Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = internal combustion engine (ICE) vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 11742 KiB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 - 31 Jul 2025
Viewed by 242
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

17 pages, 1457 KiB  
Article
Atmospheric Concentration of Particulate Air Pollutants in the Context of Projected Future Emissions from Motor Vehicles
by Artur Jaworski, Hubert Kuszewski, Krzysztof Balawender and Bożena Babiarz
Atmosphere 2025, 16(7), 878; https://doi.org/10.3390/atmos16070878 - 17 Jul 2025
Viewed by 198
Abstract
Ambient PM concentrations are influenced by various emission sources and weather conditions such as temperature, wind speed, and direction. Measurements using optical sensors cannot directly link pollution levels to specific sources. Data from roadside monitoring often show that a significant portion of PM [...] Read more.
Ambient PM concentrations are influenced by various emission sources and weather conditions such as temperature, wind speed, and direction. Measurements using optical sensors cannot directly link pollution levels to specific sources. Data from roadside monitoring often show that a significant portion of PM originates from non-traffic sources. Therefore, vehicle-related PM emissions are typically estimated using simulation models based on average emission factors. This study uses the COPERT (Computer Programme to Calculate Emissions from Road Transport) model to estimate emissions from road vehicles under current conditions and future scenarios. These include the introduction of Euro 7 standards and a shift from internal combustion engine (ICE) vehicles to battery electric vehicles (BEVs). The analysis considers exhaust and non-exhaust emissions, as well as indirect emissions from electricity generation for BEV charging. The conducted study showed, among other findings, that replacing internal combustion engine vehicles with electric ones could reduce PM2.5 emissions by approximately 6% (2% when including indirect emissions from electricity generation) and PM10 emissions by about 10% (5% with indirect emissions), compared to the Euro 7 scenario. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

7 pages, 482 KiB  
Proceeding Paper
Parameters Characterizing the Performance of Automotive Electronic Control Systems on Petrol Engine Emissions
by Hristo Konakchiev and Evgeni Dimitrov
Eng. Proc. 2025, 100(1), 41; https://doi.org/10.3390/engproc2025100041 - 15 Jul 2025
Viewed by 241
Abstract
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles [...] Read more.
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles to the highest possible level, primarily through software modifications of the parameters determining the performance of the internal combustion engine (ICE). The potential for advancement in this area is evidenced by the presence of systems that enhance environmental efficiency, even in Euro 2 vehicles. These include exhaust gas recirculation, catalytic converter, lambda sensor, electronic control fuel injection, and ignition timing. It is precisely these vehicles that are subject to optimization, a process which would allow the maximum service life of otherwise more reliable but older vehicles to be exploited. Full article
Show Figures

Figure 1

34 pages, 1149 KiB  
Article
The Second-Hand Market in the Electric Vehicle Transition
by Boucar Diouf
World Electr. Veh. J. 2025, 16(7), 397; https://doi.org/10.3390/wevj16070397 - 15 Jul 2025
Viewed by 1211
Abstract
Electric vehicles (EVs) have been the most dependable and feasible choice for decarbonizing road transport over the last decade. To ensure the advancement of EVs and establish them as a sustainable alternative to internal combustion engine (ICE) vehicles, the EV sector and technological [...] Read more.
Electric vehicles (EVs) have been the most dependable and feasible choice for decarbonizing road transport over the last decade. To ensure the advancement of EVs and establish them as a sustainable alternative to internal combustion engine (ICE) vehicles, the EV sector and technological growth have largely relied on government subsidies. A significant challenge for EVs is their faster depreciation compared to ICE vehicles, primarily owing to swift technological advancements that propel the market while simultaneously rendering older EV models outdated too soon. Another factor that leads to the quicker depreciation of EVs is subsidies. The anticipated cessation of subsidies is expected to provide the required leverage to mitigate the rapid value decline in EVs, given the larger price disparity between new and used EVs. Batteries, which enable EVs to be a viable option, significantly contribute to the depreciation of EVs. In addition to the potential decline in EV battery performance, advancements in technology and reduced prices provide newer models with improved range at a more affordable cost. The used EV market accurately represents the rapid devaluation of EVs; consequently, the two topics are tightly related. Though it might not be immediately apparent, it seems evident that the pace of depreciation of EVs significantly contributes to the small size of the second-hand EV market. Depreciation is a key factor influencing the used EV market. This manuscript outlines the key aspects of depreciation and sustainability in the EV transition, especially those linked to rapid technological advancements, such as batteries, in addition to subsidies and the used EV market. The objective of this manuscript is to expose and analyze the relation between the drivers of the second-hand EV market, such as the cost of ownership, technology, and subsidies, and, on the other hand, present the interplay perspectives and challenges. Full article
Show Figures

Figure 1

17 pages, 2486 KiB  
Article
Development of an Energy Consumption Minimization Strategy for a Series Hybrid Vehicle
by Mehmet Göl, Ahmet Fevzi Baba and Ahu Ece Hartavi
World Electr. Veh. J. 2025, 16(7), 383; https://doi.org/10.3390/wevj16070383 - 7 Jul 2025
Viewed by 286
Abstract
Due to the limitations of current battery technologies—such as lower energy density and high cost compared to fossil fuels—electric vehicles (EVs) face constraints in applications requiring extended range or heavy payloads, such as refuse trucks. As a midterm solution, hybrid electric vehicles (HEVs) [...] Read more.
Due to the limitations of current battery technologies—such as lower energy density and high cost compared to fossil fuels—electric vehicles (EVs) face constraints in applications requiring extended range or heavy payloads, such as refuse trucks. As a midterm solution, hybrid electric vehicles (HEVs) combine internal combustion engines (ICEs) and electric powertrains to enable flexible energy usage, particularly in urban duty cycles characterized by frequent stopping and idling. This study introduces a model-based energy management strategy using the Equivalent Consumption Minimization Strategy (ECMS), tailored for a retrofitted series hybrid refuse truck. A conventional ISUZU NPR 10 truck was instrumented to collect real-world driving and operational data, which guided the development of a vehicle-specific ECMS controller. The proposed strategy was evaluated over five driving cycles—including both standardized and measured urban scenarios—under varying load conditions: Tare Mass (TM) and Gross Vehicle Mass (GVM). Compared with a rule-based control approach, ECMS demonstrated up to 14% improvement in driving range and significant reductions in exhaust gas emissions (CO, NOx, and CO2). The inclusion of auxiliary load modeling further enhances the realism of the simulation results. These findings validate ECMS as a viable strategy for optimizing fuel economy and reducing emissions in hybrid refuse truck applications. Full article
Show Figures

Figure 1

18 pages, 1520 KiB  
Article
Transitioning to Cleaner Transport: Evaluating the Environmental and Economic Performance of ICE, HEVs, and PHEVs in Bangladesh
by MD Shiyan Sadik, Md Ishmam Labib and Asma Safia Disha
World Electr. Veh. J. 2025, 16(7), 380; https://doi.org/10.3390/wevj16070380 - 6 Jul 2025
Viewed by 546
Abstract
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles [...] Read more.
The transportation sector in South Asia largely depends on internal combustion engine (ICE) vehicles, which are responsible for a large share of greenhouse gas (GHG) emissions, air pollution, and the increase in fuel prices. Although hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and fully electric vehicles (EVs) constitute promising alternatives, the rate of their implementation is low due to factors such as the high initial investment, the absence of the required infrastructure, and the reliance on fossil fuel-based electricity. This study is the first of its kind to examine Bangladesh’s drivetrain options in a comprehensive way, with in-depth real-world emission testing and economic analysis as the main tools of investigation into the environmental and economic feasibility of different technologies used in the vehicles available in Bangladesh, including lifecycle costs and infrastructure constraints. The study findings have shown that hybrid and plug-in hybrid vehicles are the best options, since they have moderate emissions and cost efficiency, respectively. Fully electric vehicles, however, face two main challenges: the overall lack of charging infrastructure and the overall high purchase prices. Among the evaluated technologies, PHEVs exhibited the lowest environmental and economic burden. The Toyota Prius PHEV emitted 98% less NOx compared to the diesel-powered Pajero Sport and maintained the lowest per-kilometer cost at BDT 6.39. In contrast, diesel SUVs emitted 178 ppm NOx and cost 22.62 BDT/km, reinforcing the transitional advantage of plug-in hybrid technology in Bangladesh’s context. Full article
Show Figures

Figure 1

24 pages, 615 KiB  
Opinion
Driving the Future: Strategic Imperatives and Systemic Challenges in Myanmar’s Transition to Electric Mobility
by Nay Zar Oo, Walton Wider, Leilei Jiang, Jem Cloyd M. Tanucan, Joseline M. Santos, Anantha Raj A. Arokiasamy and Pengfei Deng
World Electr. Veh. J. 2025, 16(7), 348; https://doi.org/10.3390/wevj16070348 - 23 Jun 2025
Cited by 1 | Viewed by 1262
Abstract
This study critically reflects on Myanmar’s readiness and potential to transition from internal combustion engine (ICE) vehicles to electric vehicles (EVs) amidst escalating climate pressures, energy insecurity, and regional technological shifts. It aims to advocate a systemic and inclusive EV strategy rooted in [...] Read more.
This study critically reflects on Myanmar’s readiness and potential to transition from internal combustion engine (ICE) vehicles to electric vehicles (EVs) amidst escalating climate pressures, energy insecurity, and regional technological shifts. It aims to advocate a systemic and inclusive EV strategy rooted in environmental, economic, and governance imperatives. Drawing on an extensive review of scholarly literature, policy documents, and regional best practices, this study synthesizes evidence to frame a normative argument for accelerating the adoption of EVs in Myanmar. It combines the environmental, infrastructural, and political–economic perspectives to support its position. Myanmar’s EV transition is not merely a technological leap, but a structural transformation intertwined with energy equity, public health, and geopolitical positioning. While significant barriers, such as grid unreliability, policy inconsistency, and socioeconomic disparities, persist, coordinated national efforts and regional cooperation can unlock transformative opportunities. Policy clarity, grid modernization, public engagement, and international partnerships are essential enablers. This study offers a timely and region-specific perspective on the EV debate, highlighting Myanmar’s unique vulnerabilities and latent advantages. It presents a value-based call for inclusive, future-oriented policymaking that aligns Myanmar’s mobility system with its sustainability and development goals. Full article
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1597
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

24 pages, 1696 KiB  
Article
Evaluating Carbon Emissions: A Lifecycle Comparison Between Electric and Conventional Vehicles
by Farhan Hameed Malik, Walid Ayadi, Ghulam Amjad Hussain, Zunaib Maqsood Haider, Fawwaz Alkhatib and Matti Lehtonen
World Electr. Veh. J. 2025, 16(5), 287; https://doi.org/10.3390/wevj16050287 - 21 May 2025
Cited by 1 | Viewed by 2207
Abstract
Due to global warming, ozone depletion and their ramifications on the Arctic and Antarctic snowscapes, there has been an incentivized drive towards net zero-carbon emission policies by several countries. These policies extend to several sectors, including several manufacturing and processing industries and transportation, [...] Read more.
Due to global warming, ozone depletion and their ramifications on the Arctic and Antarctic snowscapes, there has been an incentivized drive towards net zero-carbon emission policies by several countries. These policies extend to several sectors, including several manufacturing and processing industries and transportation, which are a few of their notable stakeholders. In the transportation sector, this journey towards net zero-carbon emissions is aided by the adoption of battery electric vehicles (BEVs) due to their zero-carbon emissions during operation. However, they might have zero running emissions, but they do have emissions when charging through conventional sources. This research paper looks at the carbon emissions produced by both electric vehicles (EVs) and internal combustion engine (ICE) vehicles during their operational stages and compares them based on a 200,000 km driving range, battery manufacturing emissions and different power production alternatives to draw up some very important recommendations. The analysis presented in this paper helps in drawing conclusions and proposes ideas which, when included in transport policies, will help curb global warming and eventually lead to the sustainable development of the transport sector. The analysis in this study shows that the emissions needed to produce a single battery unit have increased by approximately 258.7% with the change in battery production locations. Furthermore, charging EVs with a fossil-fuel-dominated grid has shown an increase in emissions of 17.98% compared to the least emissive ICE car considered in the study. Finally, policy update recommendations which are essential for the sustainable development of the transport sector are discussed. Full article
Show Figures

Figure 1

24 pages, 2526 KiB  
Article
Content of Selected Compounds in the Exhaust Gas of a Naturally Aspirated CI Engine Fueled with Diesel–Tire Pyrolysis Oil Blend
by Leszek Chybowski, Marcin Szczepanek, Waldemar Kuczyński, Iwona Michalska-Pożoga, Tomasz Pusty, Piotr Brożek and Robert Pełech
Energies 2025, 18(10), 2621; https://doi.org/10.3390/en18102621 - 19 May 2025
Cited by 1 | Viewed by 406
Abstract
This paper presents the results of naturally aspirated compression ignition (CI) internal combustion engine (ICE) bench tests of fuels in the form of a blend of diesel oil with recycled oil (RF) in the form of tire pyrolysis oil (TPO) as an admixture [...] Read more.
This paper presents the results of naturally aspirated compression ignition (CI) internal combustion engine (ICE) bench tests of fuels in the form of a blend of diesel oil with recycled oil (RF) in the form of tire pyrolysis oil (TPO) as an admixture with the content of pyrolytic oil with the blend being 10% m/m (D90+RF10). The results relate to reference conditions in which the engine is fed with pure diesel oil (D100). The experiment included the evaluation of engine performance and the determination of the content of selected substances in the exhaust gas for brake-set engine loads equal to 5 Nm, 10 Nm, 15 Nm, and 20 Nm. For each load, engine operating parameters and emissions of selected exhaust components were recorded at preset speeds in the range of 1400–2400 rpm for each engine load. The hourly fuel consumption and exhaust gas temperature were determined. The contents of CO2, CO, and HC in the exhaust gas were measured. The consumption of D90+RF10 increased by 56%, and CO2 emissions were 21.7% higher at low loads. The addition of sulfur-containing pyrolytic oil as an admixture to diesel oil resulted in SOx emissions. The results show the suitability of pyrolytic oil and the possibility of using it as an admixture to fossil fuels. In order to meet SOx emission levels in land-based installations and for vehicle propulsion, it is necessary to desulfurize fuel or desulfurize deSOx exhaust gas systems. The CO and HC emission levels in the exhaust gases from the engine powered by the D90+RF10 fuel meet current requirements for motor vehicle exhaust composition. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2025)
Show Figures

Figure 1

20 pages, 6824 KiB  
Article
Basic Study on Operation Control Systems of Internal Combustion Engines in Hybrid Small Race Cars to Improve Dynamic Performance
by Hayato Yamada, Masamune Kobayashi, Yusuke Ebashi, Shinobu Kasamatsu, Ikkei Kobayashi, Jumpei Kuroda, Daigo Uchino, Kazuki Ogawa, Keigo Ikeda, Taro Kato, Xiaojun Liu, Ayato Endo, Mohamad Heerwan Bin Peeie, Takayoshi Narita and Hideaki Kato
Vehicles 2025, 7(2), 41; https://doi.org/10.3390/vehicles7020041 - 30 Apr 2025
Viewed by 564
Abstract
Hybrid vehicles utilize multiple power sources, making them energy-efficient and enhancing both fuel efficiency and dynamic performance. As a result, hybrid vehicles have recently been adopted as race cars, which demand high powertrain performance. The hybrid vehicle system comprises two power sources: an [...] Read more.
Hybrid vehicles utilize multiple power sources, making them energy-efficient and enhancing both fuel efficiency and dynamic performance. As a result, hybrid vehicles have recently been adopted as race cars, which demand high powertrain performance. The hybrid vehicle system comprises two power sources: an internal combustion engine (ICE) and an electric motor, both of which require precise control. Controlling the output of the internal combustion engine is particularly challenging. This study investigated the dynamic response of an actuator in an electronic throttle system. The experimental results demonstrated that optimized parameters significantly improved the dynamic response. As a result, we propose a mechanism for hybrid vehicle performance and report the characteristics of an electronic throttle. The improvement in throttle opening can be verified by adjusting the P term. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

54 pages, 21776 KiB  
Review
Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems
by Giuseppe Rausa, Maurizio Calabrese, Ramiro Velazquez, Carolina Del-Valle-Soto, Roberto De Fazio and Paolo Visconti
Energies 2025, 18(8), 1970; https://doi.org/10.3390/en18081970 - 11 Apr 2025
Viewed by 1576
Abstract
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. [...] Read more.
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. This manuscript provides a comprehensive review of energy harvesting applications/methodologies, aiming to trace the research lines and future developments. This work identifies the main categories of harvesting solutions, namely mechanical, thermal, and hybrid/environmental solar–wind systems; each section includes a detailed review of the technical and scientific state of the art and a comparative analysis with detailed tables, allowing the state of the art to be mapped for identification of the strengths of each solution, as well as the challenges and future developments needed to enhance the technological level. These improvements focus on energy conversion efficiency, material innovation, vehicle integration, energy savings, and environmental sustainability. The mechanical harvesting section focuses on energy recovery from vehicle vibrations, with emphasis on regenerative suspensions and piezoelectric-based solutions. Specifically, solutions applied to suspensions with electric generators can achieve power outputs of around 1 kW, while piezoelectric-based suspension systems can generate up to tens of watts. The thermal harvesting section, instead, explores methods for converting waste heat from an internal combustion engine (ICE) into electrical power, including thermoelectric generators (TEGs) and organic Rankine cycle systems (ORC). Notably, ICEs with TEGs can recover above 1 kW of power, while ICE-based ORC systems can generate tens of watts. On the other hand, TEGs integrated into braking systems can harvest a few watts of power. Then, hybrid solutions are discussed, focusing on integrated mechanical and thermal energy recovery systems, as well as solar and wind energy harvesting. Hybrid solutions can achieve power outputs above 1 kW, with the main contribution from TEGs (≈1 kW), compared to piezoelectric systems (hundreds of W). Lastly, a section on commercial solutions highlights how current scientific research meets the automotive sector’s needs, providing significant insights for future development. For these reasons, the research results aim to be guidelines for a better understanding of where future studies should focus to improve the technological level and efficiency of energy harvesting solutions in the automotive sector. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

30 pages, 7670 KiB  
Article
Comparative Analysis of Energy Consumption and Performance Metrics in Fuel Cell, Battery, and Hybrid Electric Vehicles Under Varying Wind and Road Conditions
by Ahmed Hebala, Mona I. Abdelkader and Rania A. Ibrahim
Technologies 2025, 13(4), 150; https://doi.org/10.3390/technologies13040150 - 9 Apr 2025
Viewed by 1926
Abstract
As global initiatives to reduce greenhouse gas emissions and combat climate change expand, electric vehicles (EVs) powered by fuel cells and lithium-ion batteries are gaining global recognition as solutions for sustainable transportation due to their high energy conversion efficiency. Considering the driving range [...] Read more.
As global initiatives to reduce greenhouse gas emissions and combat climate change expand, electric vehicles (EVs) powered by fuel cells and lithium-ion batteries are gaining global recognition as solutions for sustainable transportation due to their high energy conversion efficiency. Considering the driving range limitations of battery electric vehicles (BEVs) and the low efficiency of internal combustion engines (ICEs), fuel cell hybrid vehicles offer a compelling alternative for long-distance, low-emission driving with less refuelling time. To facilitate their wider scale adoption, it is essential to understand their energy performance through models that consider external weather effects, driving styles, road gradients, and their simultaneous interaction. This paper presents a microlevel, multicriteria assessment framework to investigate the performance of BEVs, fuel cell electric vehicles (FCEVs), and hybrid electric vehicles (HEVs), with a focus on energy consumption, drive systems, and emissions. Simulation models were developed using MATLAB 2021a Simulink environment, thus enabling the integration of standardized driving cycles with real-world wind and terrain variations. The results are presented for various trip scenarios, employing quantitative and qualitative analysis methods to identify the most efficient vehicle configuration, also validated through the simulation of three commercial EVs. Predictive modelling approaches are utilized to estimate a vehicle’s performance under unexplored conditions. Results indicate that trip conditions have a significant impact on the performance of all three vehicles, with HEVs emerging as the most efficient and balanced option, followed by FCEVs, making them strong candidates compared with BEVs for broader adoption in the transition toward sustainable transportation. Full article
(This article belongs to the Special Issue Next-Generation Distribution System Planning, Operation, and Control)
Show Figures

Figure 1

24 pages, 8890 KiB  
Article
From Map to Policy: Road Transportation Emission Mapping and Optimizing BEV Incentives for True Emission Reductions
by Moritz Seidenfus, Jakob Schneider and Markus Lienkamp
World Electr. Veh. J. 2025, 16(4), 205; https://doi.org/10.3390/wevj16040205 - 1 Apr 2025
Viewed by 1187
Abstract
This study explores the importance of considering regional aspects and different calculation approaches when assessing the environmental impact of passenger cars in Germany. The transportation sector, in general, needs to improve its transition to comply with national and international goals, and more efficient [...] Read more.
This study explores the importance of considering regional aspects and different calculation approaches when assessing the environmental impact of passenger cars in Germany. The transportation sector, in general, needs to improve its transition to comply with national and international goals, and more efficient measures are necessary. To achieve this, the spatial heterogeneity of underlying data, such as vehicle stocks, cubic capacity classes as a proxy for consumption values, and annual mileage, is investigated with respect to regional differences. Using data samples for the year 2017, the average emission values per car and year are calculated as well as Germany’s total emission values from the utilization of passenger cars. Conducting a spatially informed allocation algorithm, battery electric vehicles (BEVs) are added to certain regional fleets, replacing cars with internal combustion engines (ICEs). The results show significant regional differences in the underlying data, with a divergence between rural and urban areas as well as northern and southern regions, while the spread in mileage values is higher than that in consumption values. Comparing the tank-to-wheel (TtW) and well-to-wheel (WtW) approaches reveals different values with an increased spread as more BEVs are introduced to the fleet. Using the presented concept to allocate BEVs, emissions can be reduced by 1.66% to 1.35%, depending on the calculation perspective, compared to the extrapolation of historical values. Furthermore, rural areas benefit more from optimized allocation compared to urban ones. The findings suggest that regional distribution strategies could lead to more efficient reductions in GHG emissions within the transportation sector while incorporating both TtW and WtW approaches, leading to more comparable and precise analyses. Full article
(This article belongs to the Special Issue Impact of Electric Vehicles on Power Systems and Society)
Show Figures

Figure 1

25 pages, 7433 KiB  
Review
Decarbonizing the Transportation Sector: A Review on the Role of Electric Vehicles Towards the European Green Deal for the New Emission Standards
by Dimitrios Rimpas, Dimitrios E. Barkas, Vasilios A. Orfanos and Ioannis Christakis
Air 2025, 3(2), 10; https://doi.org/10.3390/air3020010 - 1 Apr 2025
Cited by 3 | Viewed by 1440
Abstract
The transportation sector has a significant impact on climate change, as it is responsible for 20% of the global greenhouse gas (GHG) emissions. This paper evaluates the role of electric vehicles (EVs) in achieving Europe’s ambitious target of carbon neutrality by 2050. The [...] Read more.
The transportation sector has a significant impact on climate change, as it is responsible for 20% of the global greenhouse gas (GHG) emissions. This paper evaluates the role of electric vehicles (EVs) in achieving Europe’s ambitious target of carbon neutrality by 2050. The limitations of internal combustion engines (ICEs) along with the recent advancements, such as Euro 6 standards, are examined with a pseudo–lifecycle analysis (pseudo-LCA). While ICEs remain cost-effective initially, their higher long-term cost and environmental impact make them unsustainable. The benefits of EVs, including high energy efficiency, minimal maintenance, and reduced GHG emissions, are stated. However, challenges such as range limitations, charging infrastructure, and the environmental cost of battery production persist. Hybrid electric vehicles (HEVs) are highlighted as transitional technologies, offering improved thermal efficiency and reduced emissions, enhancing air quality in both urban and rural areas. The analysis extends to the use of alternative fuels, such as bioethanol, biodiesel, and hydrogen. These provide interim solutions but face scalability and sustainability issues. Policy interventions, including subsidies, tax incentives, and investments in renewable energy, are crucial factors for EV adoption. As EVs are pivotal to decarbonization, integrating renewable energy and addressing systemic challenges are essential for a sustainable transition. Full article
Show Figures

Figure 1

Back to TopTop