x, y, and z).

Figures 11–13 demonstrate that the conic-helical orbit of the moon in the star-planet-
moon system will remain stable for a very long period of time. For the sake of clarity, the
orbit is wound on the conical frustum such that the distance between the base of the cone
and the cutting plane (parallel to base) is much smaller than the average diameter of the
cone. We emphasize that a relatively distant star causes the following two effects: (1) The
plane of the moon’s orbit will be perpendicularly oriented to the planet-star axis; (2) the
trajectory of the moon becomes conic-helical.

5. Non-Planar Motion of a Circumbinary Planet

Schneider [31] and later Farago and Laskar [30] analytically studied a system con-
sisting a circular binary and a planet in a non-planar motion. They assumed that the
characteristic size A of the planetary orbit is much greater than the characteristic size a
of the binary. Farago and Laskar [30] derived their analytical results by expanding the
Hamiltonian in terms of the ratio a/A << 1. They found that the orbital plane of the planet
precesses about the angular momentum of the binary.

Oks [29] showed the following: “There is also the precession of the orbital plane of the
planet within the orbital plane . . . The frequency of this additional precession is not the
same as the frequency of the precession of the orbital plane about the angular momentum of
the binary, though the frequencies of both precessions are of the same order of magnitude”.
Below are some of the details.

One part of the system under consideration is a circular binary star, the stars’ masses
are M1 and M2 and the distance between them is denoted by a. They rotate with the
following frequency.

Ω = [G(M1 + M2)/a3]1/2 (14)

There is also a circumbinary planet in a non-planar motion. The major semi-axis A of
its (approximately) elliptical orbit satisfies the following inequality.

A >> a. (15)



Dynamics 2021, 1 106

In the first approximation, the planet revolves with the following frequency.

ω = [G(M1 + M2 + m)/A3]1/2. (16)

From Equations (14)–(16), the following is the case.

ω << Ω. (17)

Based on this, Oks [29] wrote the following: “Thus, the circumbinary planet can be
treated as a slow subsystem and the binary star can be treated as a rapid subsystem”.

The averaging over the rapid subsystem results in the following situation. The planet
“feels” each star as a circular ring having the mass of the star uniformly distributed around
the ring”.

The planet moves according to the following effective potential:

Veff = −G(M1 + M2)/r − GMa2(3 cos2θ − 1)/(4r3), (18)

where the reduced mass of the binary is as follows.

M = M1M2/(M1 + M2). (19)

Oks [29] clarified: “The second term in the effective potential from Equation (18) is
due to the quadripole interaction (the higher multipoles have been disregarded). The
effective potential Veff from Equation (18) is mathematically equivalent to the potential VE
for a satellite orbiting the oblate Earth (refer to, e.g., the book by Beletsky [39]). The latter is
described as follows.

VE = −GME/r − GME|I2| R2(3 cos2θ − 1)/(2r3). (20)

In Equation (20), R is the Earth radius at the equator, ME is the mass of the Earth,
and I2 is a constant describing the relative difference between the polar and equatorial
diameters of the Earth. The solution for the problem of a satellite orbiting the oblate Earth
is well-known (refer to, e.g., the book by Beletsky [39]).

Based on this analogy, Oks [29] stated that the elliptical orbit of the planet is engaged
in two kinds of precessions and they are described as follows.

The first precession is the precession of the orbit in its plane. The corresponding
angular frequency is:

ωprecession in plane = (3/8)(a/p)2(1 − 5 cos2i)ωM1M2/(M1 + M2)2, (21)

where the following is the case.

p = 2 rmin rmax/(rmin + rmax). (22)

Here, rmax and rmin are the apoapsis and periapsis of the planetary orbit, respectively;
i is the orbit inclination.

This precession is illustrated in Figure 14 (adopted from the paper by Oks [29]. It is
the precession missed by Farago and Laskar [30].
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Oks [29] noted that in Equation (21), 1 − 5 cos2i = 0 for i = 63.4 degrees and
ωprecession in plane becomes zero. Thus, the circumbinary planet, with an orbit of this degree
of inclination, does not experience the precession in the plane of the orbit.

The second precession is the precession of the planetary orbit plane around the angular
momentum M of the binary with the following angular frequency:

ωprecession of plane = (3/4)(a/p)2 (cos i)ωM1M2/(M1 + M2)2, (23)

which is the same as the one discovered by Schneider [31] and Farago and Laskar [30]. It
is observed that at i = 90 degrees, i.e., for the configuration where the orbital plane of the
plane is orthogonal to the plane of the rotation of the binary, this precession vanishes.

We note that for the range of the inclination angles i < arccos[(3/5)1/2] = 39 degrees,
the Kozai–Lidov coupling of the inclination and the eccentricity of the planetary orbit is
irrelevant. We also mention that for sufficiently high ratios of the frequencies Ω/ω of the
rapid and slow subsystems (i.e., when Equation (17) is satisfied) and for the eccentricity
of the planetary orbit that is not too close to unity, there will be practically no overlap of
resonances of the two subsystems.

Oks [29] also noted the following: “The system under consideration is mathematically
equivalent also to a highly-excited hydrogen atom in a linearly-polarized electric field of a
high-frequency laser radiation E(t) = E0 cosωLt, where the Kepler frequency of the Rydberg
electron is much smaller than the laser frequencyωL. The latter problem has been treated
analytically by Nadezhdin and Oks [40] by separating the rapid and slow subsystems”.
They found that the atomic electron moves in the following effective potential (in spherical
polar coordinates with the z-axis along vector E0).

Veff = −e/r − (γ/r3)(3 cos2θ − 1), γ = e3E0
2/(4me

2ω4). (24)

Here, e and me are the electron charge (by the absolute value) and the electron mass,
respectively. One can observe that the effective potentials from Equations (18) and (24) are
indeed mathematically equivalent.
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Nadezhdin and Oks [40] also emphasized that the physical system described by the
effective potential from Equation (24) possesses a higher geometrical symmetry. Indeed,
the geometrical symmetry is axial (leading only to the conservation of Mz). Yet M2 is
also conserved (conserved exactly for the potential from Equations (18), (20), or (24) or
conserved approximately if the higher multipoles would be taken into account). The
conservation of M2 is manifested by the fact that the shape of the elliptical orbit is not
influenced by the perturbation (M2 is proportional to the area of the elliptical orbit).

Only few physical systems are characterized by a higher geometrical symmetry. There-
fore, the higher geometrical symmetry of a circumbinary planet under consideration is of
general physical interest.

The assumption of the circular orbits of the stars in the binary was relaxed in Oks [34]
paper. The corresponding results are presented in this review in Appendix A.

6. Circular Binary Star and an Interstellar Interloper

In this section, we follow the paper by Oks [32] and present a solution (obtained
analytically) to the motion of a relatively distant interstellar interloper around a circular
binary by using the same method as in Section 5. The system under consideration consists
of a circular binary (the stars of the masses M1 and M2 at the distance a from one another)
and a relatively distant interstellar interloper of the mass m0 << (M1 + M2). The impact
parameter b, which characterizes the trajectory of the interstellar interloper, satisfies the
condition b >> a.

The Kepler frequency Ω of the stars’ rotation is given by Equation (14) from the
previous section. The characteristic frequency of the “rotation” of the interstellar interloper
reaches its maximum value at the distance rmin of the closest approach ω = vmax/rmin,
where vmax is the interstellar interloper velocity at the closest approach.

For the interstellar interloper to represent the slow subsystem and for the binary to
represent the rapid subsystem, the following obvious condition should be met: ω << Ω,
which approximately corresponds to the requirement a << b.

Similarly to the interaction potential from Equation (18), the effective potential energy
of the interstellar interloper is as follows:

Ueff(r, cos2 θ) = −Gm(M1 + M2)/r − GmMa2(3 cos2 θ − 1)/(4r3), (25)

where
m = m0(M1 + M2)/(m0 + M1 + M2) (26)

is its the reduced mass and M is given by Equation (19).
The geometrical symmetry of this system is axial (rather than spherical) since Ueff

from Equation (25) depends on the polar angle θ. Nevertheless, similar to the situation
described in Section 5, there is a higher geometrical symmetry: the square of the angular
momentum is conserved in addition to the conservation of its projection on the axis of the
rotation of the binary. Thus, the angle between the angular momentum vector and the axis
of the symmetry is also conserved since the cosine of this angle is equal to the ratio of the
angular momentum projection on this axis to the absolute value of the angular momentum.

Therefore, in the general non-planar configuration of this physical system and during
its time evolution, the angular momentum vector, which is constant by magnitude, rotates
about the axis of the symmetry while constituting the constant angle with this axis. This
finding provides important information about the trajectory of the interstellar interloper
on the general non-planar configuration.

Next, Oks [32] considered a particular situation with respect to the planar motion of
the interstellar interloper when it moves in the plane of the binary rotation. After setting
cosθ = 0 in Ueff from Equation (25), he obtained the following.

Ueff(r, 0) = −Gm(M1 + M2)/r + GmMa2/(4r3). (27)
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The analytical solution for motion described by the potential energy is as follows:

U(r) = -α/r + γ/r3, (α > 0, γ > 0), (28)

where the second term is relatively minor compared to the first term and this is well-known
(refer to, e.g., the book by Kotkin and Serbo [41]). The final result for the explicit expression
for the trajectory by Kotkin and Serbo [41] can be rewritten for the interstellar interloper
situation as follows.

p1/r = 1 + e1cos λϕ + f cos 2ϕ (29)

Here, the following is the case:

p1 = p [1 + ε(e2 + 2)], (30)

where
e = [1 + 2EL2/(mα2)]1/2 (31)

is the unperturbed eccentricity (hereafter, simply termed “eccentricity”),

p = L2/(mα) (32)

is the unperturbed semi-latus rectum,

ε = G2m4M1M2a2/(4L4) << 1 (33)

is a dimensionless small parameter and the following is the case.

e1 = e [1 + ε(3e4 − 2)/(2e2)], f = εe2/2. (34)

The unperturbed eccentricity is e > 1 since the energy E of the interstellar interloper
is positive.

For the unperturbed motion (i.e., at ε = 0) at infinity, 1 + e cos[ϕ0(r = ∞)] = 0 (refer to
Equations (29) and (34)) and the following is the case.

ϕ0(r = ∞) = arccos(−1/e). (35)

Since angle of deflection from the straight line is the following:

β = 2ϕ(r = ∞) − π, (36)

then, for the unperturbed motion, the angle of deflection is as follows.

β0 = 2 arccos(−1/e) − π. (37)

For the perturbed motion, upon expanding the right side of Equation (29) in terms of
the small parameter ε, one obtains the following.

1 + e1cosλϕ + f cos2ϕ ≈ 1 + e cosϕ + ε s(e), (38)

where the following equation results.

s(e) = 1/e2 − 2e2 + 1 − 3(e2 − 1)1/2arccos(-1/e). (39)

In the limiting cases, the function s(e) is as follows:

s(e) ≈ -3π 21/2(e − 1)1/2 at (e − 1) << 1 and s(e) ≈ −2e2 at e >> 1. (40)

Figure 15 shows the plot of this function. (Figures 15–17 are adopted from the paper
by Oks [32]).
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Figure 15. Dependence of the function s(e) from Equation (39) on the eccentricity e of the trajectory 
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Obviously at r = ∞, the right side of Equation (29) should vanish. Therefore, ac-
cording to Equation (38), one obtains the following.  
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terloper trajectory between this three-body problem and the corresponding two-body problem 
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tion of the interstellar interloper from the straight line decreases compared to the corre-
sponding two-body approximation. It is observed that the greater the eccentricity, the 
greater (by the absolute value) the relative correction becomes. 
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Obviously at r = ∞, the right side of Equation (29) should vanish. Therefore, according
to Equation (38), one obtains the following.

1 + e cosϕ + ε s(e) = 0. (41)

Thus, the cosine of the perturbed angle ϕ is expressed as follows.

cosϕ = −[1 + ε s(e)]/e. (42)

Upon substituting ϕ = ϕ0 + ∆ϕ in Equation (41), where |∆ϕ| << ϕ0, one obtains
the following.

∆ϕ = ε s(e)/(e2 − 1)1/2. (43)
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Consequently, according to Equation (36), for the perturbed angle of deflection from
the straight line, one obtains the following:

β = 2(ϕ0 + ∆ϕ) − π = 2 arccos (−1/e) − π + ε u(e), (44)

where the following equation results.

u(e) = 2s(e)/(e2 − 1)1/2. (45)

In the limiting cases, the function u(e), which controls the correction of the angle of
deflection, simplifies as follows: u(e) =−6π –29/2(e− 1)5/2/5 at (e− 1) << 1 and u(e)≈−4e
at e >>1. Figure 16 displays the plot of the function u(e).

Therefore, the relative correction ∆ to the deflection angle, defined as the ratio of the
correction to the unperturbed value, has the following expression.

∆(e) = εw(e), w(e) = u(e)/[2arccos(−1/e) − π]. (46)

In the limiting cases, the function w(e), which controls the relative correction to the
angle of deflection, simplifies to w(e) = −6 − 25/2 3(e − 1)1/2/π at (e − 1) << 1 and
w(e) ≈ −2e2 at e >> 1. Figure 17 shows the plot of the function w(e).

The relative difference w(e) is presented in units of ε = G2m4M1M2a2/(4L4). From
Figures 16 and 17, one can observe that, in the three-body treatment, the angle of deflection
of the interstellar interloper from the straight line decreases compared to the corresponding
two-body approximation. It is observed that the greater the eccentricity, the greater (by the
absolute value) the relative correction becomes.

The above results seem to have a fundamental importance, especially in view of the
fact that two interstellar interlopers—Oumuamua and 2I/Borisov—have recently been
found to travel through the solar system (refer to some of the latest papers; for instance, by
Bodewits et al. [42], Zhang and Lin [43], and references therein). Thus, the above results
should also further heighten the interest of the astrophysical community to interstellar
interlopers in the Universe. From a practical point of view, one can determine the ratio m/L
(characterizing the interloper) for the known eccentricity e by using our results: Indeed, the
parameter ε (defined in Equation (33)), which controls the corrected angle of deflection in
Equation (46), depends on the parameters of the interloper as being proportional to (m/L)4.

7. New Method for Detecting and Measuring Parameters a Compact Dark Matter
Object Belonging to a Binary System

Compact dark matter objects (CDOs) have been the subject of many discussions
in the literature (for the latest publications, refer to the papers by Errehymy et al. [44],
Hadjimichef et al. [45], Raidal et al. [46], Dvali et al. [47], Horowitz et al. [48], Liao et al. [49],
and the references therein). The mass and the distance of the CDOs are usually estimated
via the gravitational microlensing effect. However, there are several shortcomings of this
method (refer to the papers by Gilster [50], Griest et al. [51], and Hawkins [52]). One
shortcoming is that the application of this method requires the alignment to be precise:
Therefore, detections of CDOs by this method are rare and impossible to predict. Another
shortcoming is that one should allow for competing background events: This makes a
reliable detection very difficult.

Oks [33] suggested an alternative method for detecting and measuring parameters of
dark matter objects. The method originates from the results presented in Oks [27] and by
Kryukov and Oks [28], which are discussed above in Section 2

Oks [33] considered the following scenario: “There is a star of mass m. The star has
one planet. The orbital plane of the planet does not contain the star. In other words, there
is some distance z0 between the star and the equilibrium position of the planetary orbital
plane—see Figure 18 adopted from the paper by Oks [33]. This signifies the presence of a
relatively distant gravitating object located at the z-axis at some (yet unknown) distance
R from the star: R >> z0. So, the object and the star constitute a binary system. If in the
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positive direction of the z-axis there is no visible star, this could signify that in this binary
system, the companion of the star is a CDO”.
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Oks [33] demonstrated a method for analytically obtaining the unknown mass M of
the CDO and its unknown distance R from the star by employing the following input
parameters: z0, ρ0 (the equilibrium radius of the planetary orbit), m (the star mass), and
the orbital frequency F (or the orbital period T) of the planet. He introduced the scaled and
dimensionless notations of the following:

w = z0/R, v = ρ0/R, b = M/m, f = F R3/2/(Gm)1/2
, (47)

where F is the orbital frequency of the planet. The scaled orbital frequency f of the planet
takes the following form.

f = (1 − w)-1/2(w2 + v2)−3/4. (48)

From Equations (47) and (48), one obtains the following.

F = (Gm)1/2/[(1 − z0/R)1/2 (z0
2 + ρ0

2)3/4]. (49)

Equation (49) can be solved for the only one unknown quantity, R, to yield the following.

R = z0/{1 − Gm/[(z0
2 + ρ0

2)3/2F2]}, F = 2π/T. (50)

It is observed that the unknown distance R between the CDO and the star can be
determined by means of Equation (50).

In the next step, one can use Equation (3) from Section 2 (for the scaled equilibrium
radius v(w, b) of the planetary orbit) to find out the sole remaining unknown quantity
b = M/m, while employing the definitions of w and v from Equation (47).

M = m[z0/(R − z0)][(R − z0)2 − ρ0
2]3/2/(z0

2 + ρ0
2)3/2. (51)

Since the separation R between the CDO and the star has already been found by
employing Equation (50), Equation (51) can be used for determining the last still unknown
quantity: the CDO mass M.
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Oks [33] provided the following numerical example: “If z0 = 1/1000 a.u., ρ0 = 1/10 a.u.,
m = MSun/2 (MSun being the solar mass), and the planet has the orbital period T of
49/3 days, then from Equation (50) one obtains (after converting the input data into the cgs
units) the separation between the CDO and the star: R = 7.49 a.u. Finally, from Equation
(51) one gets the CDO mass: M = 56.1 MSun”.

It should be noted that for the numerical data chosen as an example, the frequency
of the rotation of the star and the CDO about their barycenter is smaller than the orbital
frequency of the planet by two orders of magnitude. Thus, the condition for the separation
of the rapid and slow subsystems in order to be legitimate is satisfied.

The proposed method should be useful, in particular, for obtaining additional obser-
vational data on the CDOs and, therefore, on dark matter in general.

8. Circular Sitnikov Problem in a More General Setup

Studies of the “orthogonal” configuration of the restricted three body problem that are
initiated by Sitnikov [53], e.g., the motion of a planet along the line that is perpendicular to
the orbital plane of two stars in the binary and that crosses the barycenter of the binary
(the z-axis), possess an interesting particular case where the stars in the binary move in
circular orbits: the circular Sitnikov problem. Analytical solutions, expressed as a one-fold
integral, had been previously obtained by Pavanini [54] and MacMillan [55] for the special
case of the circular Sitnikov problem where the two stars are of equal masses. References
on subsequent studies can be found, e.g., in the book by Dvorak and Lhotka [56] and in the
papers by Sidorenko [57] and by Abouelmagd et al. [20].

In particular, in 1994 Belbruno et al. [35] completed the integration (not performed
by Pavanini [54] and MacMillan [55]) and obtained, e.g., the following exact analytical
result for the period of oscillation of the planet for the special case of the circular Sitnikov
problem where the two stars are of equal masses:

T = [21/2/(1 − 2k2)]{E(k) + [π/(23/2(1 − 2k2)1/2)][1 − Λ0{arcsin[(1 − 2k2)/(1 − k2)]1/2, k}], (52)

where E(k) is the complete elliptic integral of the second kind and Λ0(φ, k) is the Heuman
Lambda function. In Equation (52), the quantity k is related to the dimensionless energy h
of the planet as follows.

k = (2 + h)1/2/2. (53)

The units of h are chosen such that the bound motion corresponds to the range.

−2 < h < 0. (54)

The corresponding scaled potential energy has the following form:

V = −2/(1 + 4z2)1/2, (55)

where z is the scaled dimensionless coordinate in units of the separation between the
two stars.

For a more general setup of the circular Sitnikov problem where the two stars in the
binary have, generally speaking, unequal masses M1 and M2, an approximate analytical so-
lution based on the separation of rapid and slow subsystems was presented in Appendix A
of the paper by Oks [34]. Here are some of the details.

The starting point was the physical situation from the Oks [34] paper, which is also
described in Section 5 of the present review. After averaging over the rapid subsystem
(over the motion of the stars), the planet perceived each star as a circular ring possessing
the mass of the star uniformly distributed around the ring. In this situation, the effective
potential energy Veff was given by Equation (18) for an arbitrary polar angle coordinate of
the planet.



Dynamics 2021, 1 114

The linear motion of the planet along the z-axis corresponds to θ(t) = 0. Equation (18)
then simplifies as follows.

Veff(z) = −Gm(M1 + M2)/|z| − GmMa2/(2|z|3). (56)

From the equation for the total energy E, where E < 0, the following was found.

dz/dt = ±(2/m)1/2[|Ueff(z)| − |E|]1/2 (57)

Thus, the solution for the equation of the motion has the form of the following one-
fold integral.

t = ±(m/2)1/2
∫

dz/[Gm(M1 + M2)/|z| + GmMa2/(2|z|3) − |E|]1/2 (58)

In that paper, the author introduced the following dimensionless quantities.

u = |z||E|/[Gm(M1 + M2)], b = Ma2E2/[2m2G2(M1 + M2)3]. (59)

Obviously, the parameter b is the square of the scaled total energy. Equation (58) has
been represented in the following form.

t = ±[G(M1 + M2)m3/2/(21/2|E|3/2)]
∫

du/(1/u + b/u3 − 1)1/2 =
± [G(M1 + M2)m3/2/(21/2|E|3/2)]

∫
du u3/2/(b + u2 − u3)1/2.

(60)

The expression for the turning points ±u0 was obtained by solving the equation
u3 − u2 − b = 0.

u0 = g(b) = 1/3 + 21/3/{3[2 + 27b + 33/2(4b + 27b2)1/2]1/3} + [2 + 27b + 33/2(4b + 27b2)1/2]1/3/(21/33). (61)

Figure 19 presents the plot of the function g(b).
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Figure 19. The absolute value of the turning point u0 = g(b) versus b, where b is the dimensionless 
parameter (the square of the scaled total energy) defined in Equation (59) [34]. Copyright 2021 
Elsevier. 

The analytical result for the period T of the motion is the following: 

T = [23/2G(M1 + M2)m3/2/|E|3/2] f(b) = {(2M1M2)3/4a3/2/[G1/2(M1 + M2)2]}f(b)/b3/4, (62)

where  

( ) ( )
g( )

1/23/2 2 3

0

f b  = du u / b + u  u .
b

−  (63)

Figure 19. The absolute value of the turning point u0 = g(b) versus b, where b is the dimension-
less parameter (the square of the scaled total energy) defined in Equation (59) [34]. Copyright
2021 Elsevier.

The analytical result for the period T of the motion is the following:

T = [23/2G(M1 + M2)m3/2/|E|3/2] f(b) = {(2M1M2)3/4a3/2/[G1/2(M1 + M2)2]}f(b)/b3/4, (62)

where

f(b) =

g(b)∫
0

du u3/2/
(

b + u2 − u3
)1/2

. (63)
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For b << 1, one obtains the following.

f(b) ≈ π/2. (64)

Equation (62) can be represented in the following form:

Ts(b) = f(b)/b3/4, Ts = TG1/2(M1 + M2)2/[(2M1M2)3/4a3/2], (65)

where Ts is the scaled period.
Figure 20 demonstrates the dependence of the scaled period Ts on b (i.e., on the scaled

square of the energy). It shows that the period of the oscillations decreases as the absolute
value of the energy increases.
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From Equation (64), it follows that for b << 1 one obtains the following.

Ts ≈ π/(2b3/4). (66)

Since b is proportional to E2, this means that for relatively small energies, the period
is inversely proportional to 1/E3/2 and, thus, obeys the corresponding Kepler law. This
should be expected: For relatively small energies, the situation approaches the case where
the planet moves in the gravitational field of a “single” star of the mass (M1 + M2).

For the special case of M1 = M2, i.e., for the only case in which Belbruno et al. [35]
obtained the analytical result for the period (given by Equation (52)), it would be instructive
to compare the latter to the corresponding result from the Oks paper [34]. The parameteri-
zations in the papers by Belbruno et al. [35] and by Oks [34] were very different from one
another. The meaningful comparison (i.e., comparing “apples to apples”) can be performed
for the following quantity.

S(|h|) = |h|3/2T(|h|)/
{

lim
h→0

[
|h|3/2T(|h|)

]}
(67)

(We note that the scaled energy h is negative for bound states in the notations from
Belbruno et al. paper [35]).

In Figure 21, the results for S(|h|) in this special case (M1 = M2) by Oks [34] and by
Belbruno et al. [35] are shown by the solid and dashed lines, respectively, for the range
of the applicability of the Oks results [34] (i.e., for the relatively large amplitude of the
oscillations corresponding to the relatively small absolute value of the scaled energy h).
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Figure 21. Dependence of the quantity S, which is defined in Equation (67), on the absolute value
of the scaled energy h, which is defined in the Belbruno et al. (1994) paper, for the relatively large
amplitude of the oscillations corresponding to the relatively small absolute value h (denoted as
Abs[h]). Solid line—for the Oks analytical result; dashed line—for the Belbruno et al. analytical
result [35]. Copyright Oks, 2021.

It can be observed that, for this special case (M1 = M2), the approximate analytical
result for S(|h|) by Oks [34] is in good agreement with the analytical result of S(|h|) by
Belbruno et al. [35].

It should be emphasized that for the more general setup where the masses of the stars
in the binary are not equal, the approximate analytical result by Oks [34], obtained by
separating rapid and slow subsystems, does not have the corresponding analytical results
in the literature to the best of our knowledge.

For the sake of completeness, we note that for the opposite asymptotic case, where
(h + 2) << 1, the analytical result for the period T of the oscillations can be obtained
(without resorting to the rotating reference frame used by Belbruno et al. [35] by reducing
the problem to an anharmonic oscillator. This is presented in Appendix B of the current
review where, in particular, it was shown that there seems to be an error in the analytical
calculation of the period of the oscillations by Belbruno et al. [35] or at least in their
analytical calculation of the derivative dT/dh at h = −2.

9. Concluding Remarks

Most of the analytical results in the restricted three-body problem in celestial me-
chanics that were obtained before 2015 were limited to planar geometry, to the motion
around the Lagrange points, or to the Kozai–Lidov effect. Recent advances in the analytical
solutions of the non-planar restricted three-body problem, of which the present review is
devoted to, opened up new avenues in this research area.

One of the analytical advances covered in this review is the discovery of conic-helical
orbits of the light body in three body systems. Examples are presented for the motion of a
planet around a binary star and for the motion of a moon in the planet-star systems.

Another analytical advance concerned the motion of a circumbinary planet in which
its average distance from the binary is much greater than the distance between the stars. In
addition to the previously known precession of the plane of the planetary orbit about the
axis of the rotation of the binary, it was simultaneously shown that there is also a precession
of the planetary orbit in its own plane.

For an interstellar interloper moving at a relatively large distance from a binary
star, its angle of deflection from the straight line has been analytically calculated. This
result permits the determination of the ratio of the mass to the angular momentum of the
interstellar interloper.

This review also covered an alternative method for detecting and measuring parame-
ters of compact dark matter objects (CDOs) that affect a star-planet system. The method
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permits the determination of the separation between the CDO and the star as well as the
CDO mass.

Finally, analytical results on the circular Sitnikov problem were presented in a more
general setup. Compared to the previous analytical results derived only for the special
case of the equal masses of the two primary bodies, the presented results were obtained
for the arbitrary ratio of the masses of the two primary bodies. The two primary bodies
were considered to be stars in the binary, while the third (light) body was considered to
be a planet. The most important result was obtained for the period T of the oscillations
of the planet in this three-body system. For the special case of equal masses of the stars
in the binary, this analytical result was compared to the corresponding analytical result
by Belbruno et al. [35]. It was shown that there appears to be an error in the analytical
calculation performed by Belbruno et al. [35] concerning the derivative dT/dh at h = −2
(where h is the scaled energy of the planet): in other words, at the relatively small amplitude
of the oscillations of the planet.

We hope that the present review would motivate the search for further analytical
solutions of the non-planar restricted three-body problem in celestial mechanics.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Effects of the Low-Eccentricity Orbits of the Binary on the Non-Planar
Motion of the Circumbinary Planet

Compared to the setup from the Oks paper [29] (the results of which are presented
in Section 5 of this review), Oks [34] analyzed the situation where the orbits of the binary
components are elliptical, but the eccentricity is relatively small.

ε << 1. (A1)

The distance a(t) between the stars can be expanded in terms of the small parameter ε.

a(t) ≈ a0(1 − ε cosΩt). (A2)

Here, a0 is the zero-eccentricity radius of the orbit and Ω is the Kepler frequency of
the stars in the binary.

Ω = [G(M1 + M2)/a3]1/2. (A3)

Then, we obtain the following expression for the “instantaneous potential energy” of
the planet:

Ueff(r, cos θ, t) = Ueff
(0)(r, cos θ) + εW(r, cos θ) cos Ωt, (A4)

where the following is the case.

Ueff
(0)(r, cos θ) = −Gm(M1 + M2)/r −W(r, cos θ)/2, W(r, cos θ) = GmMa0

2(3 cos2 θ − 1)/(2r3). (A5)

Oks [34] wrote the following: “The term εW(r, cos θ) cos Ωt can now be processed by
the method of effective potentials (Kapitza [58,59], Nadezhdin and Oks [40], Nadezhdin [60],
Oks [37] with respect to the totally unperturbed Hamiltonian.

H0 = p2/(2m) − Gm(M1 + M2)/r. (A6)

It yields the following ε-dependent term in the effective potential energy:

U1 = [εW,[εW, H0]]/(4Ω2) = 9ε2G2mM2a0
4[5cos (4θ) +12cos (2θ) + 15]/(128r8Ω2), (A7)

where [P, Q] are the Poisson brackets”.
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By combining Equations (A3) and (A7), one obtains the following:

U1 = 9ε2GmM1
2M2

2a0
7[5cos (4θ) +12cos (2θ) + 15]/[(M1 + M2)3128r8], (A8)

leading to the following total effective potential.

Ueff = −Gm(M1 + M2)/r − GmMa0
2(3 cos2 θ − 1)/(4r3) +

9ε2GmM1
2M2

2a0
7[5cos (4θ) +12cos (2θ) + 15]/[(M1 + M2)3128r8].

(A9)

Oks [34] considered in detail the particular case of the planar motion of the planet
(θ = π/2). The calculation of the derivatives dUeff/dθ and d2Ueff/dθ2 at θ = π/2 shows that
this is a stable equilibrium. The effective potential energy simplifies to the following case.

Ueff = −Gm(M1 + M2)/r + GmMa0
2/(4r3) + 9ε2GmM1

2M2
2a0

7/[(M1 + M2)316r8]. (A10)

For the potential −α/r perturbed by the potential −β/rn+1, the periapsis advance of
the orbit is as follows (refer to, e.g., Belitz [61], Landau and Lifshitz [62]).

δΦ = 2mβ
∂

∂L

 1
L

p1−n
π∫

0

(1 + ε e cosϕ)n−1dϕ. (A11)

Here, m, L, and εp are the reduced mass, the angular momentum, and the eccentricity
of the planet, respectively; p = L2/(mα). For the second term in Equation (A9), the ratio of
the precession and Kepler frequencies (given by the periapsis advance divided by 2π) is
the following:

ωpip
(1)/ωK = −3M1M2S2/4, (A12)

where the following is obtained.
S = Gm2a0 (A13)

(“pip” means “precession in plane”).
In the rest of this Appendix, all masses are scaled by the mass of the Sun. Figure A1

presents the dependence of the ratio rat1 = |ωpip
(1)/ωK| on the parameter S defined in

Equation (A13) after setting M1 = M2 = 1. One can observe that in this range of S, the ratio
rat1 is sufficiently smaller than unity, which is necessary for the validity of Equation (A12).
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Similarly for the last term in Equation (A10), the corresponding result (the effect of
the eccentricity) for the ratio rat2 =ωpip

(2)/ωK is as follows.

ωpip
(2)/ωK = −63ε2M1

2M2
2(M1 + M2)3S7f(Ep)/256, f(Ep) = 429 − 495Ep + 135Ep

2 − 5Ep
3, (A14)
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Here, we have the following:

Ep = 2|E|L2/[G2m3(M1 + M2)2] (A15)

which is related to the eccentricity by the formula εp = (1 − Ep)1/2. Physically, Ep can be
considered as the dimensional energy of the planet.

Figure A2 presents the three-dimensional plot showing the dependence of
rat2 = |ωpip

(2)/ωK| both on S and ε. One can observe that in the displayed ranges
of S and ε, the ratio rat2 is sufficiently smaller than unity, which is necessary for the validity
of Equation (A14).
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It is instructive to calculate the following ratio K21 =ωpip
(2)/ωpip

(1).

K21 = 21ε2M1M2(M1 + M2)3S5f(Ep)/64. (A16)

Figure A3 presents the three-dimensional plot, showing the dependence of K21 both
on S and ε. One can observe that in the displayed ranges of S and ε, i.e., in the ranges of the
validity of Equations (A12) and (A14), the eccentricity effect on the precession frequency
can become about the same (by the order of magnitude) as the primary contributionωpip

(1).
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Appendix B. Analytical Calculations of the Period of the Oscillations in the
MacMillan Problem for Relatively Small Amplitudes by Using the Analogy with an
Anharmonic Oscillator

A particular case of the circular Sitnikov problem was initially studied by Pavanini [54]
and MacMillan [55]: Two bodies (hereafter, two stars) of equal masses (M1 = M2 = 1/2 in
the chosen units) revolve in a common circular orbit around their barycenter and the third
test body (hereafter, a planet) oscillates along the line crossing the stars’ barycenter at a
right angle to the stars’ orbital plane. This is the particular case where Belbruno et al. [35]
obtained the explicit analytical expression for the period of the oscillation given by Equa-
tion (52) above.

The corresponding scaled potential energy has the form given by Equation (55) above.
Here, we are interested in the situation where the dimensionless amplitude A of the oscilla-
tions (in units of the separation between the two stars) along the z-axis is relatively small.

A << 1. (A17)

Since the dimensionless energy h of the planet is related to the amplitude A as
the following.

h = −2/(1 + 4A2)1/2, (A18)

It follows that the case of A << 1 corresponds to the following.

(h + 2) << 1. (A19)
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We expand the potential energy from Equation (55) in terms of z.

V = −2 + 4z2 − 12z4 + O(z6). (A20)

If we would initially disregard the terms O(z6), then the truncated potential corre-
sponds (apart from the constant −2) to the following potential of an anharmonic oscillator:

Vao =ω0
2z2/2 + βz4/4, (A21)

the solution for which was given, e.g., in the Landau and Lifshitz textbook [62]. The
following is then identified.

ω0 = 23/2, β = −48, (A22)

The Landau and Lifshitz result for the oscillations frequency becomes the following.

ω = 23/2(1 − 9A2/4). (A23)

The period of the oscillations is obtained.

T = π/[21/2(1 − 9A2/4)]. (A24)

Thus, as the amplitude A of the oscillations approached zero such that the scaled
energy h approaches −2 according to Equation (A18), the period T approaches π/21/2.
This is the same asymptotic result obtained by Belbruno et al. [35].

Let us also calculate the derivative dT/dh at h = −2 and compare it with the corre-
sponding asymptotic result by Belbruno et al. [35]:

dT/dh = (9π/25/2)[(dA2/dh)/(1 − 9A2/4)2. (A25)

From Equation (A18), the following results.

A2 = 1/h2 − 1/4, (A26)

The following is also obtained.

dA2/dh = −2/h3. (A27)

Upon substituting Equation (A27) in Equation (A25) and then setting h = −2, we find
the following case.

dT/dh = 9π/29/2 at h = −2. (A28)

At the first glance, it might seem that Equation (A28) is approximate, i.e., valid only
if the frequency and the period of the oscillations are calculated up to the terms ~A2.
However, the result for dT/dh at h = −2 in Equation (A28) is exact in reality. The following
is the proof.

With the allowance for all orders of the expansion in terms of A2, the expression for the
frequency of the oscillations can be represented in the following form:

ω = 23/2(1 − 9A2/4+
∞

∑
n=2

cnA2n), (A29)

where cn are expansion coefficients in which its specific values are immaterial to this proof.
The corresponding expression for the period of the oscillations is the following.

T = π/[21/2(1− 9A2/4 +
∞

∑
n=2

cnA2n)]. (A30)

Then, instead of Equation (A25), one obtains the following.
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dT/dh =
(

9π/25/2
)
{[
(

dA2/dh
)
+

∞

∑
n=2

cn

(
dA2n/dh

)
]/( 1 − 9A2/4+

∞

∑
n=2

cnA2n

)2

}. (A31)

Let us calculate the derivatives dA2n/dh at h = −2 as follows.

dA2n/dh = d[(1/h2 − 1/4)n]/dh = n(1/h2 − 1/4)n−1(−2/h3). (A32)

Obviously, at h = −2, Equation (A32) yields zero for n > 1. Therefore, the inclusion of
the sums from n = 2 to ∞ in Equations (13) and (14) did not affect the derivative dT/dh at
h = −2: The result for dT/dh at h = −2 remains the same as given by Equation (A28), i.e.,
the latter result is indeed exact.

The corresponding asymptotic result given by Belbruno et al. [35] was the following:

(dT/dh)Belbruno = π(1 + 25/2)/16 at h = −2. (A33)

It is observed that the result from Equation (A33) differs from the corresponding
result from Equation (A28). Despite the fact that the numerical difference between the
two results is only about 5% (9π/29/2 ≈ 1.25, while π(1 + 25/2)/16 ≈ 1.31), it indicates
that there appears to be an error in the calculation of the period of the oscillations by
Belbruno et al. [35] or at least in their calculation of the derivative dT/dh at at h = −2.
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