# Estimating Flight Characteristics of Anomalous Unidentified Aerial Vehicles

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Case Studies

#### 2.1. Bethune Encounter (1951)

#### 2.2. Probability Densities

#### 2.3. Japan Air Lines Flight 1628 (1986)

#### 2.4. Nimitz Encounters (2004)

#### 2.4.1. Senior Chief Operations Specialist Kevin Day (RADAR)

#### 2.4.2. Commander David Fravor (PILOT)

#### 2.4.3. ATFLIR Video

## 3. Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Vallee, J.; Aubeck, C. Wonders in the Sky: Unexplained Aerial Objects from Antiquity to Modern Times; Penguin Books: New York, NY, USA, 2010. [Google Scholar]
- Unidentified Flying Objects and Air Force Project Blue Book. Available online: https://web.archive.org/web/20030624053806/http://www.af.mil/factsheets/factsheet.asp?fsID=188 (accessed on 9 July 2019).
- CEFAA. Comité de Estudios de Fenómenos Aéreos Anómalos. Available online: http://www.cefaa.gob.cl/ (accessed on 27 July 2019).
- Elizondo, L. The imminent change of an old paradigm: The U.S. government’s involvement in UAPs, AATIP, and TTSA. In Proceedings of the Anomalous Aerospace Phenomena Conference (AAPC 2019) Presentation, Huntsville, AL, USA, 15–17 March 2019. [Google Scholar]
- Cooper, H.; Blumenthal, R.; Kean, L. Glowing Auras and “Black Money”: The Pentagon’s Mysterious U.F.O. Program. Available online: https://creativehammer.com/wp-content/uploads/2017/12/171216-disclosure-lite-nyt.pdf (accessed on 9 July 2019).
- Stieb, M. Navy Pilots Were Seeing UFOs on an Almost Daily Basis in 2014 and 2015: Report. Available online: http://nymag.com/intelligencer/2019/05/navy-pilots-are-seeing-ufos-on-an-almost-daily-basis-report.html (accessed on 24 July 2019).
- Rogoway, T. Recent UFO Encounters with Navy Pilots Occurred Constantly across Multiple Squadrons. Available online: https://www.thedrive.com/the-war-zone/28627/recent-ufo-encounters-with-navy-pilots-occurred-constantly-across-multiple-squadrons (accessed on 24 July 2019).
- Monzon, I. Tech CEOs Want to Capture UFOs and Reverse Engineer Them. International Business Times. 2019. Available online: https://www.ibtimes.com/tech-ceos-want-capture-ufos-reverse-engineer-them-2803920 (accessed on 24 July 2019).
- Hynek, J.A. The UFO Experience: A Scientific Inquiry; Regnery Publishing: Chicago, IL, USA, 1972. [Google Scholar]
- Hill, P.R. Unconventional Flying Objects: A Scientific Analysis; Hampton Roads Publishing Co.: Charlottesville, VA, USA, 1995. [Google Scholar]
- Sturrock, P.A. The UFO Enigma: A New Review of the Physical Evidence; Warner Books: New York, NY, USA, 1999. [Google Scholar]
- Knuth, K.H. Are We Alone? The Question Is Worthy of Serious Scientific Study. The Conversation. 2018. Available online: https://theconversation.com/are-we-alone-the-question-is-worthy-of-serious-scientific-study-98843 (accessed on 24 July 2019).
- Colombano, S.P. New Assumptions to Guide SETI Research. NASA Report No: ARC-E-DAA-TN53461. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180001925.pdf (accessed on 24 July 2019).
- Greer, S. Encounter Over The Atlantic–Graham Bethune. Available online: https://www.youtube.com/watch?v=fU6LOfiUJ6Q (accessed on 25 July 2019).
- Bethune, G. Bethune Letter to Stuart Nixon. NICAP Report. Available online: http://www.nicap.org/docs/bethune_nicapfile_01.pdf (accessed on 25 July 2019).
- Allward, M. Modern Combat Aircraft 4-F-86 SABRE; Ian Allan Limited: London, UK, 1978. [Google Scholar]
- Sivia, D.S.; Skilling, J. Data Analysis. A Bayesian Tutorial, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists: A Comprehensive Guide; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- AN/FPS-117 Long-Range Air Surveillance Radars. Available online: https://lockheedmartin.com/content/dam/lockheed-martin/rms/documents/ground-based-air-surveillance-radars/FPS-117-fact-sheet.pdf (accessed on 8 September 2019).
- FAA. Alaskan Region, Recorded FAA Radar Data. 2010. Reference to Japan Air Lines Flight 1628, November 17, 1986 5:19pm AKST. Available online: https://www.theblackvault.com/documentarchive/ufo-case-japanese-airlines-jal1628-november-17-1986/ (accessed on 8 September 2019).
- Callahan, J.J. The FAA investigates a UFO event that “never happened”. In UFOs: Generals, Pilots, and Government Officials Go On the Record; Kean, L., Ed.; Three Rivers Press: New York, NY, USA, 2011; Chapter 22; pp. 222–229. [Google Scholar]
- Powell, R.; Reali, P.; Thompson, T.; Beall, M.; Kimzey, D.; Cates, L.; Hoffman, R. A Forensic Analysis of Navy Carrier Strike Group Eleven’s Encounter with an Anomalous Aerial Vehicle. Available online: https://www.explorescu.org/post/nimitz_strike_group_2004 (accessed on 9 July 2019).
- Day, K.; Navy Senior Chief Operations Specialist (retired), Cave Junction, OR, USA. Personal communication, 2019.
- Palo Verde Nuclear Generating Station. Available online: https://en.wikipedia.org/wiki/Palo_Verde_Nuclear_Generating_Station (accessed on 4 August 2019).
- TTSA. 2004 USS Nimitz FLIR1 Video. Available online: https://thevault.tothestarsacademy.com/2004-nimitz-flir1-video (accessed on 30 April 2019).
- Skilling, J. Nested sampling. In Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany 2004; Fischer, R., Dose, V., Preuss, R., von Toussaint, U., Eds.; Number 735 in AIP Conf. Proc.; AIP: New York, NY, USA, 2004; pp. 395–405. [Google Scholar]
- Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal.
**2006**, 1, 833–859. [Google Scholar] [CrossRef] - Poher, C. Analysis of Radar And Air-Visual UFO Observations on 24 October 1968 at Minot AFB, North Dakota, USA. Available online: https://www.explorescu.org/post/analysis-of-radar-and-air-visual-ufo-observations-on-24-october-1968-at-minot-afb-north-dakota-usa (accessed on 8 September 2019).
- Oberth, H. Lecture Notes for Lecture about Flying Saucers 1954. The Australian U.F.O. Bulletin, Sept. 1991, pp. 5–9. Available online: http://files.afu.se/Downloads/Magazines/Australia/Australian%20UFO%20Bulletin/Australian%20UFO%20Bulletin%20-%201991%2009%20-%20September.pdf (accessed on 14 September 2012).
- Eiband, A.M. Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature. NASA Memo: 5-19-59E. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980228043.pdf (accessed on 27 July 2019).
- Kent, J. F-35 Lightning II News. Available online: http://www.f-16.net/f-35-news-article4113.html (accessed on 27 July 2019).
- Army-Technology.com. Crotale NG Short Range Air Defence System. Available online: https://www.army-technology.com/projects/crotale/ (accessed on 27 July 2019).
- Wenz, J. Exclusive: NASA Has Begun Plans for a 2069 Interstellar Mission. Available online: https://www.newscientist.com/article/mg23631576-000-exclusive-nasa-has-begun-plans-for-a-2069-interstellar-mission/#ixzz5uvdfYrHV (accessed on 27 July 2019).
- Wright, J. Searches for technosignatures: The state of the profession. arXiv
**2019**, arXiv:1907.07832. [Google Scholar] - Bracewell, R. Communications from superior galactic communities. Nature
**1960**, 186, 670–671. [Google Scholar] [CrossRef] - Bracewell, R. Interstellar probes. In Interstellar Communication: Scientific Perspectives; Houghton Mifflin Harcourt Publishing: Boston, MA, USA, 1974; pp. 141–167. [Google Scholar]
- Freitas, R.A., Jr. The search for extraterrestrial artifacts (SETA). J. Br. Interplanet. Soc.
**1983**, 36, 501–506. [Google Scholar] [CrossRef] - Tough, A.; Lemarchand, G. Searching for extraterrestrial technologies within our solar system. In Symposium-International Astronomical Union; Cambridge University Press: Cambridge, UK, 2004; Volume 213, pp. 487–490. [Google Scholar]
- Haqq-Misra, J.; Kopparapu, R. On the likelihood of non-terrestrial artifacts in the Solar System. Acta Astronautica
**2012**, 72, 15–20. [Google Scholar] [CrossRef] [Green Version] - Kecskes, C. Observation of asteroids for searching extraterrestrial artifacts. In Asteroids; Springer: Berlin, Germany, 2013; pp. 633–644. [Google Scholar]
- Haines, R.F. Aviation Safety in America: A Previously Neglected Factor; National Aviation Reporting Center on Anomalous Phenomena (NARCAP). Available online: http://www.noufors.com/Documents/narcap.pdf (accessed on 25 July 2019).
- Knapp, G.; Adams, M.L. I-Team: Former Sen. Reid Calls for Congressional Hearings into UFOs. Available online: https://www.lasvegasnow.com/news/local-news/i-team-former-sen-reid-calls-for-congressional-hearings-into-ufos/ (accessed on 27 July 2019).
- History.com. Are UFOs a Threat to National Security? This ex-U.S. Official Thinks They Warrant Investigation. Available online: https://www.history.com/news/chris-mellon-ufo-investigations (accessed on 27 July 2019).
- Bender, B.P. Senators Get Classified Briefing on UFO Sightings. Available online: https://www.politico.com/story/2019/06/19/warner-classified-briefing-ufos-1544273 (accessed on 27 July 2019).
- Golgowski, N. Congress Briefed on Classified UFO Sightings as Threat to Aviator Safety, Navy Says. Available online: https://www.huffpost.com/entry/navy-briefs-congress-ufos_n_5d0baf79e4b06ad4d25cf1be (accessed on 27 July 2019).
- Lutz, E. Congress Is Taking the UFO Threat Seriously. Available online: https://www.vanityfair.com/news/2019/06/congress-is-taking-the-ufo-threat-seriously (accessed on 27 July 2019).

**Figure 1.**Histograms of the samples used to estimate the minimum acceleration of the UAP in the Bethune encounter. In these and subsequent plots, the y-axis illustrates the number of samples, which is proportional to the probability. (

**A**). The duration of the maneuver is a truncated Gaussian distribution for $t=1\mathrm{s}\pm 1\mathrm{s}$. (

**B**). The altitude of the UAV is a truncated Gaussian with $h=9800\phantom{\rule{0.166667em}{0ex}}\mathrm{ft}\pm 200\phantom{\rule{0.166667em}{0ex}}\mathrm{ft}$. (

**C**). The horizontal distance traveled was modeled using a Gaussian distribution of angles as described in the text. (

**D**). The extreme acceleration calls for a logarithmic scale in the histogram above. The most probable acceleration is approximately ${10}^{3.23}\approx 1700\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$.

**Figure 2.**(

**A**). An illustration of the behavior of the UAV in the vicinity of JAL 1628. The UAV and the airplane are approximately to scale, while the distance between them is not. (

**B**). Modeling the UAV as traveling across the diameter of the circle, the acceleration was estimated to be $68\pm 7\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$. (

**C**). Modeling the UAV as moving in a circular motion and focusing only on the centripetal acceleration, resulted in $84\pm 8\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$.

**Figure 3.**An analysis of Senior Chief Day’s radar observations. (

**A**). The posterior probability indicates the maximum likelihood estimate of the acceleration to be ${5600}_{-1190}^{+2270}$ $\mathrm{g}$. (

**B**). The accelerations obtained by sampling resulted in the most probable acceleration of ${5370}_{-820}^{+1430}$ $\mathrm{g}$ while the mean acceleration is $5950\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ (black dotted line). (

**C**). The power output of the UAP, assumed to have a mass of $1000\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}$, as a function of time indicates a peak power of about $1100\phantom{\rule{0.166667em}{0ex}}\mathrm{GW}$.

**Figure 4.**An analysis of CDR Fravor’s encounter. (

**A**). Truncated Gaussian distribution of Fravor’s visual acuity based on ${1/30}^{\circ}\pm {1/60}^{\circ}$. (

**B**). Gaussian distribution of distances based on the visual acuity distribution in A. (

**C**). The distribution of times based on $1\pm 1\phantom{\rule{0.166667em}{0ex}}\mathrm{s}$. (

**D**). The distribution of accelerations has a maximum at ${150}_{-80}^{+140}$ $\mathrm{g}$ (red lines) and a mean of $550\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ (black dotted line).

**Figure 5.**(

**A**). Frame 19 of the last 32 frames of the Nimitz ATFLIR video. The narrow horizontal and vertical lines intersecting at the right edge of the UAP image indicate the position of the UAP. (

**B**). The pixel intensities along a row of the frame are plotted along with the best Gaussian curve fit. The rightmost edge of the craft is defined as the center position of the Gaussian plus one standard deviation (indicated by the vertical red line).

**Figure 6.**The figures (

**A**–

**D**) illustrate the position of the right edge of the UAV (+) in pixels, the model fits (solid curves) to the UAV positions in the Nimitz ATFLIR video, and the residuals (model minus data) for each of the four models described in (20), (21), (22), and (23), respectively. The model parameter values for each of the models are listed in Table 1 along with the log evidence, logZ, and log likelihood, logL. The log evidence, logZ (Table 1), strongly favors Model 4 (D), which describes the UAV as accelerating at a magnitude of $75.9\pm 0.2\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ for about $0.53\phantom{\rule{0.166667em}{0ex}}\mathrm{s}$ to the left and away from the observer. Even though the data are well described by Model 4, it appears from the residuals that the UAV may have accelerated and decelerated erratically multiple times.

**Figure 7.**(

**A**). This figure shows the time required to reach relativistic speeds for a craft undergoing constant acceleration at $1000\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$. In less than $24\phantom{\rule{0.166667em}{0ex}}\mathrm{hrs}$, such a craft would exceed $90\%$ the speed of light. (

**B**). This figure shows the travel time to various distances assuming that the craft accelerates at a constant rate for half of the trip and decelerates at the same rate for the second half. The four star systems indicated are each believed to host one or more planets within the habitable zone. At an acceleration of $100\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ a craft could travel to Proxima Centuri, $4.37\phantom{\rule{0.166667em}{0ex}}\mathrm{LY}$ distant, in about one and a half months for the travelers. For those of us on Earth, or anywhere else in the galactic frame, the trip would take over four years.

**Table 1.**Kinematic Models for Nimitz Video (Model 4 (

**bold**) was found to be most probable by a factor of $exp\left(1200\right)$ based on the log evidence (logZ) with an overall acceleration of $75.9\pm 0.2\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$).

Model | logZ | LogL | ${\mathit{a}}_{\mathit{x}}$ (g) | ${\mathit{a}}_{\mathit{z}}$ (g) | ${\mathit{x}}_{\mathit{o}}$ (m) | ${\mathit{z}}_{\mathit{o}}$ (m) |
---|---|---|---|---|---|---|

Model 1 | −253,640 | −253,614 | $-71.1\pm 0.7$ | – | $-15.40\pm 0.04$ | 119,700 ± 1200 |

Model 2 | −236,950 | −236,287 | $7.564\pm 0.002$ | $99.994\pm 0.005$ | $-13.36\pm 0.04$ | 12,193 ± 1 |

Model 3 | −53,282 | −53,261 | $-40.2\pm 3.8$ | – | $-4.02\pm 0.05$ | 49,700 ± 4800 |

Model 4 | −52,084 | −52,031 | −35.64 ± 0.08 | 67.04 ± 0.18 | −3.89 ± 0.05 | 43,870 ± 110 |

**Table 2.**Summary of Considered Cases (Detection Modalities include: Visual Contact from Multiple Pilots (Vps), Passenger/s Visual Contact (Vpa/s), Radar (R), Infrared Video (IR). Estimated accelerations range from about $68\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ to well over $5000\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$).

Case | Year | Detection Modalities | Refs. | Kinematic Model | Figure | Min. Acceleration |
---|---|---|---|---|---|---|

Bethune | 1951 | Vps,Vpas,R | [14,15] | (3) | Figure 1D | $1700\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ |

JAL1628 | 1986 | Vps,R | [21] | (3) | Figure 2 | $68\pm 7\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ |

(9) | Figure 2 | $84\pm 8\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | ||||

Nimitz | 2004 | |||||

Day | Vps,R | [22] | (3) | Figure 3B | ${5370}_{-820}^{+1430}$$\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | |

Fravor | Vps,R | [22] | (17) | Figure 4C | ${150}_{-80}^{+140}$$\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | |

ATFLIR | Vps,R,IR | [22] | (23) | Figure 6D | $75.9\pm 0.2\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ |

**Table 3.**Distances and Travel Times to Various Star Systems. (For each system, the left column lists the travel time $\tau $ (24) experienced by the travelers in units of days (d) and the right column lists the travel time t (25) experienced by those in the galactic (rest) frame in units of years (y).)

Acceleration | Proxima Centauri | Tau Ceti | Gliese 667C | TRAPPIST-1 | ||||
---|---|---|---|---|---|---|---|---|

4.37 LY | 11.9 LY | 25.05 LY | 39.17 LY | |||||

$\tau $ | t | $\tau $ | t | $\tau $ | t | $\tau $ | t | |

$100\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | $43.3\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $4.389\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $50.4\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $11.919\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $55.3\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $23.619\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $58.8\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $39.019\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ |

$300\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | $17.0\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $4.377\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $19.4\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $11.907\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $21.0\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $23.607\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $22.2\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $39.007\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ |

$500\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | $10.9\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $4.374\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $12.4\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $11.904\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $13.3\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $23.604\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $14.0\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $39.004\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ |

$1000\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | $6.0\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $4.372\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $6.7\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $11.902\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $7.2\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $23.602\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $7.5\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $39.002\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ |

$5000\phantom{\rule{0.166667em}{0ex}}\mathrm{g}$ | $1.4\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $4.370\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $1.56\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $11.900\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $1.66\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $23.600\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ | $1.73\phantom{\rule{0.166667em}{0ex}}\mathrm{d}$ | $39.000\phantom{\rule{0.166667em}{0ex}}\mathrm{y}$ |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Knuth, K.H.; Powell, R.M.; Reali, P.A.
Estimating Flight Characteristics of Anomalous Unidentified Aerial Vehicles. *Entropy* **2019**, *21*, 939.
https://doi.org/10.3390/e21100939

**AMA Style**

Knuth KH, Powell RM, Reali PA.
Estimating Flight Characteristics of Anomalous Unidentified Aerial Vehicles. *Entropy*. 2019; 21(10):939.
https://doi.org/10.3390/e21100939

**Chicago/Turabian Style**

Knuth, Kevin H., Robert M. Powell, and Peter A. Reali.
2019. "Estimating Flight Characteristics of Anomalous Unidentified Aerial Vehicles" *Entropy* 21, no. 10: 939.
https://doi.org/10.3390/e21100939