Interstellar Carbon Dust
Abstract
:1. Introduction
2. Observations of Interstellar Carbons
2.1. (Nano-)Diamonds
2.2. Fullerenes
2.3. Graphite
2.4. Silicon Carbide
2.5. The PAH Hypothesis
2.6. Amorphous Carbon
3. Evolution and Interaction with the Environment
4. Which Carbonaceous Solids Are Ingredients for Interstellar Models?
Funding
Conflicts of Interest
Abbreviations
AIBs | Aromatic Infrared Bands |
PDR | Photon or Photodissociation dominated region |
ISM | Interstellar Medium |
PAHs | Polycyclic aromatic Hydrocarbons |
References
- Dartois, E.; Alata, I.; Engrand, C.; Brunetto, R.; Duprat, J.; Pino, T.; Quirico, E.; Remusat, L.; Bardin, N.; Briani, G.; et al. Interstellar and interplanetary solids in the laboratory. Bull. Soc. R. Sci. Liege 2015, 84, 7–14. [Google Scholar] [CrossRef]
- Kwok, S. Complex organics in space from Solar System to distant galaxies. Astron. Astrophys. Rev. 2016, 24, 8. [Google Scholar] [CrossRef]
- Dartois, E.; Muñoz-Caro, G.M. Carbonaceous dust grains in luminous infrared galaxies. Spitzer/IRS reveals a-C:H as an abundant and ubiquitous ISM component. Astron. Astrophys. 2007, 476, 1235–1242. [Google Scholar] [CrossRef]
- Dartois, E.; Geballe, T.R.; Pino, T.; Cao, A.-T.; Jones, A.; Deboffle, D.; Guerrini, V.; Bréchignac, P.; D’Hendecourt, L. IRAS 08572+3915: Constraining the aromatic versus aliphatic content of interstellar HACs. Astron. Astrophys. 2007, 463, 635–640. [Google Scholar] [CrossRef]
- Van Diedenhoven, B.; Peeters, E.; van Kerckhoven, C.; Hony, S.; Hudgins, D.M.; Allamandola, L.J.; Tielens, A.G.G.M. The Profiles of the 3–12 Micron Polycyclic Aromatic Hydrocarbon Features. Astrophys. J. 2004, 611, 928–939. [Google Scholar] [CrossRef]
- Hanneman, R.E.; Strong, H.M.; Bundy, F.P. Hexagonal Diamonds in Meteorites: Implications. Science 1967, 155, 995–997. [Google Scholar] [CrossRef]
- Vdovykin, G.P. Ureilites. Space Sci. Rev. 1970, 10, 483–510. [Google Scholar] [CrossRef]
- Berkley, J.L.; Taylor, G.J.; Keil, K.; Harlow, G.E.; Prinz, M. The nature and origin of ureilites. Geochim. Cosmochim. Acta 1980, 44, 1579–1597. [Google Scholar] [CrossRef]
- Lewis, R.S.; Ming, T.; Wacker, J.F.; Anders, E.; Steel, E. Interstellar diamonds in meteorites. Nature 1987, 326, 160–162. [Google Scholar] [CrossRef]
- Amari, S.; Lewis, R.S.; Anders, E. Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 1994, 58, 459–470. [Google Scholar] [CrossRef]
- Zinner, E. Stellar Nucleosynthesis and the Isotopic Composition of Presolar Grains from Primitive Meteorites. Annu. Rev. Earth Planet. Sci. 1998, 26, 147–188. [Google Scholar] [CrossRef]
- Hill, H.G.M.; Jones, A.P.; D’Hendecourt, L.B. Diamonds in carbon-rich proto-planetary nebulae. Astron. Astrophys. 1998, 336, L41–L44. [Google Scholar]
- Clayton, D.D.; Nittler, L.R. Astrophysics with Presolar Stardust. Annu. Rev. Astron. Astrophys. 2004, 42, 39–78. [Google Scholar] [CrossRef]
- Heck, P.R.; Stadermann, F.J.; Isheim, D.; Auciello, O.; Daulton, T.L.; Davis, A.M.; Elam, J.W.; Floss, C.; Hiller, J.; Larson, D.J.; et al. Atom-probe analyses of nanodiamonds from Allende. Meteor. Planet. Sci. 2014, 49, 453–467. [Google Scholar] [CrossRef]
- Guillois, O.; Ledoux, G.; Reynaud, C. Diamond Infrared Emission Bands in Circumstellar Media. Astrophys. J. Lett. 1999, 521, L133–L136. [Google Scholar] [CrossRef]
- Chang, H.C.; Lin, J.-C.; Wu, J.-Y.; Chen, K.-H. Infrared Spectroscopy and Vibrational Relaxation of CH, and CD, Stretches on Synthetic Diamond Nanocrystal Surfaces. J. Phys. Chem. 1995, 99, 11081–11088. [Google Scholar] [CrossRef]
- Mutschke, H.; Andersen, A.C.; Jäger, C.; Henning, T.; Braatz, A. Optical data of meteoritic nano-diamonds from far-ultraviolet to far-infrared wavelengths. Astron. Astrophys. 2004, 423, 983–993. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Chang, H.-C.; Cheng, C.-L.; Wang, C.-C.; Jiang, J.C. Size dependence of CH stretching features on diamond nanocrystal surfaces: Infrared spectroscopy and density functional theory calculations. J. Chem. Phys. 2003, 119, 10626–10632. [Google Scholar] [CrossRef]
- Pirali, O.; Vervloet, M.; Dahl, J.E.; Carlson, R.M.K.; Tielens, A.G.G.M.; Oomens, J. Infrared Spectroscopy of Diamondoid Molecules: New Insights into the Presence of Nanodiamonds in the Interstellar Medium. Astrophys. J. 2007, 661, 919–925. [Google Scholar] [CrossRef]
- Van Kerckhoven, C.; Tielens, A.G.G.M.; Waelkens, C. Nanodiamonds around HD 97048 and Elias 1. Astron. Astrophys. 2002, 384, 568–584. [Google Scholar] [CrossRef]
- Acke, B.; van den Ancker, M.E. A survey for nanodiamond features in the 3 micron spectra of Herbig Ae/Be stars. Astron. Astrophys. 2006, 457, 171–181. [Google Scholar] [CrossRef]
- Habart, E.; Testi, L.; Natta, A.; Carbillet, M. Diamonds in HD 97048: A Closer Look. Astrophys. J. Lett. 2004, 614, L129–L132. [Google Scholar] [CrossRef]
- Goto, M.; Henning, Th.; Kouchi, A.; Takami, H.; Hayano, Y.; Usuda, T.; Takato, N.; Terada, H.; Oya, S.; Jäger, C.; et al. Spatially Resolved 3 μm Spectroscopy of Elias 1: Origin of Diamonds in Protoplanetary Disks. Astrophys. J. 2009, 693, 610–616. [Google Scholar] [CrossRef]
- Boutéraon, T.; Habart, E.; Ysard, N.; Jones, A.P.; Dartois, E.; Pino, T. Carbonaceous nano-dust emission in proto-planetary discs: The aliphatic-aromatic components. Astron. Astrophys. 2019, 623, A135. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; Obrien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Foing, B.H.; Ehrenfreund, P. Detection of two interstellar absorption bands coincident with spectral features of C60+. Nature 1994, 369, 296–298. [Google Scholar] [CrossRef]
- Fulara, J.; Jakobi, M.; Maier, J.P. Electronic and infrared spectra of C and C in neon and argon matrices. Chem. Phys. Lett. 1993, 211, 227–234. [Google Scholar] [CrossRef]
- Herbig, G.H. The Search for Interstellar C60. Astrophys. J. 2000, 542, 334–343. [Google Scholar] [CrossRef]
- Moutou, C.; Sellgren, K.; Verstraete, L.; Léger, A. Upper limit on C60 and C60(+) features in the ISO-SWS spectrum of the reflection nebula NGC 7023. Astron. Astrophys. 1999, 347, 949–956. [Google Scholar]
- Sellgren, K.; Werner, M.W.; Ingalls, J.G. The 5–15 Micron Spectrum of Reflection Nebulae as a Probe for Fullerenes. Am. Astron. Soc. Meet. Abstr. 2009, 214, 402.12. [Google Scholar]
- Sellgren, K.; Werner, M.W.; Ingalls, J.G.; Smith, J.D.T.; Carleton, T.M.; Joblin, C. C60 in Reflection Nebulae. Astrophys. J. Lett. 2010, 722, L54–L57. [Google Scholar] [CrossRef]
- Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S.E. Detection of C60 and C70 in a Young Planetary Nebula. Science 2010, 329, 1180. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, D.A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R.A.; Szczerba, R.; Perea-Calderón, J.V. Formation of Fullerenes in H-containing Planetary Nebulae. Astrophys. J. Lett. 2010, 724, L39–L43. [Google Scholar] [CrossRef]
- Clayton, G.C.; de Marco, O.; Whitney, B.A.; Babler, B.; Gallagher, J.S.; Nordhaus, J.; Speck, A.K.; Wolff, M.J.; Freeman, W.R.; Camp, K.A.; et al. The Dust Properties of Two Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of a Possible Link. Astron. J. 2011, 142, 54. [Google Scholar] [CrossRef]
- Gielen, C.; Cami, J.; Bouwman, J.; Peeters, E.; Min, M. Carbonaceous molecules in the oxygen-rich circumstellar environment of binary post-AGB stars. C60 fullerenes and polycyclic aromatic hydrocarbons. Astron. Astrophys. 2011, 536, A54. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Iglesias-Groth, S.; Acosta-Pulido, J.A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R.A.; Cataldo, F. The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae. Astrophys. J. Lett. 2011, 737, L30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kwok, S. Detection of C60 in the Protoplanetary Nebula IRAS 01005+7910. Astrophys. J. 2011, 730, 126. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Villaver, E.; García-Lario, P.; Acosta-Pulido, J.A.; Manchado, A.; Stanghellini, L.; Shaw, R.A.; Cataldo, F. Infrared Study of Fullerene Planetary Nebulae. Astrophys. J. 2012, 760, 107. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Salas, J.; Cami, J.; Peeters, E.; Jones, A.P.; Micelotta, E.R.; Groenewegen, M.A.T. On the Excitation and Formation of Circumstellar Fullerenes. Astrophys. J. 2012, 757, 41. [Google Scholar] [CrossRef]
- Peeters, E.; Tielens, A.G.G.M.; Allamandola, L.J.; Wolfire, M.G. The 15–20 μm Emission in the Reflection Nebula NGC 2023. Astrophys. J. 2012, 747, 44. [Google Scholar] [CrossRef] [Green Version]
- Boersma, C.; Rubin, R.H.; Allamandola, L.J. Spatial Analysis of the Polycyclic Aromatic Hydrocarbon Features Southeast of the Orion Bar. Astrophys. J. 2012, 753, 168. [Google Scholar] [CrossRef]
- Berné, O.; Tielens, A.G.G.M. Formation of buckminsterfullerene (C60) in interstellar space. Proc. Natl. Acad. Sci. USA 2012, 109, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, K.R.G.; Smith, K.T.; Sarre, P.J. Detection of C60 in embedded young stellar objects, a Herbig Ae/Be star and an unusual post-asymptotic giant branch star. Mon. Not. R. Astron. Soc. 2012, 421, 3277–3285. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M.; Kemper, F.; Hyung, S.; Sargent, B.A.; Meixner, M.; Tajitsu, A.; Yanagisawa, K. The Detection of C60 in the Well-characterized Planetary Nebula M1-11. Astrophys. J. 2013, 764, 77. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Górny, S.K. Chemical abundances in Galactic planetary nebulae with Spitzer spectra. Astron. Astrophys. 2014, 567, A12. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M.; Kemper, F.; Cami, J.; Peeters, E.; Bernard-Salas, J. Physical properties of fullerene-containing Galactic planetary nebulae. Mon. Not. R. Astron. Soc. 2014, 437, 2577–2593. [Google Scholar] [CrossRef]
- Sloan, G.C.; Lagadec, E.; Zijlstra, A.A.; Kraemer, K.E.; Weis, A.P.; Matsuura, M.; Volk, K.; Peeters, E.; Duley, W.W.; Cami, J.; et al. Carbon-rich Dust Past the Asymptotic Giant Branch: Aliphatics, Aromatics, and Fullerenes in the Magellanic Clouds. Astrophys. J. 2014, 791, 28. [Google Scholar] [CrossRef] [Green Version]
- Omont, A. Interstellar fullerene compounds and diffuse interstellar bands. Astron. Astrophys. 2016, 590, A52. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, M. Physical properties of the fullerene C60-containing planetary nebula SaSt2-3. Mon. Not. R. Astron. Soc. 2019, 482, 2354–2373. [Google Scholar] [CrossRef]
- Campbell, E.K.; Holz, M.; Gerlich, D.; Maier, J.P. Laboratory confirmation of C as the carrier of two diffuse interstellar bands. Nature 2015, 523, 322–323. [Google Scholar] [CrossRef]
- Walker, G.A.H.; Bohlender, D.A.; Maier, J.P.; Campbell, E.K. Identification of More Interstellar C Bands. Astrophys. J. Lett. 2015, 812, L8. [Google Scholar] [CrossRef] [Green Version]
- Campbell, E.K.; Holz, M.; Maier, J.P.; Gerlich, D.; Walker, G.A.H.; Bohlender, D. Gas Phase Absorption Spectroscopy of C and C in a Cryogenic Ion Trap: Comparison with Astronomical Measurements. Astrophys. J. 2016, 822, 17. [Google Scholar] [CrossRef] [Green Version]
- Campbell, E.K.; Holz, M.; Maier, J.P. Gas-phase Absorption of C below 10 K: Astronomical Implications. Astrophys. J. 2017, 835, 221. [Google Scholar] [CrossRef]
- Campbell, E.K.; Maier, J.P. Isomeric and Isotopic Effects on the Electronic Spectrum of C-He: Consequences for Astronomical Observations of C. Astrophys. J. 2018, 858, 36. [Google Scholar] [CrossRef] [Green Version]
- Strelnikov, D.; Kern, B.; Kappes, M.M. On observing C and C in laboratory and space. Astron. Astrophys. 2015, 584, A55. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, P.; Berné, O.; Sheffer, Y.; Wolfire, M.G.; Tielens, A.G.G.M. C60 in Photodissociation Regions. Astrophys. J. 2014, 794, 83. [Google Scholar] [CrossRef] [Green Version]
- Berné, O.; Cox, N.L.J.; Mulas, G.; Joblin, C. Detection of buckminsterfullerene emission in the diffuse interstellar medium. Astron. Astrophys. 2017, 605, L1. [Google Scholar] [CrossRef]
- Stecher, T.P.; Donn, B. On Graphite and Interstellar Extinction. Astrophys. J. 1965, 142, 1681. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, E.L.; Massa, D. An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology. Astrophys. J. 2007, 663, 320–341. [Google Scholar] [CrossRef] [Green Version]
- Clayton, G.C.; Gordon, K.D.; Bianchi, L.C.; Massa, D.L.; Fitzpatrick, E.L.; Bohlin, R.C.; Wolff, M.J. New Ultraviolet Extinction Curves for Interstellar Dust in M31. Astrophys. J. 2015, 815, 14. [Google Scholar] [CrossRef]
- Fitzpatrick, E.L.; Massa, D.; Gordon, K.D.; Bohlin, R.; Clayton, G.C. An Analysis of the Shapes of Interstellar Extinction Curves. VII. Milky Way Spectrophotometric Optical-through-Ultraviolet Extinction and Its R-Dependence. arXiv 2019, arXiv:1910.08852. [Google Scholar] [CrossRef] [Green Version]
- Draine, B.T. Graphite Revisited. Astrophys. J. 2016, 831, 109. [Google Scholar] [CrossRef] [Green Version]
- Donn, B.; Wickramasinghe, N.C.; Hudson, J.; Stecher, T.P. On the Formation of Graphite Grains in Cool Stars. Astrophys. J. 1968, 153, 451. [Google Scholar] [CrossRef]
- Wickramasinghe, N.C. Interstellar Extinction by Graphite, Iron and Silicate Grains. Nature 1970, 227, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Czyzak, S.J.; Santiago, J.J. On the Presence of Graphite in the Interstellar Medium. Astrophys. Space Sci. 1973, 23, 443–458. [Google Scholar] [CrossRef]
- Wickramasinghe, N.C.; Nandy, K. The 2200 Å Extinction Feature and the Shape-Distribution of Graphite Grains. Astrophys. Space Sci. 1974, 26, 123–129. [Google Scholar] [CrossRef]
- Blanco, A.; Bussoletti, E. Graphite grains, carbon depletion and the 2200 Å feature. Astrophys. Space Sci. 1981, 78, 467–471. [Google Scholar] [CrossRef]
- Draine, B.T.; Malhotra, S. On Graphite and the 2175 Angstrom Extinction Profile. Astrophys. J. 1993, 414, 632. [Google Scholar] [CrossRef]
- Duley, W.W.; Seahra, S. Graphite, Polycyclic Aromatic Hydrocarbons, and the 2175 Å Extinction Feature. Astrophys. J. 1998, 507, 874–888. [Google Scholar] [CrossRef]
- Sakata, A.; Wada, S.; Okutsu, Y.; Shintani, H.; Nakada, Y. Does a 2200 Å hump observed in an artificial carbonaceous composite account for UV interstellar extinction? Nature 1983, 301, 493–494. [Google Scholar] [CrossRef]
- Fink, J.; Müller-Heinzerling, T.; Pflüger, J.; Scheerer, B.; Dischler, B.; Koidl, P.; Bubenzer, A.; Sah, R.E. Investigation of hydrocarbon-plasma-generated carbon films by electron-energy-loss spectroscopy. Phys. Rev. B 1984, 30, 4713–4718. [Google Scholar] [CrossRef]
- Colangeli, L.; Mennella, V.; Blanco, A.; Fonti, S.; Bussoletti, E.; Gumlich, H.E.; Mertins, H.C.; Jung, C. Extreme-Ultraviolet Extinction Measurements on Hydrogenated and Dehydrogenated Amorphous Carbon Grains. Astrophys. J. 1993, 418, 435. [Google Scholar] [CrossRef]
- Sakata, A.; Wada, S.; Tokunaga, A.T.; Narisawa, T.; Nakagawa, H.; Ono, H. Ultraviolet Spectra of Quenched Carbonaceous Composite Derivatives: Comparison to the “217 Nanometer” Interstellar Absorption Feature. Astrophys. J. 1994, 430, 311. [Google Scholar] [CrossRef]
- Mennella, V.; Colangeli, L.; Palumbo, P.; Rotundi, A.; Schutte, W.; Bussoletti, E. Activation of an Ultraviolet Resonance in Hydrogenated Amorphous Carbon Grains by Exposure to Ultraviolet Radiation. Astrophys. J. Lett. 1996, 464, L191. [Google Scholar] [CrossRef]
- Zubko, V.G.; Mennella, V.; Colangeli, L.; Bussoletti, E. Optical constants of cosmic carbon analogue grains—I. Simulation of clustering by a modified continuous distribution of ellipsoids. Mon. Not. R. Astron. Soc. 1996, 282, 1321–1329. [Google Scholar] [CrossRef] [Green Version]
- Schnaiter, M.; Mutschke, H.; Dorschner, J.; Henning, T.; Salama, F. Matrix-isolated Nano-sized Carbon Grains as an Analog for the 217.5 Nanometer Feature Carrier. Astrophys. J. 1998, 498, 486–496. [Google Scholar] [CrossRef] [Green Version]
- Jäger, C.; Krasnokutski, S.; Staicu, A.; Huisken, F.; Mutschke, H.; Henning, T.; Poppitz, W.; Voicu, I. Identification and Spectral Properties of Polycyclic Aromatic Hydrocarbons in Carbonaceous Soot Produced by Laser Pyrolysis. Astrophys. J. Suppl. Ser. 2006, 166, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Jäger, C.; Mutschke, H.; Henning, T.; Huisken, F. Spectral Properties of Gas-phase Condensed Fullerene-like Carbon Nanoparticles from Far-ultraviolet to Infrared Wavelengths. Astrophys. J. 2008, 689, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Steglich, M.; Jäger, C.; Rouillé, G.; Huisken, F.; Mutschke, H.; Henning, T. Electronic Spectroscopy of Medium-sized Polycyclic Aromatic Hydrocarbons: Implications for the Carriers of the 2175 Å UV Bump. Astrophys. J. Lett. 2010, 712, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- Duley, W.W.; Hu, A. The 217.5 nm Band, Infrared Absorption, and Infrared Emission Features in Hydrogenated Amorphous Carbon Nanoparticles. Astrophys. J. 2012, 761, 115. [Google Scholar] [CrossRef] [Green Version]
- Bescond, A.; Yon, J.; Ouf, F.-X.; Rozé, C.; Coppalle, A.; Parent, P.; Ferry, D.; Laffon, C. Soot optical properties determined by analyzing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. J. Aerosol Sci. 2016, 101, 118–132. [Google Scholar] [CrossRef]
- Gavilan, L.; Le, K.C.; Pino, T.; Alata, I.; Giuliani, A.; Dartois, E. Polyaromatic disordered carbon grains as carriers of the UV bump: Far-UV to mid-IR spectroscopy of laboratory analogs. Astron. Astrophys. 2017, 607, A73. [Google Scholar] [CrossRef]
- Draine, B.T.; Lee, H.M. Optical Properties of Interstellar Graphite and Silicate Grains. Astrophys. J. 1984, 285, 89. [Google Scholar] [CrossRef]
- Huss, G.R.; Meshik, A.P.; Smith, J.B.; Hohenberg, C.M. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta 2003, 67, 4823–4848. [Google Scholar] [CrossRef]
- Anders, E.; Zinner, E. Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite. Meteoritics 1993, 28, 490. [Google Scholar] [CrossRef]
- Matsuura, M.; Sloan, G.C.; Zijlstra, A.A.; Wood, P.R.; Harris, J.G.; Bernard-Salas, J.; van Loon, J.T.; Whitelock, P.A.; Menzies, J.W. Infrared Molecular Bands of Carbon-Rich Stars in Nearby Galaxies. In Why Galaxies Care about AGB Stars: Their Importance as Actors and Probes, Proceedings of the ASP Conference, Vienna, Austria, 7–11 August 2006; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 378, p. 450. [Google Scholar]
- Gruendl, R.A.; Chu, Y.-H.; Seale, J.P.; Matsuura, M.; Speck, A.K.; Sloan, G.C.; Looney, L.W. Discovery of Extreme Carbon Stars in the Large Magellanic Cloud. Astrophys. J. Lett. 2008, 688, L9. [Google Scholar] [CrossRef] [Green Version]
- Speck, A.K.; Corman, A.B.; Wakeman, K.; Wheeler, C.H.; Thompson, G. Silicon Carbide Absorption Features: Dust Formation in the Outflows of Extreme Carbon Stars. Astrophys. J. 2009, 691, 1202–1221. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, P.; He, J. Molecular and dust features of 29 SiC carbon AGB stars. Astron. Astrophys. 2004, 414, 1049–1063. [Google Scholar] [CrossRef] [Green Version]
- Whittet, D.C.B.; Duley, W.W.; Martin, P.G. On the abundance of silicon carbide in the interstellar medium. Mon. Not. R. Astron. Soc. 1990, 244, 427. [Google Scholar]
- Min, M.; Waters, L.B.F.M.; de Koter, A.; Hovenier, J.W.; Keller, L.P.; Markwick-Kemper, F. The shape and composition of interstellar silicate grains. Astron. Astrophys. 2007, 462, 667–676. [Google Scholar] [CrossRef]
- Rogantini, D.; Costantini, E.; Zeegers, S.T.; de Vries, C.P.; Mehdipour, M.; de Groot, F.; Mutschke, H.; Psaradaki, I.; Waters, L.B.F.M. Interstellar dust along the line of sight of GX 3+1. Astron. Astrophys. 2019, 630, A143. [Google Scholar] [CrossRef] [Green Version]
- Leger, A.; Puget, J.L. Identification of the “unidentified” IR emission features of interstellar dust? Astron. Astrophys. 1984, 500, 279–282. [Google Scholar]
- Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: Auto exhaust along the milky way. Astrophys. J. Lett. 1985, 290, L25–L28. [Google Scholar] [CrossRef]
- Peeters, E.; Hony, S.; van Kerckhoven, C.; Tielens, A.G.G.M.; Allamandola, L.J.; Hudgins, D.M.; Bauschlicher, C.W. The rich 6 to 9 vec mu m spectrum of interstellar PAHs. Astron. Astrophys. 2002, 390, 1089–1113. [Google Scholar] [CrossRef] [Green Version]
- Sloan, G.C.; Jura, M.; Duley, W.W.; Kraemer, K.E.; Bernard-Salas, J.; Forrest, W.J.; Sargent, B.; Li, A.; Barry, D.J.; Bohac, C.J.; et al. The Unusual Hydrocarbon Emission from the Early Carbon Star HD 100764: The Connection between Aromatics and Aliphatics. Astrophys. J. 2007, 664, 1144–1153. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.; Rawlings, J.M.C. ‘PAH’ emission in novae. Mon. Not. R. Astron. Soc. 1994, 269, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Boersma, C.; Bouwman, J.; Lahuis, F.; van Kerckhoven, C.; Tielens, A.G.G.M.; Waters, L.B.F.M.; Henning, T. The characteristics of the IR emission features in the spectra of Herbig Ae stars: Evidence for chemical evolution. Astron. Astrophys. 2008, 484, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Keller, L.D.; Sloan, G.C.; Forrest, W.J.; Ayala, S.; D’Alessio, P.; Shah, S.; Calvet, N.; Najita, J.; Li, A.; Hartmann, L.; et al. PAH Emission from Herbig Ae/Be Stars. Astrophys. J. 2008, 684, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Acke, B.; Bouwman, J.; Juhász, A.; Henning, T.; van den Ancker, M.E.; Meeus, G.; Tielens, A.G.G.M.; Waters, L.B.F.M. Spitzer’s View on Aromatic and Aliphatic Hydrocarbon Emission in Herbig Ae Stars. Astrophys. J. 2010, 718, 558–574. [Google Scholar] [CrossRef] [Green Version]
- Pino, T.; Dartois, E.; Cao, A.-T.; Carpentier, Y.; Chamaillé, T.; Vasquez, R.; Jones, A.P.; D’Hendecourt, L.; Bréchignac, P. The 6.2 μm band position in laboratory and astrophysical spectra: A tracer of the aliphatic to aromatic evolution of interstellar carbonaceous dust. Astron. Astrophys. 2008, 490, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Carpentier, Y.; Féraud, G.; Dartois, E.; Brunetto, R.; Charon, E.; Cao, A.-T.; d’Hendecourt, L.; Bréchignac, P.; Rouzaud, J.-N.; Pino, T. Nanostructuration of carbonaceous dust as seen through the positions of the 6.2 and 7.7 μm AIBs. Astron. Astrophys. 2012, 548, A40. [Google Scholar] [CrossRef] [Green Version]
- Gadallah, K.A.K.; Mutschke, H.; Jäger, C. Analogs of solid nanoparticles as precursors of aromatic hydrocarbons. Astron. Astrophys. 2013, 554, A12. [Google Scholar] [CrossRef] [Green Version]
- Volk, K.; Kwok, S.; Hrivnak, B.; Szczerba, R. ISO Results for Protoplanetary Nebulae. Astrophys. Space Sci. Libr. 2001, 265, 323. [Google Scholar]
- Hony, S.; Waters, L.B.F.M.; Tielens, A.G.G.M. The carrier of the “30” mu m emission feature in evolved stars. A simple model using magnesium sulfide. Astron. Astrophys. 2002, 390, 533–553. [Google Scholar] [CrossRef] [Green Version]
- Gauba, G.; Parthasarathy, M. Circumstellar dust shells of hot post-AGB stars. Astron. Astrophys. 2004, 417, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-S.; Yang, X.-H.; Shan, H.-G. Infrared spectral evolution of carbon stars. Res. Astron. Astrophys. 2010, 10, 363–382. [Google Scholar] [CrossRef]
- Sorrell, W.H. Annealed HAC mantles in diffuse dust clouds. Mon. Not. R. Astron. Soc. 1991, 248, 439. [Google Scholar] [CrossRef] [Green Version]
- Sorrell, W.H. The lambda 2175-A feature from irradiated graphitic particles. Mon. Not. R. Astron. Soc. 1990, 243, 570–587. [Google Scholar]
- Hecht, J.H. The Nature of the Dust around R Coronae Borealis Stars: Isolated Amorphous Carbon or Graphite Fractals? Astrophys. J. 1991, 367, 635. [Google Scholar] [CrossRef]
- Mennella, V. Activation Energy of CH Bond Formation in Carbon Grains Irradiated with Hydrogen Atoms. Astrophys. J. Lett. 2006, 647, L49–L52. [Google Scholar] [CrossRef] [Green Version]
- Mennella, V.H. Atom Irradiation of Carbon Grains under Simulated Dense Interstellar Medium Conditions: The Evolution of Organics from Diffuse Interstellar Clouds to the Solar System. Astrophys. J. 2010, 718, 867–875. [Google Scholar] [CrossRef]
- Allen, D.A.; Wickramasinghe, D.T. Diffuse interstellar absorption bands between 2.9 and 4.0 microns. Nature 1981, 294, 239. [Google Scholar] [CrossRef]
- Duley, W.W.; Williams, D.A. A 3.4 Mu-m absorption band in amorphous carbon : Implications for interstellar dust. Mon. Not. R. Astron. Soc. 1983, 205, 67P-70. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.M.; Li, A.; Mendoza-Gomez, C.X.; Schutte, W.A.; Gerakines, P.A.; de Groot, M. Approaching the Interstellar Grain Organic Refractory Component. Astrophys. J. Lett. 1995, 455, L177. [Google Scholar] [CrossRef]
- Dartois, E.; Marco, O.; Muñoz-Caro, G.M.; Brooks, K.; Deboffle, D.; d’Hendecourt, L. Organic matter in Seyfert 2 nuclei: Comparison with our Galactic center lines of sight. Astron. Astrophys. 2004, 423, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Chiar, J.E.; Tielens, A.G.G.M.; Adamson, A.J.; Ricca, A. The Structure, Origin, and Evolution of Interstellar Hydrocarbon Grains. Astrophys. J. 2013, 770, 78. [Google Scholar] [CrossRef] [Green Version]
- Mason, R.E.; Wright, G.; Pendleton, Y.; Adamson, A. Hydrocarbon Dust Absorption in Seyfert Galaxies and Ultraluminous Infrared Galaxies. Astrophys. J. 2004, 613, 770–780. [Google Scholar] [CrossRef] [Green Version]
- Risaliti, G.; Maiolino, R.; Marconi, A.; Sani, E.; Berta, S.; Braito, V.; della Ceca, R.; Franceschini, A.; Salvati, M. Unveiling the nature of Ultraluminous Infrared Galaxies with 3–4 μm spectroscopy*. Mon. Not. R. Astron. Soc. 2006, 365, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Imanishi, M.; Nakagawa, T.; Shirahata, M.; Ohyama, Y.; Onaka, T. AKARI IRC Infrared 2.5–5 μm Spectroscopy of a Large Sample of Luminous Infrared Galaxies. Astrophys. J. 2010, 721, 1233–1261. [Google Scholar] [CrossRef] [Green Version]
- Pety, J.; Teyssier, D.; Fossé, D.; Gerin, M.; Roueff, E.; Abergel, A.; Habart, E.; Cernicharo, J. Are PAHs precursors of small hydrocarbons in photo-dissociation regions? The Horsehead case. Astron. Astrophys. 2005, 435, 885–899. [Google Scholar] [CrossRef] [Green Version]
- Pety, J.; Gratier, P.; Guzmán, V.; Roueff, E.; Gerin, M.; Goicoechea, J.R.; Bardeau, S.; Sievers, A.; Le Petit, F.; Le Bourlot, J.; et al. The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3H+ hydrocarbon cation. Astron. Astrophys. 2012, 548, A68. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, V.V.; Goicoechea, J.R.; Pety, J.; Gratier, P.; Gerin, M.; Roueff, E.; Le Petit, F.; Le Bourlot, J.; Faure, A. The IRAM-30 m line survey of the Horsehead PDR-IV. Comparative chemistry of H2CO and CH3OH. Astron. Astrophys. 2013, 560, A73. [Google Scholar] [CrossRef] [Green Version]
- Gratier, P.; Pety, J.; Guzmán, V.; Gerin, M.; Goicoechea, J.R.; Roueff, E.; Faure, A. The IRAM-30 m line survey of the Horsehead PDR-III. High abundance of complex (iso-)nitrile molecules in UV-illuminated gas. Astron. Astrophys. 2013, 557, A101. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, V.V.; Pety, J.; Goicoechea, J.R.; Gerin, M.; Roueff, E.; Gratier, P.; Öberg, K.I. Spatially Resolved L-C3H+ Emission in the Horsehead Photodissociation Region: Further Evidence for a Top-Down Hydrocarbon Chemistry. Astrophys. J. Lett. 2015, 800, L33. [Google Scholar] [CrossRef] [Green Version]
- Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays. Astron. Astrophys. 2017, 599, A130. [Google Scholar] [CrossRef]
- Alata, I.; Jallat, A.; Gavilan, L.; Chabot, M.; Cruz-Diaz, G.A.; Caro, G.M.M.; Béroff, K.; Dartois, E. Vacuum ultraviolet of hydrogenated amorphous carbons. II. Small hydrocarbons production in Photon Dominated Regions. Astron. Astrophys. 2015, 584, A123. [Google Scholar] [CrossRef] [Green Version]
- Mennella, V.; Muñoz Caro, G.M.; Ruiterkamp, R.; Schutte, W.A.; Greenberg, J.M.; Brucato, J.R.; Colangeli, L. UV photodestruction of CH bonds and the evolution of the 3.4 mu m feature carrier. II. The case of hydrogenated carbon grains. Astron. Astrophys. 2001, 367, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Mennella, V.; Baratta, G.A.; Esposito, A.; Ferini, G.; Pendleton, Y.J. The Effects of Ion Irradiation on the Evolution of the Carrier of the 3.4 Micron Interstellar Absorption Band. Astrophys. J. 2003, 587, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Alata, I.; Cruz-Diaz, G.A.; Muñoz Caro, G.M.; Dartois, E. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. I. Interstellar H2 and CH4 formation rates. Astron. Astrophys. 2014, 569, A119. [Google Scholar] [CrossRef] [Green Version]
- Duley, W.W.; Zaidi, A.; Wesolowski, M.J.; Kuzmin, S. Small molecules from the decomposition of interstellar carbons. Mon. Not. R. Astron. Soc. 2015, 447, 1242–1246. [Google Scholar] [CrossRef] [Green Version]
- Maté, B.; Molpeceres, G.; Jiménez-Redondo, M.; Tanarro, I.; Herrero, V.J. High-energy Electron Irradiation of Interstellar Carbonaceous Dust Analogs: Cosmic-ray Effects on the Carriers of the 3.4 μm Absorption Band. Astrophys. J. 2016, 831, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pino, T.; Chabot, M.; Béroff, K.; Godard, M.; Fernandez-Villoria, F.; Le, K.C.; Breuer, L.; Herder, M.; Wucher, A.; Bender, M.; et al. Release of large polycyclic aromatic hydrocarbons and fullerenes by cosmic rays from interstellar dust. Swift heavy ion irradiations of interstellar carbonaceous dust analogue. Astron. Astrophys. 2019, 623, A134. [Google Scholar] [CrossRef]
- Léger, A.; D’Hendecourt, L.; Verstraete, L.; Joblin, C. Polycyclic Aromatic Hydrocarbons (PAH’s): Very Abundant Organic Molecules in the Interstellar Medium. Bioastronomy 1991, 390, 88–92. [Google Scholar]
- Draine, B.T.; Li, A. Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era. Astrophys. J. 2007, 657, 810–837. [Google Scholar] [CrossRef] [Green Version]
- Dwek, E.; Galliano, F.; Jones, A. The Cycle of Dust in the Milky Way: Clues from the High-Redshift and Local Universe. Cosmic Dust Near Far 2009, 414, 183. [Google Scholar]
- Galliano, F.; Dwek, E.; Chanial, P. Stellar Evolutionary Effects on the Abundances of Polycyclic Aromatic Hydrocarbons and Supernova-Condensed Dust in Galaxies. Astrophys. J. 2008, 672, 214–243. [Google Scholar] [CrossRef] [Green Version]
- Compiègne, M.; Flagey, N.; Noriega-Crespo, A.; Martin, P.G.; Bernard, J.-P.; Paladini, R.; Molinari, S. Dust in the Diffuse Emission of the Galactic Plane: The Herschel/Spitzer Spectral Energy Distribution Fitting. Astrophys. J. Lett. 2010, 724, L44–L47. [Google Scholar] [CrossRef] [Green Version]
- Gredel, R.; Carpentier, Y.; Rouillé, G.; Steglich, M.; Huisken, F.; Henning, T. Abundances of PAHs in the ISM: Confronting observations with experimental results. Astron. Astrophys. 2011, 530, A26. [Google Scholar] [CrossRef] [Green Version]
- Khramtsova, M.S.; Wiebe, D.S.; Boley, P.A.; Pavlyuchenkov, Y.N. Polycyclic aromatic hydrocarbons in spatially resolved extragalactic star-forming complexes. Mon. Not. R. Astron. Soc. 2013, 431, 2006–2016. [Google Scholar] [CrossRef] [Green Version]
- Ciesla, L.; Boquien, M.; Boselli, A.; Buat, V.; Cortese, L.; Bendo, G.J.; Heinis, S.; Galametz, M.; Eales, S.; Smith, M.W.L.; et al. Dust spectral energy distributions of nearby galaxies: An insight from the Herschel Reference Survey. Astron. Astrophys. 2014, 565, A128. [Google Scholar] [CrossRef] [Green Version]
- Seok, J.Y.; Hirashita, H.; Asano, R.S. Formation history of polycyclic aromatic hydrocarbons in galaxies. Mon. Notices R. Astron. Soc. 2014, 439, 2186–2196. [Google Scholar] [CrossRef] [Green Version]
- Sandford, S.A.; Pendleton, Y.J.; Allamandola, L.J. The Galactic Distribution of Aliphatic Hydrocarbons in the Diffuse Interstellar Medium. Astrophys. J. 1995, 440, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendleton, Y.J.; Sandford, S.A.; Allamandola, L.J.; Tielens, A.G.G.M.; Sellgren, K. Near-Infrared Absorption Spectroscopy of Interstellar Hydrocarbon Grains. Astrophys. J. 1994, 437, 683. [Google Scholar] [CrossRef]
- Duley, W.W. Infrared Absorption Due to Hydrogenated Amorphous Carbon in the Diffuse Interstellar Medium. Astrophys. J. Lett. 1994, 430, L133. [Google Scholar] [CrossRef]
- Duley, W.W.; Scott, A.D.; Seahra, S.; Dadswell, G. Integrated Absorbances in the 3.4 μm CHn Band in Hydrogenated Amorphous Carbon. Astrophys. J. Lett. 1998, 503, L183–L185. [Google Scholar] [CrossRef] [Green Version]
- Zubko, V.; Dwek, E.; Arendt, R.G. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints. Astrophys. J. Suppl. Ser. 2004, 152, 211–249. [Google Scholar] [CrossRef]
- Draine, B.T.; Dale, D.A.; Bendo, G.; Gordon, K.D.; Smith, J.D.T.; Armus, L.; Engelbracht, C.W.; Helou, G.; Kennicutt, R.C., Jr.; Li, A.; et al. Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample. Astrophys. J. 2007, 663, 866–894. [Google Scholar] [CrossRef]
- Jones, A.P.; Köhler, M.; Ysard, N.; Bocchio, M.; Verstraete, L. The global dust modelling framework THEMIS. Astron. Astrophys. 2017, 602, A46. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dartois, E. Interstellar Carbon Dust. C 2019, 5, 80. https://doi.org/10.3390/c5040080
Dartois E. Interstellar Carbon Dust. C. 2019; 5(4):80. https://doi.org/10.3390/c5040080
Chicago/Turabian StyleDartois, Emmanuel. 2019. "Interstellar Carbon Dust" C 5, no. 4: 80. https://doi.org/10.3390/c5040080
APA StyleDartois, E. (2019). Interstellar Carbon Dust. C, 5(4), 80. https://doi.org/10.3390/c5040080