Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,107)

Search Parameters:
Keywords = intermediate-temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1218 KB  
Article
Optimizing Waterborne Polyacrylate Coating for Controlled-Release Fertilizer Using a Wurster Fluidized Bed and Its Effects on Rice Yield
by Cong Zhao, Xuefang Huang, Juanling Wang and Changwen Du
Polymers 2025, 17(21), 2816; https://doi.org/10.3390/polym17212816 (registering DOI) - 22 Oct 2025
Abstract
The efficacy of coated fertilizers in enhancing nutrient use efficiency and reducing environmental impacts depends on their coating properties. This study developed three biodegradable, waterborne polyacrylate latexes (A, B, and C) as eco-friendly coatings for controlled-release fertilizers (CRFs) using the Wurster fluidized bed [...] Read more.
The efficacy of coated fertilizers in enhancing nutrient use efficiency and reducing environmental impacts depends on their coating properties. This study developed three biodegradable, waterborne polyacrylate latexes (A, B, and C) as eco-friendly coatings for controlled-release fertilizers (CRFs) using the Wurster fluidized bed process. The latexes were synthesized with varying hard-to-soft monomer ratios and cross-linked with 2 wt% aziridine to investigate how monomer composition affects coating properties and nutrient release. The results showed that coating B, which had an intermediate hard-to-soft monomer ratio, demonstrated optimal properties. It exhibited the lowest swelling capacity (2.54% at 60 °C), a suitable glass transition temperature (15.34 °C), and the slowest nutrient release, with cumulative nitrogen release remaining below 60% after 11 days in water at 40 °C. In field trials, the fertilizer coated with material B produced the highest rice yield among tested domestic CRF brands. It also achieved a significant 19.1% yield increase compared to a single basal application of conventional compound fertilizer. These findings confirm that this modified latex provides an effective and environmentally friendly solvent-free coating strategy for high-performance CRFs. Full article
(This article belongs to the Special Issue Advances in Biodegradable Polymer Film)
Show Figures

Figure 1

16 pages, 5375 KB  
Article
Steam Efficiently Enhancing CO2 Direct Mineralization Steel Slag Towards Actual Production: Phase Evolution, Microstructure, and Mechanisms
by Xiaoqian Wang, Changsheng Yue, Guanghua Lu, Xiangtao Huo, Guilan Yi, Haokun Li, Min Guo and Mei Zhang
Materials 2025, 18(20), 4786; https://doi.org/10.3390/ma18204786 - 20 Oct 2025
Abstract
About 120 million tons of steel slag are produced annually in China, making it one of the largest sources of industrial solid waste; however, its utilization rate remains only around 30%. The presence of f-CaO is the main factor in its widespread application. [...] Read more.
About 120 million tons of steel slag are produced annually in China, making it one of the largest sources of industrial solid waste; however, its utilization rate remains only around 30%. The presence of f-CaO is the main factor in its widespread application. Currently, the carbonation of steel slag is mainly through indirect wet mineralization, which is difficult to implement on an industrial scale. Direct dry carbonation, on the other hand, consumes more energy due to its slow kinetics. In this study, steam coupled with CO2 was used to directly mineralize steel slag, a process fully compatible with existing iron and steel industry treatment processes. The required temperature can be achieved using the waste heat from hot steel slag, eliminating the need for additional heat supply. With 15% steam injection, the CaCO3 content increased to 12.02 g/100 g (52.8 kg CO2 t−1 slag utilization), representing a 16.7% improvement. After mineralization, the f-CaO decreased to 0.61%, with 91.73% of f-CaO in steel slag mineralized. The mineralization efficiency of f-CaO increased by 20.24%. This enhancement was attributed to steam entering the interior pores of steel slag, generating intermediate Ca(OH)2, causing steel slag particle breakage and fully exposing the previously enclosed f-CaO for complete carbonation. To further utilize flue gas, the effects of different CO2 concentrations on carbon fixation were investigated. At a concentration of 20% CO2, the carbon fixation reached 69.90% of that achieved at 100% CO2. This research not only addresses the stability issues of steel slag but also reduces CO2 emissions and effectively utilizes waste heat, making the process suitable for large-scale industrial application. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

13 pages, 1519 KB  
Article
Thermodynamic Assessment of Prebiotic Molecule Formation Pathways on Comets
by Luca Tonietti
Universe 2025, 11(10), 349; https://doi.org/10.3390/universe11100349 - 18 Oct 2025
Viewed by 106
Abstract
Comets are chemically rich and thermally extreme, spanning surface temperatures from ~50 K in the Oort Cloud to >1000 K for sungrazing bodies. These conditions may support key steps of prebiotic chemistry, including the synthesis of nucleic acid precursors. This study present a [...] Read more.
Comets are chemically rich and thermally extreme, spanning surface temperatures from ~50 K in the Oort Cloud to >1000 K for sungrazing bodies. These conditions may support key steps of prebiotic chemistry, including the synthesis of nucleic acid precursors. This study present a thermodynamic evaluation of seven candidate reactions, producing nitrogenous bases, sugars, nucleosides, and nucleotides, across the cometary temperature spectrum, 50–1000 K. Purine nucleobase synthesis, including adenine formation via aminoacetonitrile polymerization and HCN polymerization, is strongly exergonic at all temperatures. Sugar formation from formaldehyde is also exergonic, while intermediate pathways, e.g., 2-aminooxazole synthesis, become thermodynamically viable only above ~700 K. Nucleoside formation is thermodynamically neutral at low T but becomes favorable at elevated temperatures, whereas phosphorylation to AMP, i.e., adenosine-monophosphate, a nucleotide serving as a critical regulator of cellular energy status, remains highly endergonic under the entire T range studied. My analysis suggests that, under standard-state assumptions, comets can thermodynamically support formation routes of nitrogenous bases and simple sugars but not a complete nucleotide assembly. This supports a dual-phase origin scenario, where comets act as molecular reservoirs, with further polymerization and biological activation occurring post-delivery on planetary surfaces. Importantly, these findings represent purely thermodynamic assessments under standard-state assumptions and do not address kinetic barriers, catalytic influences, or adsorption effects on ice or mineral surfaces. The results should therefore be viewed as a baseline map of feasibility, subject to modifications in more complex chemical environments. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

18 pages, 3272 KB  
Article
Elucidating the Role of the Mo2C/MgO Catalyst Interface in the Mechanism of the Reverse Water Gas Shift Reaction
by Cameron Holder, Andrew Shabaev, Jeffrey Baldwin and Heather Willauer
Nanomaterials 2025, 15(20), 1591; https://doi.org/10.3390/nano15201591 - 18 Oct 2025
Viewed by 204
Abstract
The reverse water gas shift reaction (RWGS) is a key step in the valorization of CO2 to value-added products such as fuel. Metal carbides, particularly molybdenum carbide (Mo2C), supported on transition metal oxide supports have been reported as promising materials [...] Read more.
The reverse water gas shift reaction (RWGS) is a key step in the valorization of CO2 to value-added products such as fuel. Metal carbides, particularly molybdenum carbide (Mo2C), supported on transition metal oxide supports have been reported as promising materials to be used as catalysts for the low-temperature RWGS reaction. A deeper understanding of catalyst support interactions can be greatly beneficial for the development of better and more efficient catalysts in the future. To this end, this study computationally investigated the effect of the interaction between the Mo2C(001) surface and the MgO(001) surface on the RWGS mechanism. The RWGS mechanisms were explored at the Mo2C/MgO interface, as well as on the bare surface of Mo2C. While the pathway at the interface went through an associative-type mechanism and a carboxylate intermediate, the Mo2C surface was found to go through a redox-type mechanism. Interestingly, both the kinetics and thermodynamics of each pathway were similar, suggesting that the observed differences in the CO2 hydrogenation pathways were primarily limited by the diffusion of CO2 across the MgO surface rather than inhibitory energetics resulting from the interplay of the Mo2C material and MgO support. Full article
(This article belongs to the Special Issue Theoretical and Computational Studies of Nanocrystals)
Show Figures

Figure 1

20 pages, 2450 KB  
Article
Stereoisomeric Effects of Diammoniumcyclohexane Counterions on the Self-Assembly of Amino Acid-Based Surfactants
by Saylor E. Blanco, Nathan Black, Margarita A. Alvarez, Kevin F. Morris, Mark A. Olson, Eugene J. Billiot and Fereshteh H. Billiot
Molecules 2025, 30(20), 4114; https://doi.org/10.3390/molecules30204114 - 16 Oct 2025
Viewed by 291
Abstract
The impact of counterion structure, especially variations in constitutional and stereochemical isomers, on the properties and performance of AABSs remains under-explored. This study investigates how structural variations, particularly the stereochemistry of diammonium cyclohexane (DACH) counterions, influence the self-assembly behavior of AABSs. Four AABSs: [...] Read more.
The impact of counterion structure, especially variations in constitutional and stereochemical isomers, on the properties and performance of AABSs remains under-explored. This study investigates how structural variations, particularly the stereochemistry of diammonium cyclohexane (DACH) counterions, influence the self-assembly behavior of AABSs. Four AABSs: undecanoyl-glycine, -L-alanine, -L-valine, and -L-leucine, were paired with six DACH counterions representing cis/trans isomers of 1,2-, 1,3-, and 1,4-DACH. Critical micelle concentrations (CMCs) were determined via conductimetry, and micellar sizes were measured using dynamic light scattering. The degree of counterion binding (β) was calculated to probe micelle stability, while geometry-optimized structures of the DACH isomers were obtained using density functional theory. Lastly, pH measurements were taken to probe the protonation of DACH counterions at their natural pH, where both the DACH counterion and AABS headgroups intrinsically behave as buffers. Results indicate that while surfactant hydrophobicity primarily dictates CMC in other AABS/DACH combinations, trans-1,3-DACH leads to consistently higher CMCs. This deviation likely arises from its structural conformation, which positions the amine groups an intermediate distance of ~4.4–4.5 Å apart, allowing a small fraction of divalently charged counterions to form strong electrostatic bridging pockets at the micelle interface. These interactions dominate over headgroup effects, leading to elevated and surfactant-independent CMC values. Regarding size and other unusual trends in the systems, cis- isomers formed slightly larger micelles, and trans-1,4-DACH induces abnormal aggregation in undecanoyl-glycine leading to temperature dependent gel formation. These findings highlight the significant influence of counterion structure on AABS behavior and support counterion design as a strategy for enhancing surfactant performance in sustainable applications. Full article
(This article belongs to the Special Issue Amphiphilic Molecules, Interfaces and Colloids: 2nd Edition)
Show Figures

Graphical abstract

22 pages, 7545 KB  
Article
A Comprehensive Analysis of Double-Pass Counter Flow V-Groove Solar Air Collector Performance for Drying Applications
by Azharul Karim, Zakaria Amin and Sabrina Fawzia
Energies 2025, 18(20), 5432; https://doi.org/10.3390/en18205432 - 15 Oct 2025
Viewed by 123
Abstract
The economic viability of solar drying mainly depends on the appropriate design of air collectors, which are the main parts of a solar dryer. Although the V-groove collector has been reported to have one of the highest efficiencies, no comprehensive parameter analysis on [...] Read more.
The economic viability of solar drying mainly depends on the appropriate design of air collectors, which are the main parts of a solar dryer. Although the V-groove collector has been reported to have one of the highest efficiencies, no comprehensive parameter analysis on this collector has been reported in the literature. This detailed study investigates the influence of different operating and design variables on the outlet temperature and the efficiency of the air collector. The parameter analysis also contributed to the development of the most effective design guidelines. The parameters examined include solar radiation, airflow rate, incoming air temperature, collector length, height of the vee, the spacing between the top of the vee and the transparent cover, number of such covers, and the thickness of the back insulation. The airflow rate is identified to be the essential operating parameter that affects the efficiency, and a better heat transfer rate is noticed in the intermediate flow state. It is also found that to achieve the best performance, it is necessary to maintain a mass airflow rate between 0.015 and 0.055 kg/m2s, to have incoming air at a near-atmospheric temperature, and to have two transparent covers on top. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 2340 KB  
Article
Glass Transition and Crystallization of Chitosan Investigated by Broadband Dielectric Spectroscopy
by Massimiliano Labardi, Margherita Montorsi, Sofia Papa, Laura M. Ferrari, Francesco Greco, Giovanni Scarioni and Simone Capaccioli
Polymers 2025, 17(20), 2758; https://doi.org/10.3390/polym17202758 - 15 Oct 2025
Viewed by 278
Abstract
Chitosan films obtained by solution casting were investigated by broadband dielectric spectroscopy (BDS) to explore both their glass transition and the effects of thermal annealing on molecular dynamics, deriving from residual water content as well as from cold crystallization. Glass transition at low [...] Read more.
Chitosan films obtained by solution casting were investigated by broadband dielectric spectroscopy (BDS) to explore both their glass transition and the effects of thermal annealing on molecular dynamics, deriving from residual water content as well as from cold crystallization. Glass transition at low temperatures could be evidenced in as-produced as well as thermally annealed films, where non-Arrhenian dielectric relaxation processes, consistent with a structural (α) relaxation, could be detected. The process detected at low temperatures could reflect the dynamics of residual water slaved by the polymer matrix. Secondary (β) relaxations, along with a slow process ascribed to interfacial polarization at the amorphous/crystalline interfaces, were concurrently detected. In most cases, a further Arrhenian process at intermediate temperatures (αc) was present, also indicative of crystallization. Notably, the α processes, due to the primary relaxation of the polymer matrix plasticized by water, could be discriminated from other processes, present in the same frequency range, thanks to improvements in the dielectric fitting strategy. All relaxation processes showed the expected dependence on Ta. The more accurate exploration of the glass transition for chitosan helps to better rationalize its crystallization behavior, in view of an optimized application of this biopolymer. Full article
Show Figures

Graphical abstract

21 pages, 4811 KB  
Article
Shifting Electricity Demand Under Temperature Extremes in Bangladesh
by Md. Mahbub Alam, Sharad Aryal and Quazi K. Hassan
Earth 2025, 6(4), 127; https://doi.org/10.3390/earth6040127 - 15 Oct 2025
Viewed by 375
Abstract
Bangladesh is among the world’s most climate-vulnerable countries, facing recurrent hazards that disrupt lives and livelihoods. Among these, heatwaves and cold snaps strongly affect electricity consumption, representing a key socio-economic impact of climate extremes. In this study, we used meteorological and electricity data [...] Read more.
Bangladesh is among the world’s most climate-vulnerable countries, facing recurrent hazards that disrupt lives and livelihoods. Among these, heatwaves and cold snaps strongly affect electricity consumption, representing a key socio-economic impact of climate extremes. In this study, we used meteorological and electricity data from six sub-regions of Bangladesh to examine long-term changes in extreme temperature days and their effects on electricity usage. Results showed that western inland stations (Chuadanga, Jashore) experienced hotter summers and colder winters, whereas coastal sites (Barishal, Patuakhali) were moderated by maritime influences. Trend analysis revealed significant increases in hot-day frequency since 1961 (up to 1.8 days yr−1 at coastal areas, while cold-day frequencies generally declined but with regional variability. Electricity demand followed a clear pattern, being highest on hot days, lowest on cold days, and intermediate on normal days. Among the regions, Khulna consistently recorded the greatest demand (up to 161 MWh), while Patuakhali remained the lowest (~19–32 MWh). Regression analysis further showed that demand rises with maximum temperature, with slopes up to 5.7 MWh °C−1 and moderate correlations (r = 0.27–0.47). Importantly, the temperature–demand relationship has strengthened in recent years, as similar climatic conditions now correspond to higher electricity use, reflecting both climatic pressures and socio-economic growth. These findings highlight the challenge of temperature extremes for electricity demand and the need to integrate climate–energy linkages into adaptation planning. Full article
Show Figures

Figure 1

16 pages, 9307 KB  
Article
Projected Heat-Stress in Sheep and Cattle in Greece Under Future Climate Change Scenarios
by Dimitris K. Papanastasiou, Athanasios I. Gelasakis, Giorgos Papadopoulos, Dimitrios Melas, Kostas Douvis, Ioannis Faraslis, Stavros Keppas, Ioannis Stergiou, Anastasia Poupkou, Dimitris Voloudakis, Athena Progiou, John Kapsomenakis and Nikolaos Katsoulas
Agriculture 2025, 15(20), 2141; https://doi.org/10.3390/agriculture15202141 - 15 Oct 2025
Viewed by 253
Abstract
It is well established that exposure to heat-stress conditions significantly impacts the physiology, health, welfare, and productivity of both sheep and cattle. The aim of this study was to apply the Temperature Humidity Index (THI) in order to assess the impact of future [...] Read more.
It is well established that exposure to heat-stress conditions significantly impacts the physiology, health, welfare, and productivity of both sheep and cattle. The aim of this study was to apply the Temperature Humidity Index (THI) in order to assess the impact of future climate conditions on the thermal stress exposure of sheep and cattle in Greece. The Weather Research and Forecasting (WRF) model was used as a high-resolution regional climate model to simulate climate conditions for two decades in Greece at a 10 Km spatial resolution and a 1 h temporal resolution. The WRF model was applied to two emission scenarios, namely SSP2-4.5 (intermediate) and SSP5-8.5 (worst-case). Projections were made for the near-future decade (2046–2055), with the decade (2005–2014) serving as the reference period for comparative analysis. The data analysis indicated that under the SSP2-4.5 emission scenario, the mean temperature is projected to increase by 1.2–1.4 °C and 1.4–1.6 °C across 38% and 58% of the country’s territory, respectively. Increases higher than 1.6 °C are projected across 32% of the Greek territory under the SSP5-8.5 emission scenario. The mean THI (sheep) and mean THI (adj) (cattle) are projected to increase by 5–10% and by 4% across 74% and 82% of the Greek territory, respectively, when considering the SSP2-4.5 emission scenario. Slightly more severe mean heat-stress conditions were projected when considering the SSP5-8.5 emission scenario. The analysis of the hourly THI values showed that sheep and cattle are expected to experience heat-stress conditions during extended periods in the future, in which hot weather will prevail. Specifically, the number of severe/danger heat-stress hours is projected to double in the greater part of the country. To mitigate the adverse effects of climate-change-induced thermal stress on animal productivity, health, and welfare, the implementation of adaptation measures and best management practices is strongly recommended for sheep and cattle farmers. These measures encompass improvements in breeding strategies, livestock housing and microclimate management, nutritional interventions, and the adoption of precision livestock farming technologies. Given the outstanding economic, social, and environmental importance of sheep and cattle farming in Greece, effective adaptation to and mitigation of climate change impacts represent urgent priorities to ensure the long-term sustainability and resilience of the livestock sector. Full article
(This article belongs to the Special Issue The Threats Posed by Environmental Factors to Farm Animals)
Show Figures

Figure 1

17 pages, 2046 KB  
Article
Iron-Based Biochar for Efficient Persulfate Activation and Sulfamethoxazole Degradation
by Ying Lu, Chengdu Qi, Guilong Peng, Yi Gao and Ronglong Zhang
Int. J. Mol. Sci. 2025, 26(20), 9971; https://doi.org/10.3390/ijms26209971 - 14 Oct 2025
Viewed by 216
Abstract
In this study, we investigated the performance of iron-loaded biochar (Fe-BC) derived from mulberry branches in activating persulfate (PS) for the efficient degradation of sulfamethoxazole (SMX). The Fe-BC/PS system exhibited superior catalytic activity towards SMX degradation, achieving 97% removal within 60 min. The [...] Read more.
In this study, we investigated the performance of iron-loaded biochar (Fe-BC) derived from mulberry branches in activating persulfate (PS) for the efficient degradation of sulfamethoxazole (SMX). The Fe-BC/PS system exhibited superior catalytic activity towards SMX degradation, achieving 97% removal within 60 min. The degradation efficiency was found to be highly dependent on preparation conditions, including calcination temperature, the type of iron salt, and biomass feedstock. Reactive species such as hydroxyl radicals (OH), sulfate radicals (SO4•−), and iron (IV) (Fe(IV)) were identified as key contributors to SMX degradation, with Fe(IV) playing a dominant role. The influence of water quality parameters, such as inorganic ions, pH, and natural organic matter (NOM), on the degradation of SMX was also examined. Proposed degradation pathways revealed the stepwise oxidation of SMX into smaller intermediates, ultimately leading to mineralization. Our findings highlight the potential of Fe-BC/PS systems as a sustainable and effective approach for the remediation of sulfonamide antibiotics in aquatic environments. Full article
Show Figures

Figure 1

20 pages, 8789 KB  
Article
The Effect of Hydrogen Embrittlement on Fracture Toughness of Cryogenic Steels
by Junggoo Park, Gyubaek An, Jeongung Park, Daehee Seong and Wonjun Jo
Metals 2025, 15(10), 1139; https://doi.org/10.3390/met15101139 - 13 Oct 2025
Viewed by 356
Abstract
This study investigates the effect of hydrogen embrittlement on the fracture toughness of 9% Ni steel and STS 316L stainless steel under cryogenic conditions ranging from −80 °C to −253 °C. Hydrogen charging was performed using electrochemical methods, and hydrogen uptake was quantitatively [...] Read more.
This study investigates the effect of hydrogen embrittlement on the fracture toughness of 9% Ni steel and STS 316L stainless steel under cryogenic conditions ranging from −80 °C to −253 °C. Hydrogen charging was performed using electrochemical methods, and hydrogen uptake was quantitatively analyzed using thermal desorption spectroscopy (TDS). Fracture toughness was evaluated using crack tip opening displacement (CTOD) testing per ISO 12135, both without hydrogen (WO-H) and with hydrogen (W-H). The results showed a gradual decrease in CTOD values with decreasing temperature in both steels under hydrogen-free conditions, with ductile fracture maintained even at −253 °C. In contrast, hydrogen-charged specimens exhibited significant toughness degradation at intermediate subzero temperatures (−80 °C to −130 °C), particularly in 9% Ni steel due to its BCC crystal structure. However, at −160 °C and below, the effect of hydrogen embrittlement was suppressed mainly owing to the reduced hydrogen diffusivity. Scanning electron microscopy (SEM) analysis confirmed the transition from ductile to brittle fracture with decreasing temperature and hydrogen influences. At −253 °C, fully brittle fracture surfaces were observed in all specimens, confirming that at ultra-low temperatures, fracture behavior is dominated by temperature effects rather than hydrogen. These findings identify a practical temperature limit (approximately −160 °C) below which hydrogen embrittlement becomes negligible, providing critical insights for the design and application of structural materials in hydrogen cryogenic environments. Full article
Show Figures

Figure 1

18 pages, 5841 KB  
Article
Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism
by Tiantian Xu, Yanhui Li, Shuzhong Wang, Donghai Xu, Qian Zhang, Yabin Jin and Wenhan Song
Processes 2025, 13(10), 3249; https://doi.org/10.3390/pr13103249 - 13 Oct 2025
Viewed by 221
Abstract
This study conducted a systematic investigation of the degradation pathway and process optimization of strong acid cation exchange resins subjected to SCWO. Controlled experiments evaluated the effects of operating temperature, oxidant stoichiometry, initial organic concentration, and residence time. RSM was utilized to refine [...] Read more.
This study conducted a systematic investigation of the degradation pathway and process optimization of strong acid cation exchange resins subjected to SCWO. Controlled experiments evaluated the effects of operating temperature, oxidant stoichiometry, initial organic concentration, and residence time. RSM was utilized to refine the operating parameters, and a second-order regression model (R2 = 0.9951) was established to predict COD removal (RCOD), valid within experimental ranges: reaction temperature 400–500 °C, oxidant stoichiometry 80–150%, initial COD 10,000–100,000 mg·L−1, and residence time 1–10 min. COD-dependent NaOH addition could enhance degradation efficiency. The RCOD was sensitive to operating temperature, oxidant stoichiometry, and residence time. Under the optimized conditions of 472 °C, oxidant stoichiometry of 137%, initial COD of 77,216 mg·L−1, and residence time of 4.9 min with the addition of 1.74 wt% NaOH, the RCOD reached 99.92%, which was in close agreement with model predictions. GC-MS analysis of intermediates revealed that sulfonic groups dissociated early, followed by aromatic compounds, particularly phenol, undergoing ring-opening and oxidation to small carboxylic acids and aliphatic species, which were ultimately mineralized to CO2 and H2O. These findings provide mechanistic insight into resin decomposition and offer a scientific basis for the safe treatment of radioactive waste resins using SCWO. Full article
Show Figures

Figure 1

24 pages, 13489 KB  
Review
Review of Oxides Prepared by a Short Process Using Rare-Earth Chlorides
by Jing Wei, Xue Bian, Xinmiao Zhu, Hao Huang, Chunlin Ye, Shuchen Sun, Liqin Zhong and Ganfeng Tu
Materials 2025, 18(20), 4669; https://doi.org/10.3390/ma18204669 - 11 Oct 2025
Viewed by 283
Abstract
Direct thermal decomposition of rare-earth chlorides into rare-earth oxides (REOs) in a single step presents a short-process, wastewater-free, and environmentally friendly alternative to the conventional precipitation–calcination method, which produces large amounts of saline wastewater. While earlier reviews have primarily focused on summarizing reaction [...] Read more.
Direct thermal decomposition of rare-earth chlorides into rare-earth oxides (REOs) in a single step presents a short-process, wastewater-free, and environmentally friendly alternative to the conventional precipitation–calcination method, which produces large amounts of saline wastewater. While earlier reviews have primarily focused on summarizing reaction conditions and thermodynamic parameters, they have seldom discussed the critical variations in pyrolysis behavior across different rare-earth elements. This review highlights a novel classification of rare-earth chlorides into fixed-valence and variable-valence groups, revealing how their respective oxidation states govern thermodynamic stability, reaction pathways, and chlorine release behavior. Furthermore, a systematic comparison is provided on the effects of additives, temperature, and gas partial pressure on product purity, particle size, and microstructure, with particular attention to the mechanisms underlying oxychloride intermediate formation. Beyond fundamental reaction principles, this work uniquely evaluates the design and performance of existing pyrolysis reactors, outlining both opportunities and challenges in scaling up direct rare-earth chloride (REClx) pyrolysis for industrial REO production. By integrating mechanistic insights with reactor engineering considerations, this review offers advancements over previous descriptive summaries and proposes a strategic pathway toward sustainable rare-earth processing. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

18 pages, 3398 KB  
Article
Mechanical Properties of Frozen Loess Subject to Directional Shear Effects from Multiple Principal Stress Directions
by Jianhong Fang, Chenwei Wang, Binlong Zhang and Qingzhi Wang
Eng 2025, 6(10), 271; https://doi.org/10.3390/eng6100271 - 10 Oct 2025
Viewed by 251
Abstract
Frozen loess is extensively distributed across seasonally frozen regions, where its mechanical behavior plays a critical role in the stability of engineering structures such as foundations, tunnels, and slopes. While the temperature-dependent strength characteristics of frozen soils have been widely investigated under conventional [...] Read more.
Frozen loess is extensively distributed across seasonally frozen regions, where its mechanical behavior plays a critical role in the stability of engineering structures such as foundations, tunnels, and slopes. While the temperature-dependent strength characteristics of frozen soils have been widely investigated under conventional triaxial conditions, their response to variations in principal stress direction and intermediate principal stress under complex loading paths remains poorly understood. This study addresses this gap through a series of directional shear tests on frozen loess, examining the effects of principal stress direction angle (α) and intermediate principal stress coefficient (b) at different temperatures. The results demonstrate that lower negative temperatures (−5 °C, −10 °C, and −15 °C) markedly enhance both axial and shear strength compared with normal temperature (20 °C). Increasing α leads to a progressive reduction in axial strength, highlighting the strong influence of stress orientation on deformation characteristics. Higher values of b also reduce axial strength, but their impact on shear strength is limited. Overall, the influence of α and temperature on the strength of frozen loess is considerably more pronounced than that of b. These findings provide new insights into the mechanical behavior of frozen loess under non-traditional stress paths, offering practical implications for the design, safety evaluation, and stability control of geotechnical structures in cold regions. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

15 pages, 5595 KB  
Article
Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate
by Yi Wei, Jie Xu, Jie Jiang, Tairong Lu and Zuohua Liu
Materials 2025, 18(19), 4589; https://doi.org/10.3390/ma18194589 - 2 Oct 2025
Viewed by 359
Abstract
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like [...] Read more.
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like morphology owing to limitations in solid-state mass transfer. Researchers have employed various mineralizers to regulate the morphology of α-Al2O3 powders; however, the preparation of micron-sized highly spherical α-Al2O3 powders via solid-state calcination is still a great challenge. In this work, micron-sized near-spherical α-Al2O3 powders were synthesized through high-temperature calcination using hydratable alumina (ρ-Al2O3) as precursor with water-soluble mineralizer ammonium fluoroborate (NH4BF4). ρ-Al2O3 can undergo a hydration reaction with water to form AlO(OH) and Al(OH)3 intermediates, serving as an excellent precursor. With the addition of 0.1 wt% NH4BF4, the product exhibits an optimal near-spherical morphology. Excessive addition (>0.2 wt%), however, significantly promotes the transformation of α-Al2O3 from a near-spherical to a plate-like structure. Further studies reveal that the introduction of NH4BF4 not only modulates the crystal morphology but also effectively reduces the content of sodium impurities in the powder through a high-temperature volatilization mechanism, thereby enhancing the thermal conductivity of the powder. It is shown that the thermal conductivity of the micron-sized α-Al2O3/ epoxy resin composites reaches 1.329 ± 0.009 W/(m·K), which is 7.4 times that of pure epoxy resin. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop