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Abstract: The persistent thermal luminosity of magnetars and their outbursts suggest the existence
of some internal heat sources located in their outer crust. The compression of matter accompanying
the decay of the magnetic field may trigger exothermic electron captures and, possibly, pycnonuclear
fusions of light elements that may have been accreted onto the surface from the fallback of supernova
debris, from a disk or from the interstellar medium. This scenario bears some resemblance to deep
crustal heating in accreting neutron stars, although the matter composition and the thermodynamic
conditions are very different. The maximum possible amount of heat that can be released by
each reaction and their locations are determined analytically taking into account the Landau–Rabi
quantization of electron motion. Numerical results are also presented using experimental, as well
as theoretical nuclear data. Whereas the heat deposited is mainly determined by atomic masses,
the locations of the sources are found to be very sensitive to the magnetic field strength, thus
providing a new way of probing the internal magnetic field of magnetars. Most sources are found
to be concentrated at densities 1010–1011 g cm−3 with heat power W∞ ∼ 1035–1036 erg/s, as found
empirically by comparing cooling simulations with observed thermal luminosity. The change of
magnetic field required to trigger the reactions is shown to be consistent with the age of known
magnetars. This suggests that electron captures and pycnonuclear fusion reactions may be a viable
heating mechanism in magnetars. The present results provide consistent microscopic inputs for
neutron star cooling simulations, based on the same model as that underlying the Brussels-Montreal
unified equations of state.

Keywords: neutron star; magnetar; outburst; magnetic field; heating; cooling; electron capture;
pycnonuclear fusion

1. Introduction

Magnetars form a subclass of known neutron stars exhibiting various astrophysical
phenomena powered by their extreme magnetic field [1] (see, e.g., [2] for a recent review)
and currently consisting of 12 confirmed soft gamma-ray repeaters and 12 anomalous X-ray
pulsars [3] according to the McGill Online Magnetar Catalog1. In particular, enhancements
of the X-ray flux by several orders of magnitude lasting for weeks or even years have
been observed in these stars [4]. It is widely thought that these “outbursts” are caused by
some sort of internal heat deposition; however, a detailed understanding is still lacking.
Internal heating may also explain why magnetars are hotter than their weakly magnetized
relatives. Heat may come from the dissipation of mechanical energy during crustquakes
(see, e.g., [5]) or from Ohmic dissipation. However, both scenarios have shortcomings, as
discussed in detail in [6]. In particular, these mechanisms are only effective deep enough
beneath the surface of the star where the temperature lies below the melting temperature
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or where the electric conductivity is sufficiently low. However, it has been shown that the
sources should be located in the shallow region of the crust to avoid excessive neutrino
losses [7,8].

In this paper, we focused on the scenario proposed in [9], who pointed out that the
decay of the magnetic field may trigger exothermic nuclear reactions (see, e.g., [6] for
a critical review of other scenarios). This mechanism is similar to deep crustal heating
in accreting neutron stars (see, e.g., [10] and the references therein), the compression of
matter being induced here by the loss of magnetic pressure (and more generally by the local
rearrangement of the magnetic field lines), rather than from the accumulation of accreted
material onto the stellar surface (the existence of accreting magnetars—conceivably in the
form of ultraluminous X-ray sources—remains a matter of debate; see, e.g., [11–14] and the
references therein). The authors of [9] implicitly assumed that the same amount of heat
is released in both cases and at similar locations, although the conditions prevailing in
these two classes of neutron stars are very different. Finally, nuclear reactions may also be
triggered by the spin-down of the star due to electromagnetic radiation [15].

The crustal heating scenario of [9,15] was further examined here from the nuclear
physics perspective. Our microscopic model of magnetar crusts and our analysis of electron
captures by nuclei and pycnonuclear fusion reactions caused by matter compression are
described in Section 2. Our results for the calculated heat and its location are presented in
Section 3. The astrophysical implications are discussed in Section 4.

2. Microphysics of Magnetar Crusts

We closely followed our recent analysis for (unmagnetized) accreting neutron stars [16],
which we adapted to the present context.

2.1. Thermodynamic Conditions

Let us consider an electrically charged neutral matter element composed of fully
ionized atomic nuclei (A, Z) with proton number Z and mass number A embedded in a
relativistic electron gas.

In the presence of a magnetic field, the electron motion perpendicular to the field is
quantized into Landau–Rabi levels [17,18]. All electrons are confined to the lowest level
whenever the temperature T lies below (see, e.g., Chapter 4 of [19]):

TB =
mec2

kB
B? ≈ 5.93× 109B? K , (1)

and provided the mass density ρ does not exceed:

ρB =
A
Z

mu
B3/2
?√

2π2λ3
e
≈ 2.07× 106 A

Z
B3/2
? g cm−3 , (2)

where kB denotes Boltzmann’s constant, c is the speed of light, me is the electron mass, mu
is the unified atomic mass unit, and λe = h̄/(mec) is the electron Compton wavelength
(h̄ being the Dirac–Planck constant), and we introduced the dimensionless magnetic field
strength B? ≡ B/Brel with:

Brel =

(
mec2

αλ3
e

)1/2

≈ 4.41× 1013 G , (3)

where α = e2/(h̄c) is the fine-structure constant (e being the elementary electric charge).
The condition T < TB is fulfilled in magnetars since B? � 1, and the temperature is
typically of order 108–109 K (see, e.g., [8]). The threshold density ρB coincides with the
density associated with the neutron drip transition (delimiting the outer and inner parts of
the crust) for B ≈ 5.72× 1016 G [20]. For the densities and the magnetic field strengths that
we considered, electrons remain in the strongly quantizing regime.
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Whether the electron gas is degenerate or not is determined by the Fermi temperature
given by [19]:

TFe =
mec2

kB
(γe − 1) ≈ 5.93× 109


√√√√1 + 1.02

[
4
3

Z
A

ρ6

(
ρ

ρB

)2
]2/3

− 1

 K , (4)

where γe is the electron Fermi energy in units of the electron mass energy mec2, and
ρ6 = ρ/106 g cm−3. We estimated this temperature in the different layers of the outer crust
of a magnetar using the composition calculated in [21] for B? = 2000 (B ≈ 8.83× 1016 G)
and B? = 3000 (B ≈ 1.32× 1017 G). As we show, electron captures occur at pressures well
above 1028 dyn cm−2 (densities above 1010 g cm−3). As can be seen in Figures 1 and 2, TFe
exceeds 1010 K for the crustal regions of interest; therefore, electrons are highly degenerate.

27 28 29 30 31

log
10

P (dyn cm
−2

)

8

9

10

lo
g

1
0

T
 (

K
)

solid

liquid

quan
tu

mcla
ss

ica
l

Figure 1. Characteristic temperatures in the outer crust of a magnetar with a magnetic field strength
B? = 2000 (B ≈ 8.83 × 1016 G) as a function of the pressure P (in dyn cm−2): electron Fermi
temperature TFe (solid line) separating the quantum (degenerate gas) and classical regimes and
melting temperature Tm (dotted line) separating the liquid and solid phases (assuming Γm = 175).
The Coulomb plasma temperature T` separating the weakly and strongly coupled plasma regimes
is much higher and is not shown. The magnetic field is strongly quantizing for all pressures and
temperatures shown (in the present case, TB = 1.19× 1013 K): electrons are confined to the lowest
Landau–Rabi level. Composition taken from [21].
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Figure 2. Same as Figure 1 for B? = 3000 (B ≈ 1.32 × 1017 G). The magnetic field is strongly
quantizing for all pressures and temperatures shown (TB = 1.78× 1013 K).

At these temperatures, the electron–ion plasma may not form a crust, but may be in
a liquid state, especially in the shallow layers. The crystallization temperature is given
by [19]:

Tm =
Z2e2

aNkBΓm
≈ 1.3× 105Z2

(
175
Γm

)(ρ6

A

)1/3
K , (5)

where aN = (3Z/(4πne))1/3 is the ion sphere’s radius, ne the electron number density, and
Γm the Coulomb coupling parameter at melting. As shown in Figures 1 and 2, Tm is of
order 109 K (assuming Γm = 175 as for unmagnetized matter), which is comparable to the
temperature prevailing in magnetar crusts. However, the situation remains uncertain since
the presence of a strong magnetic field tends to stabilize the solid phase by lowering Γm,
therefore increasing Tm; see, e.g., [22]. In either case, the Coulomb plasma remains strongly
coupled since the temperature T is much smaller than T` = ΓmTm, i.e., the Coulomb
potential energy Z2e2/aN is much larger than the thermal energy kBT.

In the following, we thus neglect thermal effects.

2.2. Compression-Induced Nuclear Processes

Ignoring the negligible magnetic susceptibility of the outer crust [23] and recalling that
the electron gas is highly degenerate, any increase of the matter pressure P (caused by the
decay of the magnetic field or the spin-down of the star) must necessarily be accompanied
by an increase of the baryon chemical potential µ (as shown in Appendix A of Ref. [24],
the baryon chemical potential coincides with the Gibbs free energy per nucleon of the
electron–ion plasma) according to the Gibbs–Duhem relation ndµ ≈ dP, where n is the
baryon number density, and we neglected the thermal contribution sdT (s being the entropy
density), see, e.g., Appendix A of [24]. The compression of a matter element may thus
trigger electron captures by nuclei (A, Z) with the emission of neutrinos at some pressure
Pβ (depending on the nucleus under consideration, as well as the magnetic field strength):

(A, Z) + e− −→ (A, Z− 1) + νe . (6)

Recalling that the magnetic field in the crust of a neutron star roughly evolves on timescales
τB of order ∼Myr (see, e.g., [5,25–33]), the above reaction essentially proceeds in quasi-
equilibrium with no energy release. The threshold pressure of the reaction (6) can thus
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be determined by comparing the baryon chemical potentials of the parent and daughter
nuclei. The latter are generally highly unstable, and the capture of a second electron (at the
same pressure) may thus be accompanied by an energy release Q per nucleus:

(A, Z− 1) + e− −→ (A, Z− 2) + νe +Q . (7)

We assumed that the temperature is sufficiently low that the parent nucleus is in its
ground state. According to the Fermi and Gamow–Teller selection rules, the reaction
(6) will generally involve a transition to the lowest excited state of the daughter nucleus.
Alternatively, a transition to the ground state may actually be a more realistic scenario
in this astrophysical context given the very long time scales (∼Myr) for the compression
of matter. We studied both types of reactions. Since we were interested in the maximum
possible amount of heat that can be potentially released, we calculated Q considering that
the daughter nuclei (A, Z− 2) are in their ground state. We also considered pycnonuclear
fusion reactions of light elements [34,35]. Such elements may have been accreted onto
the neutron star surface from the fallback of supernova debris after the explosion, from
a remnant disk around the star [36,37], as observed in AXP 4U 0142+61 [38], or from the
interstellar medium.

As nuclei sink deeper into the crust, further compression may give rise to delayed
neutron emission, thus marking the transition to the inner crust [20,39]:

(A, Z) + e− → (A− ∆N, Z− 1) + ∆Nn + νe . (8)

2.3. Baryon Chemical Potential and Matter Pressure

The model we adopted here was described in [40]. The baryon chemical potential is
given by:

µ =
M′(A, Z)c2

A
+

Z
A

mec2
[

γe − 1 +
4
3

Cαλen1/3
e Z2/3

]
, (9)

where M′(A, Z) denotes the nuclear mass (including the rest mass of Z protons, A− Z
neutrons, and Z electrons—the reason for including the electron rest mass in M(A, Z) is
that atomic masses are generally tabulated rather than nuclear masses). We approximated
the constant C of the electrostatic correction by the Wigner–Seitz estimate [41]:

C = − 9
10

(
4π

3

)1/3
≈ −1.4508 . (10)

For nuclei in excited states, the baryon chemical potential, which we denote by µ∗, takes a
similar form except that M′(A, Z)c2 must be replaced by M′(A, Z)c2 + Eex(A, Z), where
Eex(A, Z) is the excitation energy.

Ignoring the small anomalous magnetic moment of electrons, the thermodynamic
matter pressure, which consists of the pressure Pe of the electron Fermi gas and the lattice
contribution PL, is expressible as (see, e.g., Chp. 4 of [19]):

P =
B?mec2

(2π)2λ3
e

[
xe

√
1 + x2

e − ln
(

xe +
√

1 + x2
e

)]
+

1
3

Cαh̄cn4/3
e Z2/3 , (11)

where we introduced the dimensionless parameter:

xe =
√

γ2
e − 1 =

2π2λ3
e ne

B?
. (12)

Since the thermal pressure of nuclei is neglected, the pressure is the same whether nuclei
are in their ground state or in an excited state.
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2.4. Onset of Electron Captures

The onset of electron captures by nuclei (A, Z) is determined by the condition
µ(A, Z, Pβ, B?) = µ(A, Z− 1, Pβ, B?), assuming that the daughter nucleus is in its ground
state. This condition takes the same form as in the absence of magnetic fields and can be
expressed to first order in α as [24]:

γe + Cαλen1/3
e F(Z) = γ

β
e (A, Z) , (13)

F(Z) ≡ Z5/3 − (Z− 1)5/3 +
1
3

Z2/3 , (14)

γ
β
e (A, Z) ≡ −QEC(A, Z)

mec2 + 1 , (15)

where we introduced the Q-value (in vacuum) associated with electron capture by nu-
clei (A, Z):

QEC(A, Z) = M′(A, Z)c2 −M′(A, Z− 1)c2 . (16)

These Q-values can be obtained from the tabulated Q-values of β decay by the follow-
ing relation:

QEC(A, Z) = −Qβ(A, Z− 1) . (17)

Note that if QEC(A, Z) > 0, the nucleus (A, Z) is unstable against electron captures at
any density.

The threshold condition (13) is amenable to analytical solutions if the electron density
in the second term of the left-hand side (electrostatic correction) is expressed in terms of the
electron Fermi energy using the ultrarelativistic approximation γe � 1 in Equation (12):

ne ≈
B?

2π2λ3
e

γe . (18)

Introducing

F̄(Z, B?) ≡
1
3

CαF(Z)
(

B?

2π2

)1/3
< 0 , (19)

Equation (13) thus reduces to:

γe + 3F̄(Z, B?)γ
1/3
e = γ

β
e . (20)

Introducing the dimensionless parameter:

υ ≡ γ
β
e

2|F̄(Z, B?)|3/2 , (21)

the solutions (real roots) of Equation (20) for γe are given by the following formulas [16]:

γe =

8|F̄(Z, B?)|3/2 cosh3
(

1
3 arccosh υ

)
if υ ≥ 1 ,

8|F̄(Z, B?)|3/2 cos3
(

1
3 arccos υ

)
if 0 ≤ υ < 1 .

(22)

Using Equation (11), the threshold pressure and baryon number density are thus given by:

Pβ(A, Z, B?) =
B?mec2

4π2λ3
e

[
γe

√
γ2

e − 1− ln
(√

γ2
e − 1 + γe

)
+

Cα

3

(
4B?Z2

π2

)1/3(
γ2

e − 1
)2/3

]
, (23)

nβ(A, Z, B?) =
B?

2π2λ3
e

A
Z

√
γ2

e − 1 , (24)
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respectively. The transition is accompanied by a discontinuous change of density given by:

∆n
nβ

=
Z

Z− 1

{
1 +

1
3

Cα

(
B?

2π2

)1/3[
Z2/3 − (Z− 1)2/3

] γe

(γ2
e − 1)5/6

}
− 1 . (25)

The threshold condition for transitions to daughter nuclei in excited states is g(A, Z, P∗β , B?) =

g∗(A, Z− 1, P∗β , B?). The corresponding pressure P∗β and density n∗β(A, Z) can be obtained
from the previous formulas by merely substituting M′(A, Z− 1)c2 with M′(A, Z− 1)c2 +
Eex(A, Z− 1). Because Eex(A, Z− 1) ≥ 0, such transitions occur at higher pressure P∗β ≥ Pβ

and density n∗β(A, Z, B?) ≥ nβ(A, Z, B?).
As discussed in [39,42], the first electron capture by the nucleus (A, Z) may be accom-

panied by the emission of ∆N > 0 neutrons. The corresponding pressure Pdrip and baryon
density ndrip are given by similar expressions as Equations (23) and (24), respectively, except

that the threshold electron Fermi energy γ
β
e is now replaced by γ

drip
e ≡ µ

drip
e /(mec2) with:

µ
drip
e (A, Z) = M′(A− ∆N, Z− 1)c2 −M′(A, Z)c2 + ∆Nmnc2 + mec2 , (26)

assuming that the daughter nucleus is in the ground state. Transitions to excited states
can be taken into account by adding the suitable excitation energy Eex(A− ∆N, Z− 1) to
M′(A− ∆N, Z− 1)c2. Neutron emission will thus occur whenever µ

drip
e (A, Z) < µ

β
e (A, Z).

All the expressions provided here assume that electrons are confined to the lowest Landau–
Rabi level in all layers of the outer crust, which translates into the condition that the
solution for γe at the neutron drip point must obey the following inequality (see, e.g., [40]):

γe ≤
√

1 + 2B? . (27)

3. Crustal Heating
3.1. Heat Released by Electron Captures

The heat released by electron captures can be determined analytically as follows.
The reaction (6) will be generally almost immediately followed by a second electron
capture (7) on the daughter nucleus provided µ(A, Z − 2, Pβ, B?) < µ(A, Z, Pβ, B?) or
µ(A, Z − 2, P∗β , B?) < µ(A, Z, P∗β , B?) depending on whether the daughter nucleus after
the first capture is in its ground state or in an excited state, respectively. The maximum
possible amount of heat deposited in matter per one nucleus is given by:

Q(A, Z, B?) = A
[

µ(A, Z, Pβ, B?)− µ(A, Z− 2, Pβ, B?)

]
(28)

in the first case and:

Q∗(A, Z, B?) = A
[

µ(A, Z, P∗β , B?)− µ(A, Z− 2, P∗β , B?)

]
, (29)

in the second case. The corresponding amounts of heat per one nucleon are given by
q(A, Z, B?) ≡ Q(A, Z, B?)/A and q∗(A, Z, B?) ≡ Q∗(A, Z, B?)/A, respectively. These
estimates represent upper limits since part of the energy is radiated away by neutrinos.

Let us first consider ground-state-to-ground-state transitions. The two successive
electron captures are accompanied by a small discontinuous change δne of the electron
density ne. Requiring the pressure to remain fixed Pβ(A, Z, B?) = P(A, Z− 2, B?) leads to:

δne ≈
Cαλe

3

[
Z2/3 − (Z− 2)2/3

]
dne

dγe
n1/3

e , (30)
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where we used Equation (11) and the relation2 dPe = nemec2dγe. Expanding the electron
Fermi energy γe(ne + δne) to first order in δne/ne, substituting in the expression of µ(A, Z−
2, Pβ, B?), and using Equations (13)–(15) and (30), we finally obtain:

Q(A, Z, B?) = QEC(A, Z− 1)−QEC(A, Z)

−mec2Cα

(
B?

2π2

)1/3
(γ2

e − 1)1/6
[

Z5/3 + (Z− 2)5/3 − 2(Z− 1)5/3
]

, (31)

where γe is calculated from Equation (22). Equation (31) is only valid if µ(A, Z− 2, Pβ, B?) <
µ(A, Z, Pβ, B?), which is generally satisfied for even A nuclei, but not necessarily for odd
A nuclei. In the latter case, we typically have Qβ(A, Z− 1, B?) < Qβ(A, Z− 2, B?). Using

Equation (15), this implies that γ
β
e (A, Z) < γ

β
e (A, Z− 1). In other words, as the pressure

reaches Pβ(A, Z, B?), the nucleus (A, Z) decays, but the daughter nucleus (A, Z − 1) is
actually stable against electron capture, and therefore, no heat is released Q(A, Z, B?) = 0.
The daughter nucleus sinks deeper in the crust and only captures a second electron in
quasi-equilibrium at pressure Pβ(A, Z− 1, B?) > Pβ(A, Z, B?).

Equation (31) shows that the heating associated with electron captures is very weakly
dependent on the spatial arrangement of ions since the electron–ion and ion–ion interac-
tions only enter through the very small electrostatic correction proportional to the structure
constant C, as confirmed by numerical calculations, which will be presented in Section 3.3.
Moreover, it is worth recalling that the variations of the constant C between the liquid and
solid phases are very small, from C ≈ −1.4621 for the liquid (this value was calculated
using the constant A1 on page 75 of [19] as C = A1(4π/3)1/3) to C ≈ −1.4442 for a perfect
body-centered cubic crystal [19]. Whether the plasma is liquid or solid is therefore not
expected to have any significant impact on the heating, contrary to the more popular
mechanism involving crustal failures.

The heat Q∗(A, Z, B?) released from the ground-state-to-excited-state transitions can
be obtained from Equation (31) by substituting M′(A, Z − 1)c2 with M′(A, Z − 1)c2 +
Eex(A, Z− 1), leading to:

Q∗(A, Z, B?) ≈ Q(A, Z, B?) + 2Eex(A, Z− 1) > Q(A, Z, B?) . (32)

For odd A nuclei, heat can thus only possibly be released if the first electron capture
proceeds via excited states of the daughter nucleus and provided:

2Eex(A, Z− 1)−Qβ(A, Z− 2, B?) + Qβ(A, Z− 1, B?) > 0 . (33)

It should be remarked that once the excited nuclei have decayed to their ground state and
the nuclear equilibrium has been attained, the threshold densities and pressures between
the different crustal layers will be given by Equations (23) and (24), respectively.

3.2. Heat Released by Pycnonuclear Fusions

In the densest regions of the outer crust, light nuclei may undergo pycnonuclear
fusion reactions above some pressure Ppyc. The daughter nuclei are usually highly unstable
against electron captures at that pressure, and thus decay by releasing some additional
heat provided Pβ(2A, 2Z) < Pβ(A, Z) or P∗β (2A, 2Z) < P∗β (A, Z) depending on whether
transitions to the ground state or excited state are considered. The fusion rates remain
highly uncertain [43], and for this reason, the pressure Ppyc is very difficult to estimate. Still,
an upper limit on the heat released per nucleon can be obtained by setting Ppyc = Pβ(A, Z)
or Ppyc = P∗β (A, Z), respectively:

qpyc(A, Z) = µ(A, Z, Pβ)− µ(2A, 2Z− 2, Pβ) , (34)

or:
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q∗pyc(A, Z) = µ(A, Z, P∗β )− µ(2A, 2Z− 2, P∗β ) . (35)

Expanding to first order the electron density ne associated with the layer containing nuclei
(2A, 2Z− 2), using Equations (20) and (30), we find:

qpyc(A, Z) =
M′(A, Z− 1)c2

A
− M′(2A, 2Z− 2)c2

2A

+
mec2

A
Cα(1− 22/3)

(
B?γe

2π2

)1/3
(Z− 1)5/3 , (36)

with γe from Equation (22). The heat actually consists of two contributions: the first
from the fusion itself and the second from the subsequent electron captures by the highly
unstable nuclei (2A, 2Z). The heat released by the sole fusion is given by:

qfus(A, Z) =
M′(A, Z)c2

A
− M′(2A, 2Z)c2

2A

+
mec2

A
Cα(1− 22/3)

(
B?γe

2π2

)1/3
Z5/3 . (37)

The expressions for q∗pyc(A, Z) and q∗fus(A, Z) follow after substituting M′(A, Z− 1)c2

with M′(A, Z− 1)c2 + Eex(A, Z− 1). Numerical results are presented and discussed in the
next section.

3.3. Results and Discussions

We estimated the amount of heat deposited in the outer crust of a magnetar and the
locations of the sources from the analytical formulas presented in the previous sections
using the experimental atomic masses and the Qβ values from the 2016 Atomic Mass
Evaluation [44] supplemented with the microscopic atomic mass table HFB-24 [45] from
the BRUSLIB database3 [46]. These same nuclear data have already been used to determine
the equilibrium composition of the outer crust of a magnetar [21]. In particular, we took
as the input for our calculations the results given in Tables II and III of [21]. We also
considered light elements that may have been accreted onto the neutron star surface. We
focused in particular on carbon and oxygen. As a matter of fact, the presence of carbon
has been inferred in the atmosphere of the isolated neutron star in Cassiopeia A [47]. The
nuclear masses M′(A, Z) were obtained from measured atomic masses after subtracting
out the binding energy of atomic electrons according to Equation (A4) of [48]. Excitation
energies were taken from the Nuclear Data section of the International Atomic Energy
Agency website 4 following the Gamow–Teller selection rules, namely that the parity of the
final state is the same as that of the initial state, whereas the total angular momentum J can
either remain unchanged or vary by ±h̄ (excluding transitions from J = 0 to J = 0).

The main heat sources associated with electron captures are plotted in Figures 3
and 4 as a function of the pressure P and the mass density ρ = nmu for two different
values of the magnetic field strength, namely B? = 2000 and B? = 3000, respectively.
We checked that no neutron emission occurred for the transitions that are shown. Most
of the heat is released at densities and pressures that are substantially higher than in
accreting neutron stars [16]. Quite remarkably, heat sources are not as uniformly distributed
as in accreting neutron stars (compare with Figure 1 of [16]), but are concentrated at
densities 1010–1011 g cm−3 (corresponding to pressures 1029–1030 dyn cm−2). Comparing
Figures 3 and 4 shows that the locations of heat sources are systematically shifted to higher
densities with increasing magnetic field strength, whereas the sources remain essentially
unchanged. These results can be easily understood from Equations (24) and (31). In
particular, the amount of heat deposited is mainly determined by nuclear masses (more
precisely by the relevant Q-values); the magnetic field only enters through the small
electrostatic correction proportional to the fine structure constant. On the contrary, the
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threshold pressure and the density both increase linearly with B? in the ultrarelativistic
regime γe � 1,

Pβ(A, Z, B?) ≈
B?mec2

4π2λ3
e

γ
β 2
e , (38)

nβ(A, Z, B?) ≈
B?

2π2λ3
e

A
Z

γ
β
e , (39)

where we neglected the small electrostatic correction. These expressions also show that
knowing the depth where the main heat sources should be located could thus be used
to directly probe the internal magnetic field in the outer crust. For the magnetic fields
expected in magnetars, the range of densities where most of the heat from nuclear reactions
is deposited corresponds to that determined empirically by comparing cooling simulations
with observations [7,8].

10116×1010 2×1011 3×1011
ρ (g cm−3)

1029

1030

P 
(d
y 
 c
m

−2
)

B * =2000
56Fe
56Cr
62Ni
62Fe
62Cr
62Ti
88Sr
88Kr
88Se
88Ge
86Kr
86Ge
82Ge
132S 
16O
12C

q (MeV)
0.01
0.04
0.07
0.1
0.14

Figure 3. Heat q released per nucleon (in MeV) from selected electron captures by nuclei in the outer
crust of a magnetar with a magnetic field strength B? = 2000 in a pressure P (in dyn cm−2)–mass
density ρ (in g cm−3) diagram, considering transitions from the ground state of the parent nucleus to
either the ground state (squares) or the first excited state (triangles) of the daughter nucleus. The size
of each symbol is proportional to the amount of heat deposited as indicated.

1011 2×1011 3×1011 4×1011 6×1011
ρ (g cm−3)
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P 
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m
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)

B * =3000
56Fe
56Cr
62Ni
62Fe
62Cr
62Ti
88Sr
88Kr
88Se
88Ge
86Kr
86Ge
82Ge
132S 
16O
12C

q (MeV)
0.01
0.04
0.07
0.1
0.14

Figure 4. Same as Figure 3 for B? = 3000.

As expected, transitions from the ground state of the parent nucleus to the first excited
state of the daughter nucleus are more exothermic than ground-state-to-ground-state
transitions. Moreover, the heat released from electron captures by odd nuclei is negligible.
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All reactions are listed in Tables 1 and 2 for B? = 2000 and B? = 3000, respectively. We
also indicated in Tables 3 and 4 the reactions involving light elements that may have been
accreted. In the shallow regions of the outer crust that are most relevant for the present
discussion, results are completely determined by experimental measurements. It is only in
the densest parts that theoretical atomic masses are needed. For the model adopted here,
being microscopically grounded, its predictions for nuclei far from the stability valley are
expected to remain fairly accurate (see Table 2 of [49], where the predictions of HFB-24
were compared to recent atomic mass measurements not included in the original fit). The
sensitivity with respect to different mass models was discussed in [10] in the context of
accreted neutron star crusts.

Table 1. Maximum possible heat released q per nucleon (in MeV) from electron captures in the outer
crust of a magnetar with B? = 2000. The pressure Pβ (in dyn cm−2) and density ρβ (in g cm−3) at
which electron capture occurs are given considering ground-state-to-ground-state transitions (first
line of reaction) and ground-state-to-excited-state transitions (second line). The initial composition
was taken from [21]. The symbol (?) is used to distinguish reactions for which theoretical atomic
masses were needed.

PβPβPβ (dyn cm−2) ρβρβρβ (g cm−3) Reactions qqq (MeV)

6.62× 1028 6.31× 1010 56Fe→ 56Cr− 2e− + 2νe 0.037

6.94× 1028 6.46× 1010 56Fe→ 56Cr− 2e− + 2νe 0.041

3.06× 1029 1.44× 1011 56Cr→ 56Ti− 2e− + 2νe 0.041
7.03× 1029 2.36× 1011 56Ti→ 56Ca− 2e− + 2νe (?) 0.023
1.23× 1029 8.75× 1010 62Ni→ 62Fe− 2e− + 2νe 0.045

1.43× 1029 9.43× 1010 62Ni→ 62Fe− 2e− + 2νe 0.061

3.88× 1029 1.65× 1011 62Fe→ 62Cr− 2e− + 2νe 0.044
8.94× 1029 2.70× 1011 62Cr→ 62Ti− 2e− + 2νe (?) 0.086
1.37× 1030 3.64× 1011 62Ti→ 62Ca− 2e− + 2νe (?) 0.041
1.31× 1029 9.50× 1010 88Sr→ 88Kr− 2e− + 2νe 0.027

2.36× 1029 1.26× 1011 88Sr→ 88Kr− 2e− + 2νe 0.078

3.16× 1029 1.54× 1011 88Kr→ 88Se− 2e− + 2νe 0.025

4.43× 1029 1.81× 1011 88Kr→ 88Se− 2e− + 2νe 0.068

6.31× 1029 2.28× 1011 88Se→ 88Ge− 2e− + 2νe (?) 0.031
1.00× 1030 3.05× 1011 88Ge→ 88Zn− 2e− + 2νe (?) 0.031
2.38× 1029 1.31× 1011 86Kr→ 86Se− 2e− + 2νe 0.029

3.87× 1029 1.66× 1011 86Kr→ 86Se− 2e− + 2νe 0.086

4.89× 1029 1.97× 1011 86Se→ 86Ge− 2e− + 2νe 0.023
8.93× 1029 2.81× 1011 86Ge→ 86Zn− 2e− + 2νe (?) 0.037
1.25× 1030 3.53× 1011 86Zn→ 86Ni− 2e− + 2νe (?) 0.027
3.85× 1029 1.71× 1011 84Se→ 84Ge− 2e− + 2νe 0.029
7.13× 1029 2.46× 1011 84Ge→ 84Zn− 2e− + 2νe (?) 0.029
1.09× 1030 3.24× 1011 84Zn→ 84Ni− 2e− + 2νe (?) 0.029
5.59× 1029 2.13× 1011 82Ge→ 82Zn− 2e− + 2νe 0.023

8.26× 1029 2.58× 1011 82Ge→ 82Zn− 2e− + 2νe 0.096
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Table 1. Cont.

PβPβPβ (dyn cm−2) ρβρβρβ (g cm−3) Reactions qqq (MeV)

9.09× 1029 2.88× 1011 82Zn→ 82Ni− 2e− + 2νe (?) 0.019
1.61× 1030 4.10× 1011 82Ni→ 82Fe− 2e− + 2νe (?) 0.026
7.44× 1029 2.54× 1011 132Sn→ 132Cd− 2e− + 2νe (?) 0.022

8.61× 1029 2.73× 1011 132Sn→ 132Cd− 2e− + 2νe (?) 0.040

9.01× 1029 2.90× 1011 132Cd→ 132Pd− 2e− + 2νe (?) 0.017
1.25× 1030 3.56× 1011 132Pd→ 132Ru− 2e− + 2νe (?) 0.022
7.00× 1029 2.47× 1011 80Zn→ 80Ni− 2e− + 2νe (?) 0.005
1.44× 1030 3.79× 1011 80Ni→ 80Fe− 2e− + 2νe (?) 0.026
1.04× 1030 3.15× 1011 128Pd→ 128Ru− 2e− + 2νe (?) 0.018
1.16× 1030 3.42× 1011 126Ru→ 126Mo− 2e− + 2νe (?) 0.015
1.48× 1030 3.97× 1011 124Mo→ 124Zr− 2e− + 2νe (?) 0.024
1.53× 1030 4.17× 1011 122Zr→ 122Sr− 2e− + 2νe (?) 0.007

Table 2. Same as Table 1, but for B? = 3000.

PβPβPβ (dyn cm−2) ρβρβρβ (g cm−3) Reactions qqq (MeV)

1.04× 1029 9.74× 1010 56Fe→ 56Cr− 2e− + 2νe 0.037

1.09× 1029 9.96× 1010 56Fe→ 56Cr− 2e− + 2νe 0.041

4.72× 1029 2.19× 1011 56Cr→ 56Ti− 2e− + 2νe 0.042
1.08× 1030 3.58× 1011 56Ti→ 56Ca− 2e− + 2νe (?) 0.023
1.92× 1029 1.34× 1011 62Ni→ 62Fe− 2e− + 2νe 0.045

2.23× 1029 1.45× 1011 62Ni→ 62Fe− 2e− + 2νe 0.062

5.98× 1029 2.52× 1011 62Fe→ 62Cr− 2e− + 2νe 0.044
1.37× 1030 4.09× 1011 62Cr→ 62Ti− 2e− + 2νe (?) 0.086
2.09× 1030 5.50× 1011 62Ti→ 62Ca− 2e− + 2νe (?) 0.041
2.06× 1029 1.47× 1011 88Sr→ 88Kr− 2e− + 2νe 0.027

3.68× 1029 1.94× 1011 88Sr→ 88Kr− 2e− + 2νe 0.078

4.90× 1029 2.35× 1011 88Kr→ 88Se− 2e− + 2νe 0.025

6.86× 1029 2.77× 1011 88Kr→ 88Se− 2e− + 2νe 0.068

9.72× 1029 3.48× 1011 88Se→ 88Ge− 2e− + 2νe (?) 0.031
1.54× 1030 4.63× 1011 88Ge→ 88Zn− 2e− + 2νe (?) 0.032
3.72× 1029 2.01× 1011 86Kr→ 86Se− 2e− + 2νe 0.029

6.00× 1029 2.54× 1011 86Kr→ 86Se− 2e− + 2νe 0.086

7.55× 1029 3.00× 1011 86Se→ 86Ge− 2e− + 2νe 0.023
1.37× 1030 4.28× 1011 86Ge→ 86Zn− 2e− + 2νe (?) 0.037
1.91× 1030 5.36× 1011 86Zn→ 86Ni− 2e− + 2νe (?) 0.027
5.96× 1029 2.61× 1011 84Se→ 84Ge− 2e− + 2νe 0.029
1.10× 1030 3.74× 1011 84Ge→ 84Zn− 2e− + 2νe (?) 0.029
1.67× 1030 4.91× 1011 84Zn→ 84Ni− 2e− + 2νe (?) 0.029
8.61× 1029 3.24× 1011 82Ge→ 82Zn− 2e− + 2νe 0.023

1.27× 1030 3.92× 1011 82Ge→ 82Zn− 2e− + 2νe 0.096
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Table 2. Cont.

PβPβPβ (dyn cm−2) ρβρβρβ (g cm−3) Reactions qqq (MeV)

1.39× 1030 4.38× 1011 82Zn→ 82Ni− 2e− + 2νe (?) 0.019
2.46× 1030 6.21× 1011 82Ni→ 82Fe− 2e− + 2νe (?) 0.026
1.15× 1030 3.88× 1011 132Sn→ 132Cd− 2e− + 2νe (?) 0.022

1.33× 1030 4.17× 1011 132Sn→ 132Cd− 2e− + 2νe (?) 0.040

1.39× 1030 4.44× 1011 132Cd→ 132Pd− 2e− + 2νe (?) 0.017
1.93× 1030 5.42× 1011 132Pd→ 132Ru− 2e− + 2νe (?) 0.023
1.60× 1030 4.80× 1011 128Pd→ 128Ru− 2e− + 2νe (?) 0.018
1.79× 1030 5.21× 1011 126Ru→ 126Mo− 2e− + 2νe (?) 0.015
2.27× 1030 6.04× 1011 124Mo→ 124Zr− 2e− + 2νe (?) 0.024
2.35× 1030 6.34× 1011 122Zr→ 122Sr− 2e− + 2νe (?) 0.007

Table 3. Maximum possible heat released q per nucleon (in MeV) from electron captures by carbon
and oxygen in the outer crust of a magnetar with B? = 2000. The pressure Pβ (in dyn cm−2) and
density ρβ (in g cm−3) at which electron capture occurs are given considering ground-state-to-ground-
state transitions.

PβPβPβ (dyn cm−2) ρβρβρβ (g cm−3) Reactions qqq (MeV)

5.59× 1029 1.64× 1011 12C→ 12Be− 2e− + 2νe 0.143
3.55× 1029 1.31× 1011 16O→ 16C− 2e− + 2νe 0.153

Table 4. Same as in Table 3, but for B? = 3000.

PβPβPβ (dyn cm−2) ρβρβρβ (g cm−3) Reactions qqq (MeV)

8.46× 1029 2.47× 1011 12C→ 12Be− 2e− + 2νe 0.143
5.38× 1029 1.98× 1011 16O→ 16C− 2e− + 2νe 0.154

The heating resulting from pycnonuclear fusions of carbon and oxygen is summarized
in Tables 5 and 6 for B? = 2000 and B? = 3000, respectively. Contrary to our previous
study of accreting neutron stars [16], we did not consider here fusions of oxygen occurring
at pressure P∗β because we realized that µ

β
e > µ

drip
e : oxygen is unstable against electron-

capture-induced neutron emission. The heat from pycnonuclear fusion reactions actually
consists of two contributions: the first from the fusion itself and the second from the subse-
quent electron captures. The two processes were found to be roughly equally exothermic.
If they occurred, the reactions would contribute as much heat per nucleon as all electron
captures by heavier nuclei combined. However, the total amount of heat actually deposited
depends on the unknown abundance of light elements. Let us stress that the amount of
heat estimated here is a conservative upper limit. In reality, qpyc could be much smaller,
especially if fusions occur at densities substantially lower than nβ. This may actually be
the case since the fusion rates are expected to be thermally enhanced in magnetars due to
their higher temperatures than in ordinary neutron stars [43].
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Table 5. Maximum possible heat released qpyc per nucleon (in MeV) from pycnonuclear fusion
followed by electron captures in the outer crust of a magnetar with B? = 2000. The numbers
in parentheses indicate the contributions from the sole fusion. The pressure Ppyc (in dyn cm−2)
and density ρpyc (in g cm−3) at which fusion occurs were fixed by the onset of electron captures
considering ground-state-to-ground-state transitions.

PpycPpycPpyc (dyn cm−2) ρpycρpycρpyc (g cm−3) Reactions qpycqpycqpyc (MeV)

5.59× 1029 1.64× 1011 12C + 12C→ 24Ne− 2e− + 2νe 1.42 (0.65)
3.55× 1029 1.31× 1011 16O + 16O→ 32Si− 2e− + 2νe 1.17 (0.60)

Table 6. Same as Table 5 for B? = 3000.

PpycPpycPpyc (dyn cm−2) ρpycρpycρpyc (g cm−3) Reactions qpycqpycqpyc (MeV)

8.46× 1029 2.47× 1011 12C + 12C→ 24Ne− 2e− + 2νe 1.42 (0.67)
5.38× 1029 1.98× 1011 16O + 16O→ 32Si− 2e− + 2νe 1.18 (0.61)

To assess the validity of the analytical treatment, we numerically solved the thresh-
old conditions g(A, Z, ne) = g(A, Z − 1, ne1) and P(Z, ne) = P(Z − 1, ne1) = P(Z −
2, ne2) without any approximation to determine the exact values for the transition pres-
sure Pβ(A, Z, B?) and density nβ(A, Z, B?). The heat released was then calculated from
Equation (28). The relative deviations for the transition pressure, densities, and amount
of heat are typically of order 10−3%. In view of the ultrarelativistic approximation (18)
we made for the electrostatic correction in Equation (13), the largest errors were found for
the shallowest transitions and for the strongest magnetic field. In particular, considering
the ground-state-to-ground-state transition from 56Fe to 56Cr for B? = 3000, the results
obtained from Equations (23), (24), and (31) differed from the exact values by−7.6× 10−2%,
−3.6× 10−2%, and 5.0× 10−3%, respectively.

4. Astrophysical Implications
4.1. Equilibrium of Self-Gravitating Magnetized Stars

For the sake of the argument, we restricted ourselves to Newtonian gravity, as
in [9]. The magneto-hydrodynamic equilibrium equation for an ideally conducting self-
gravitating fluid star reads [50] (see [51] for the general relativistic equations for stationary
axisymmetric magnetized stars and [52] for the discussion of the Newtonian limit):

n∇∇∇µ = −ρ∇∇∇Φ +
1
c

jjjfree × BBB , (40)

where Φ is the gravitational potential obeying Poisson’s equation (G being the gravitational
constant):

∇2Φ = 4πGρ , (41)

and the free electric charge current jjjfree is given by Maxwell’s equation:

∇∇∇×HHH =
4π

c
jjjfree . (42)

The magnetization of a relativistic electron gas in a strongly quantizing magnetic field
is negligibly small [23]; therefore, we can safely replace HHH ≈ BBB. Expanding the Lorentz
force term in the right-hand side of Equation (40) using Equation (42) yields:

n∇∇∇µ +∇∇∇
(

B2

8π

)
= −ρ∇∇∇Φ +

1
4π

(BBB · ∇∇∇)BBB . (43)

Besides, the toroidal component of the magnetic field inside a neutron star is expected
to be much stronger than the poloidal component [53] (the strength of which can be esti-
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mated from the spin down, as measured by timing analyses). These theoretical expectations
were corroborated by astrophysical observations [32,54–58]. Assuming for simplicity that
the magnetic field is axially symmetric and purely toroidal, i.e., BBB = B(v, z)1φ1φ1φ in cylindrical
coordinates [59] (v is the radial distance, z the height, φ the azimuthal angle, and 1φ1φ1φ the
associated unit vector), the last term in Equation (43) reduces to −B2/(4πv)1φ1φ1φ. Recalling
that the thickness δR and the (gravitational or baryonic) mass δM of the outer crust are
very small compared to the neutron star radius R and mass M, respectively, typically,
δR ∼ 10−2R and δM ∼ 10−5M (see, e.g., [60]), we adopted the plane parallel approxi-
mation. Since the toroidal component of the magnetic field is expected to be confined in
the crust of thickness ∆R ∼ 0.1R (see, e.g., [61]), the last term in the right-hand side of
Equation (43) of order B2/(4πR) is much smaller than the second term in the left-hand side
of order B2/(8π∆R). We thus dropped the last term in Equation (43) as in [9]. Introducing
the local gravitational field ggg = −∇∇∇Φ, which is essentially uniform in the outer crust and
given by g ≈ GM/R2, Equation (43) finally reduces to:

ndµ +
1

8π
d(B2) = gdΣ . (44)

where Σ is the column density as measured from the surface and defined by dΣ = −ρdr (r
being the radial distance in spherical coordinates).

Let us focus on a crustal layer located at a given column density (dΣ = 0). A decrease
of the magnetic pressure d(B2) < 0 must thus be compensated by an increase of the baryon
chemical potential dµ > 0 for the layer to remain in mechanical equilibrium. Due to this
excess energy, nuclei may become unstable against electron captures and pycnonuclear
fusion reactions, as discussed in Section 2.

4.2. Heating Induced by Magnetic Field Decay

The change of magnetic field strength required to trigger electron captures is very
small and can be estimated as follows. Ignoring magnetization effects and recalling that
the electron gas is highly degenerate, the Gibbs–Duhem relation reduces to ndµ ≈ dP (see,
e.g., Appendix A of [24]). The stellar equilibrium condition (44) thus entails that the total
pressure (matter plus magnetic), given by:

Ptot = P +
B2

8π
, (45)

must remain constant. Initially, the nuclei (A, Z) are present in the crust in a layer delimited
by the matter pressures Pmin(A, Z, B? + δB?) and Pmax(A, Z, B? + δB?), as determined by
the minimization of the baryon chemical potential. For all the nuclei (A, Z) to capture
electrons, the magnetic field strength must therefore decay by an amount δB? such that the
shallowest layer containing this element can be compressed up to the threshold pressure
Pβ(A, Z, B?), thus maintaining the same total pressure. Using Equation (45) and expanding
to first order in δB?, we find:

δB?

B?
≈ 4π

B2

[
Pβ(A, Z, B?)− Pmin(A, Z, B?)

]
, (46)

where the pressures are evaluated here for the same magnetic field strength B?. Results are
summarized in Tables 7 and 8 for B? = 2000 and B? = 3000, respectively, using the results
of [21] for the initial pressures Pmin (note that the initial pressure of 56Fe is simply Pmin = 0
since this element is predicted to be present at the stellar surface). Results for carbon and
oxygen supposedly initially accumulated onto the surface are presented in Tables 9 and
10 (in this case, we set Pmin = 0). Note that the required magnetic field changes for the
pycnonuclear fusions of these elements are the same since we assumed that these reactions
occur at the pressure Pβ. The changes of magnetic field required to trigger the various
chains of reactions depend on the layer, but are typically of order δB?/B? ≈ 10−3–10−4
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for the magnetic field considered and are largest in the shallow layers where the magnetic
field is the most strongly quantizing. Inspecting the numerical results more closely, δB?/B?

is found to decrease systematically with increasing B?. The trend becomes more significant
if one considers much weaker magnetic fields. Since we are limited by our assumption
of a strongly quantizing magnetic field, let us focus on the electron captures by 56Fe. The
relative change δB?/B? of the magnetic field thus drops from 2.09× 10−2 to 2.21× 10−3

when the magnetic field is varied from B? = 100 to B? = 1000. In the ultrarelativistic
regime (γe � 1), both Pmin(A, Z, B?) and Pβ(A, Z, B?) increase linearly with B? so that
δB?/B? ∝ 1/B?.

The time τ ∼ τB δB?/B? after which the magnetic field has changed by an amount
δB? is thus approximately inversely proportional to the magnetic field strength (τB ∼Myr
being the characteristic time scale of magnetic field dissipation). Crustal heating due to
electron captures and pycnonuclear fusion reactions is thus likely to be relevant for young
and middle-age magnetars. This conclusion is consistent with cooling simulations [7,8].
The relative change of the magnetic field since the birth of magnetars can thus potentially
be inferred from their age, as estimated from the kinematics of the expanding supernova
remnant. With ages typically of the order of a few kyr according to the Magnetar Outburst
Online Catalog5, we found that the magnetic fields have decayed by δB?/B? ∼ τ/τB ∼
10−3, which is comparable to the change of magnetic field required by nuclear reactions.

The total energy deposited in the outer crust due to the magnetic field decay is
given by ΣAqA,tot(∆MA/mu) where qA,tot is the total energy per baryon released for
a given initial nucleus defined by A in Table 7 and ∆MA the mass of this layer (we
ignored here the difference between the gravitational and baryonic masses). Because
qA,tot is of the same order ∼0.1 MeV for all layers, the heat power can be estimated as
W∞ ∼ qA,tot(∆M/mu)/τ, where ∆M = ∑A ∆MA is the mass of the outer crust. With
∆M ∼ 10−5–10−4M� [60] with M� the mass of the Sun, and τ ∼ 1 kyr, we found
W∞ ∼ 1035–1036 erg/s, which is comparable to the heat power obtained empirically by
fitting cooling curves to observational data [7,8]. For comparison, the power resulting from
the decay of the magnetic field amounts roughly to BR2δRδB/τ ∼ 1042 erg/s. This energy
is expected to be the main source of the magnetar activity such as X-ray bursts and giant
flares. However, some fraction could also contribute to the thermal emission.

These simple estimates suggest that nuclear reactions may be a viable source of
heating in mature magnetars. However, numerical simulations of the full magneto-thermal
evolution are needed to make more reliable predictions.

Table 7. Relative decay of the magnetic field required to entirely replace the given element through
the indicated chain of electron captures by the nuclei listed in Table 1 in the outer crust of a magnetar
for B? = 2000, from the initial pressure given in [21] to the pressure at which the last capture occurs.

Reactions δB?/B?δB?/B?δB?/B?

56Fe→ 56Ca− 6e− + 6νe 1.13× 10−3

62Ni→ 62Ca− 8e− + 8νe 2.21× 10−3

88Sr→ 88Zn− 8e− + 8νe 1.58× 10−3

86Kr→ 86Ni− 8e− + 8νe 1.94× 10−3

84Se→ 84Ni− 6e− + 6νe 1.58× 10−3

82Ge→ 82Fe− 6e− + 6νe 2.23× 10−3

132Sn→ 132Ru− 6e− + 6νe 1.39× 10−3

80Zn→ 80Fe− 4e− + 4νe 1.66× 10−3

128Pd→ 128Ru− 2e− + 2νe 7.91× 10−4
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Table 7. Cont.

Reactions δB?/B?δB?/B?δB?/B?

126Ru→ 126Mo− 2e− + 2νe 5.22× 10−4

124Mo→ 124Zr− 2e− + 2νe 8.81× 10−4

122Zr→ 122Sr− 2e− + 2νe 4.81× 10−4

Table 8. Same as Table 7, but for B? = 3000.

Reactions δB?/B?δB?/B?δB?/B?

56Fe→ 56Ca− 6e− + 6νe 7.70× 10−4

62Ni→ 62Ca− 8e− + 8νe 1.49× 10−3

88Sr→ 88Zn− 8e− + 8νe 1.08× 10−3

86Kr→ 86Ni− 8e− + 8νe 1.32× 10−3

84Se→ 84Ni− 6e− + 6νe 1.06× 10−3

82Ge→ 82Fe− 6e− + 6νe 1.49× 10−3

132Sn→ 132Ru− 6e− + 6νe 1.02× 10−3

128Pd→ 128Ru− 2e− + 2νe 5.40× 10−4

126Ru→ 126Mo− 2e− + 2νe 3.41× 10−4

124Mo→ 124Zr− 2e− + 2νe 5.94× 10−4

122Zr→ 122Sr− 2e− + 2νe 3.10× 10−4

Table 9. Relative decay of the magnetic field required to trigger the chains of electron captures by
light nuclei listed in Table 3 in the outer crust of a magnetar for B? = 2000, from zero pressure (at the
stellar surface) to the pressure at which the last capture occurs.

Reactions δB?/B?δB?/B?δB?/B?

12C→ 12Be− 2e− + 2νe 9.02× 10−4

16O→ 16C− 2e− + 2νe 5.71× 10−4

Table 10. Same as Table 9 for B? = 3000.

Reactions δB?/B?δB?/B?δB?/B?

12C→ 12Be− 2e− + 2νe 6.05× 10−4

16O→ 16C− 2e− + 2νe 3.86× 10−4

4.3. Heating Induced by Spin-Down

Observed isolated magnetars rotate at frequencies f ∼ 0.1–0.5 Hz and exhibit a very
high spin-down rate. They are believed to be born with initial frequencies fi ∼ 1 kHz. The
time to spin-down to a frequency f � fi can be estimated as:

t ∼ 6× 10−3
(

Bp

1014 G

)−2( f
1 kHz

)−2
yr, (47)

where Bp is the value of the poloidal magnetic field at the pole and the time dependence
of Bp is neglected. Initially, the crust is rotationally flattened, with the equatorial radius
larger than the polar one. Using Equation (47), we found that a newborn magnetar spins
down to f = 10 Hz in less than t ∼ 100 (Bp/1014 G)−2 yr. According to [15], the decrease
of centrifugal force could induce non-equilibrium processes and heating. Some results
of [15] were questioned by the authors of [62], who studied the spin-down heating in
millisecond pulsars with a fully accreted crust. Notice however that the authors of [15]
assumed that initially the crust is composed of catalyzed matter, which is appropriate for
a hot newly born magnetar. Anyway, spin-down heating could be efficient only during
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the first few days of magnetars’ lives, because at later times, spin-down compression is no
longer significant. Therefore, the spin-down heating does not contribute significantly to
the observed thermal luminosity of known magnetars.

5. Conclusions

We investigated electron captures and pycnonuclear fusion reactions in the outer crust
of a magnetar induced by the compression of matter accompanying the decay of the mag-
netic field and the spin-down of the star. Taking into account Landau–Rabi quantization of
electron motion and focusing on the strongly quantizing regime, we derived very accurate
analytical formulas for the maximum amount of heat that can possibly be released by each
reaction and their location. Making use of essentially all available experimental data supple-
mented with the predictions from the HFB-24 atomic mass model, we found that the energy
release was ∼0.02–0.1 MeV per nucleon in two subsequent electron captures, similarly to
accreting systems, although the composition and the thermodynamic conditions are very
different. For the initial composition of the magnetar crust, we considered the sequence of
equilibrium nuclei previously calculated in [21] using the same atomic mass model HFB-24.
We also studied the possibility that light elements such as carbon and oxygen might have
been accreted onto the surface of the star from the fallback of supernovas debris, from a
disk, or from the interstellar medium. The pycnonuclear fusions of these elements could
potentially release as much heat per nucleon as the electron captures by all the other nuclei.

The maximum amount of heat released by each individual reaction is found to be
essentially independent of the magnetic field and is mainly determined by the relevant
Q-values. On the contrary, the pressure and the density at which heat is deposited both
increase almost linearly with the magnetic field strength. For internal magnetic fields of
order 1016–1017 G, heat sources are found in deeper layers than in accreting neutron stars.
Moreover, they are not uniformly distributed, but are concentrated at densities of order
1010–1011 g cm−3 (pressures 1029–1030 dyn cm−2). Quite remarkably, a similar range of
densities is supported by the adjustment of cooling simulations to the observed thermal
luminosity of magnetars [7,8].

We also showed that the relative change of magnetic field required to trigger the
various reactions is approximately inversely proportional to the magnetic field strength
and is typically of order δB/B ∼ 10−3–10−4 for B ∼ 1016–1017 G. Such variations are
comparable to those expected from the decay of the magnetic field since the birth of
currently known magnetars. Moreover, the heat power W∞ ∼ 1035–1036 erg/s is found
to be consistent with values inferred empirically from cooling simulations varying the
composition of the envelope [7,8]. Electron captures and pycnonuclear fusion reactions
induced by the decay of the magnetic field may thus potentially explain the origin of
internal heating in magnetars. Although nuclear processes could also potentially be
triggered by the spin-down of the star, we showed that this mechanism only operates
during the early life of newborn magnetars.

Unlike other mechanisms involving crust quakes, the heating induced by nuclear
reactions is essentially independent of the detailed crustal structure and will still remain
viable if some regions are actually liquid. Indeed, the amount of heat released by each
individual reaction mainly depends on nuclear masses, while the density and the pressure
at which they occur is governed by the electron gas. Together with the unified equations of
state calculated for various magnetic field strengths in [21], the present results calculated
using the same nuclear model provide consistent and realistic microscopic inputs for
cooling simulations of magnetars.

Our analysis can be easily extended to lower magnetic fields (involving summations
over several Landau–Rabi levels) and finite temperatures. However, in this more general
situation, the calculations are not amenable to analytical solutions. In our calculations, we
ignored the effects of the magnetic field on nuclei. Although the change of nuclear masses
is expected to be small for B . 1017 G [63,64], its impact on the Q-values, hence also on the
heat sources and their location, may be more significant and deserves further investigation.
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We also implicitly assumed that the compression of matter occurs continuously. However, if
the layers of interest are in a solid phase, the loss of magnetic pressure may be compensated
by the build-up of elastic stresses until the crust fails; in this case, the compression will occur
suddenly during crust quakes so that the electron capture (6) will proceed off-equilibrium
with the release of heat. The maximum possible total amount of heat deposited in the outer
crust could thus be potentially even higher than our present estimate. This alternative
scenario, which is more likely to occur in the deepest layers of the outer crust where
the melting temperature is highest, requires the detailed knowledge of the cooling and
magneto-elastohydrodynamic evolution of the liquid ocean and solid layers beneath.
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2 The demonstration follows directly from the definitions Pe = n2

e d(εe/ne)/dne and γe = (dεe/dne)/(mec2), where εe

denotes the energy density of the electron Fermi gas.
3 http://www.astro.ulb.ac.be/bruslib/, accessed on 7 May 2021.
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References
1. Duncan, R.C.; Thompson, C. Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-ray Bursts.

Astrophys. J. Lett. 1992, 392, L9. [CrossRef]
2. Esposito, P.; Rea, N.; Israel, G.L. Magnetars: A Short Review and Some Sparse Considerations. In Astrophysics and Space Science

Library; Belloni, T.M., Méndez, M., Zhang, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 461, pp. 97–142.
[CrossRef]

3. Olausen, S.A.; Kaspi, V.M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 2014, 212, 6. [CrossRef]
4. Coti Zelati, F.; Rea, N.; Pons, J.A.; Campana, S.; Esposito, P. Systematic study of magnetar outbursts. Mon. Not. R. Astron. Soc.

2018, 474, 961–1017. [CrossRef]
5. De Grandis, D.; Turolla, R.; Wood, T.S.; Zane, S.; Taverna, R.; Gourgouliatos, K.N. Three-dimensional Modeling of the

Magnetothermal Evolution of Neutron Stars: Method and Test Cases. Astrophys. J. 2020, 903, 40. [CrossRef]
6. Beloborodov, A.M.; Li, X. Magnetar Heating. Astrophys. J. 2016, 833, 261. [CrossRef]

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
http://magnetars.ice.csic.es
http://www.astro.ulb.ac.be/bruslib/
http://www.astro.ulb.ac.be/bruslib/
https://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
http://www.astro.ulb.ac.be/bruslib/
https://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html
http://magnetars.ice.csic.es
http://doi.org/10.1086/186413
http://dx.doi.org/10.1007/978-3-662-62110-3_3
http://dx.doi.org/10.1088/0067-0049/212/1/6
http://dx.doi.org/10.1093/mnras/stx2679
http://dx.doi.org/10.3847/1538-4357/abb6f9
http://dx.doi.org/10.3847/1538-4357/833/2/261


Universe 2021, 7, 193 20 of 21

7. Kaminker, A.D.; Yakovlev, D.G.; Potekhin, A.Y.; Shibazaki, N.; Shternin, P.S.; Gnedin, O.Y. Magnetars as cooling neutron stars
with internal heating. Mon. Not. R. Astron. Soc. 2006, 371, 477–483. [CrossRef]

8. Kaminker, A.D.; Potekhin, A.Y.; Yakovlev, D.G.; Chabrier, G. Heating and cooling of magnetars with accreted envelopes. Mon.
Not. R. Astron. Soc. 2009, 395, 2257–2267. [CrossRef]

9. Cooper, R.L.; Kaplan, D.L. Magnetic Field-Decay-Induced Electron Captures: A Strong Heat Source in Magnetar Crusts. Astrophys.
J. Lett. 2010, 708, L80–L83. [CrossRef]

10. Fantina, A.F.; Zdunik, J.L.; Chamel, N.; Pearson, J.M.; Haensel, P.; Goriely, S. Crustal heating in accreting neutron stars from the
nuclear energy-density functional theory. I. Proton shell effects and neutron-matter constraint. Astron. Astrophys. 2018, 620, A105.
[CrossRef]

11. Koliopanos, F.; Vasilopoulos, G.; Godet, O.; Bachetti, M.; Webb, N.A.; Barret, D. ULX spectra revisited: Accreting, highly
magnetized neutron stars as the engines of ultraluminous X-ray sources. Astron. Astrophys. 2017, 608, A47. [CrossRef]

12. Tong, H.; Wang, W. Accreting magnetars: Linking ultraluminous X-ray pulsars and the slow pulsation X-ray pulsars. Mon. Not.
R. Astron. Soc. 2019, 482, 4956–4964. [CrossRef]

13. Doroshenko, V.; Santangelo, A.; Suleimanov, V.F.; Tsygankov, S.S. An observational argument against accretion in magnetars.
Astron. Astrophys. 2020, 643, A173. [CrossRef]

14. Brice, N.; Zane, S.; Turolla, R.; Wu, K. Super-Eddington Emission from Accreting, Highly Magnetised Neutron Stars with a
Multipolar Magnetic Field. Mon. Not. R. Astron. Soc. 2021, 504, 701–715. [CrossRef]

15. Iida, K.; Sato, K. Spin Down of Neutron Stars and Compositional Transitions in the Cold Crustal Matter. Astrophys. J. 1997,
477, 294–312. [CrossRef]

16. Chamel, N.; Fantina, A.F.; Zdunik, J.L.; Haensel, P. Experimental constraints on shallow heating in accreting neutron star crusts.
Phys. Rev. C 2020, 102, 015804. [CrossRef]

17. Rabi, I.I. Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie. Z. Phys. 1928, 49, 507–511. [CrossRef]
18. Landau, L. Diamagnetismus der Metalle. Z. Phys. 1930, 64, 629–637. [CrossRef]
19. Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars. 1. Equation of State and Structure; Springer: New York, NY, USA, 2007.
20. Chamel, N.; Stoyanov, Z.K.; Mihailov, L.M.; Mutafchieva, Y.D.; Pavlov, R.L.; Velchev, C.J. Role of Landau quantization on the

neutron-drip transition in magnetar crusts. Phys. Rev. C 2015, 91, 065801. [CrossRef]
21. Mutafchieva, Y.D.; Chamel, N.; Stoyanov, Z.K.; Pearson, J.M.; Mihailov, L.M. Role of Landau–Rabi quantization of electron

motion on the crust of magnetars within the nuclear energy density functional theory. Phys. Rev. C 2019, 99, 055805. [CrossRef]
22. Potekhin, A.Y.; Chabrier, G. Equation of state for magnetized Coulomb plasmas. Astron. Astrophys. 2013, 550, A43. [CrossRef]
23. Blandford, R.D.; Hernquist, L. Magnetic susceptibility of a neutron star crust. J. Phys. C Solid State Phys. 1982, 15, 6233–6243.

[CrossRef]
24. Chamel, N.; Fantina, A.F. Electron capture instability in magnetic and nonmagnetic white dwarfs. Phys. Rev. D 2015, 92, 023008.

[CrossRef]
25. Hollerbach, R.; Rüdiger, G. Hall drift in the stratified crusts of neutron stars. Mon. Not. R. Astron. Soc. 2004, 347, 1273–1278.

[CrossRef]
26. Pons, J.A.; Geppert, U. Magnetic field dissipation in neutron star crusts: From magnetars to isolated neutron stars. Astron.

Astrophys. 2007, 470, 303–315. [CrossRef]
27. Viganò, D.; Rea, N.; Pons, J.A.; Perna, R.; Aguilera, D.N.; Miralles, J.A. Unifying the observational diversity of isolated neutron

stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 2013, 434, 123–141. [CrossRef]
28. Geppert, U.; Viganò, D. Creation of magnetic spots at the neutron star surface. Mon. Not. R. Astron. Soc. 2014, 444, 3198–3208.

[CrossRef]
29. Gourgouliatos, K.N.; Cumming, A. Hall Attractor in Axially Symmetric Magnetic Fields in Neutron Star Crusts. Phys. Rev. Lett.

2014, 112, 171101. [CrossRef] [PubMed]
30. Wood, T.S.; Hollerbach, R. Three Dimensional Simulation of the Magnetic Stress in a Neutron Star Crust. Phys. Rev. Lett. 2015,

114, 191101. [CrossRef]
31. Bransgrove, A.; Levin, Y.; Beloborodov, A. Magnetic field evolution of neutron stars-I. Basic formalism, numerical techniques and

first results. Mon. Not. R. Astron. Soc. 2018, 473, 2771–2790. [CrossRef]
32. Igoshev, A.P.; Hollerbach, R.; Wood, T.; Gourgouliatos, K.N. Strong toroidal magnetic fields required by quiescent X-ray emission

of magnetars. Nat. Astron. 2021, 5, 145–149. [CrossRef]
33. Kojima, Y.; Kisaka, S.; Fujisawa, K. Evolution of magnetic deformation in neutron star crust. Mon. Not. R. Astron. Soc. 2021,

502, 2097–2104. [CrossRef]
34. Horowitz, C.J.; Dussan, H.; Berry, D.K. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars. Phys. Rev. C

2008, 77, 045807. [CrossRef]
35. Rashdan, M. Sub-barrier fusion calculations for the neutron star crust using the microscopic Brueckner G -matrix and Skyrme

energy density functionals. Phys. Rev. C 2015, 91, 054613. [CrossRef]
36. Chatterjee, P.; Hernquist, L.; Narayan, R. An Accretion Model for Anomalous X-ray Pulsars. Astrophys. J. 2000, 534, 373–379.

[CrossRef]
37. Alpar, M.A. On Young Neutron Stars as Propellers and Accretors with Conventional Magnetic Fields. Astrophys. J. 2001,

554, 1245–1254. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2966.2006.10680.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14693.x
http://dx.doi.org/10.1088/2041-8205/708/2/L80
http://dx.doi.org/10.1051/0004-6361/201833605
http://dx.doi.org/10.1051/0004-6361/201730922
http://dx.doi.org/10.1093/mnras/sty2989
http://dx.doi.org/10.1051/0004-6361/202038948
http://dx.doi.org/10.1093/mnras/stab915
http://dx.doi.org/10.1086/303685
http://dx.doi.org/10.1103/PhysRevC.102.015804
http://dx.doi.org/10.1007/BF01333634
http://dx.doi.org/10.1007/BF01397213
http://dx.doi.org/10.1103/PhysRevC.91.065801
http://dx.doi.org/10.1103/PhysRevC.99.055805
http://dx.doi.org/10.1051/0004-6361/201220082
http://dx.doi.org/10.1088/0022-3719/15/30/017
http://dx.doi.org/10.1103/PhysRevD.92.023008
http://dx.doi.org/10.1111/j.1365-2966.2004.07307.x
http://dx.doi.org/10.1051/0004-6361:20077456
http://dx.doi.org/10.1093/mnras/stt1008
http://dx.doi.org/10.1093/mnras/stu1675
http://dx.doi.org/10.1103/PhysRevLett.112.171101
http://www.ncbi.nlm.nih.gov/pubmed/24836229
http://dx.doi.org/10.1103/PhysRevLett.114.191101
http://dx.doi.org/10.1093/mnras/stx2508
http://dx.doi.org/10.1038/s41550-020-01220-z
http://dx.doi.org/10.1093/mnras/staa3489
http://dx.doi.org/10.1103/PhysRevC.77.045807
http://dx.doi.org/10.1103/PhysRevC.91.054613
http://dx.doi.org/10.1086/308748
http://dx.doi.org/10.1086/321393


Universe 2021, 7, 193 21 of 21
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