Steam Efficiently Enhancing CO2 Direct Mineralization Steel Slag Towards Actual Production: Phase Evolution, Microstructure, and Mechanisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Materials Characterization and Analysis
2.3. Program for Gas–Solid Direct Carbonation of Steel Slag
2.4. Carbonization Efficiency Measurement
3. Results and Discussion
3.1. Effect of Different Influencing Factors on Gas–Solid Direct Carbonation Ability of Steel Slag
3.2. Effect of Steam on Gas–Solid Direct Carbonation Performance of Steel Slag
3.3. Carbonation Mechanism by Steam
4. Conclusions
- Under the condition of CO2 atmosphere, the carbonation effect of steel slag exhibits optimal performance at 550 °C with a particle size of 75 μm and a CO2 flow rate of 70 mL/min. The amount of CaCO3 produced reaches 10.3 g/100 g of steel slag. After direct gas–solid carbonation, the f-CaO content in steel slag decreases to 1.57%, indicating that approximately 76.29% of f-CaO in steel slag is mineralized. When the CO2 concentration is reduced to 20%, the carbon fixation remains at 7.60 g CaCO3/100 g steel slag, equivalent to 73.79% of that obtained with pure CO2.
- Under a steam/CO2 atmosphere, when the addition amount of steam is 15%, the carbonation of steel slag reaches its maximum efficiency. The amount of CaCO3 produced reaches 12.02 g/100 g steel slag, which is 16.7% higher than that achieved in the pure CO2 atmosphere. After mineralization, the f-CaO content decreases to 0.61%, corresponding to a 91.73% mineralization efficiency. Overall, the f-CaO conversion increases by 20.24% compared with carbonation without steam.
- The addition of steam significantly promotes the activation of f-CaO and leads to the formation of additional micro/mesoporous structures. The average pore size decreases from 32 nm to 17 nm, while the pore volume increases from 0.0141 cm3·g−1 to 0.0185 cm3·g−1, representing an increase of 31%, indicating a transition of the pore structure from “few in number and large in scale” to “many in number and medium in scale”. The presence of steam enhances both the carbonation rate and CO2 adsorption capacity by generating the Ca(OH)2 intermediate.
- The mechanism of direct mineralization of steel slag enhanced by steam was expounded. Steam enters the open pores of the slag and reacts with f-CaO to generate Ca(OH)2, leading to volume expansion and consequently causing physical crushing and refinement of steel slag particles. The volume expansion and pulverization caused the f-CaO to be exposed to the surface, facilitating an increased contact between the f-CaO and CO2. Meanwhile, the newly generated Ca(OH)2 further reacts with CO2 to produce CaCO3, thereby accelerating the entire carbonation reaction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Wu, D.; Hu, W.; Li, J.; Zhang, Z.; Yang, F. Coupling Mineralization and Product Characteristics of Steel Slag and Carbon Dioxide. Minerals 2023, 13, 795. [Google Scholar] [CrossRef]
- Wang, Z.; Sohn, I. A Review on Reclamation and Reutilization of Ironmaking and Steelmaking Slags. J. Sustain. Metall. 2019, 5, 127–140. [Google Scholar] [CrossRef]
- Tajabadipour, M.; Esmaeili, M.; Askari, A. Experimental evaluation of cyclic performance of steel slag and grids of truck scrap tire as a novel reinforced ballast material. Constr. Build. Mater. 2024, 411, 134472. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, C.; Yu, H.; Qian, G.; Zheng, X.; Zhou, H. Research on the Properties of Steel Slag with Different Preparation Processes. Materials 2024, 17, 1555. [Google Scholar] [CrossRef] [PubMed]
- Laís, C.; Carvalho, V.; Ferreira, L.; Bruno, E.; Ricardo, A. Utilizing steel slag to prolong the durability of reinforced concrete: Corrosion resistance mechanisms. J. Build. Eng. 2024, 98, 111505. [Google Scholar] [CrossRef]
- Cai, X.; Cao, Z.; Sun, J.; Wang, H.; Wu, S. Influence of Steel Slag on Properties of Cement-Based Materials: A Review. Buildings 2024, 14, 2985. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.; Shi, C.; Pan, S. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Pan, S.; Chen, Y.; Fan, L.; Kim, H.; Cao, X.; Ling, T. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nat. Sustain. 2020, 3, 399–405. [Google Scholar] [CrossRef]
- Zhang, T.; Qiu, G.; Wang, H.; Guo, M.; Cheng, F.; Zhang, M. In-Suit Industrial Tests of the Highly Efficient Recovery of Waste Heat and Reutilization of the Hot Steel Slag. ACS Sustain. Chem. Eng. 2021, 9, 3955–3962. [Google Scholar] [CrossRef]
- He, Y.; Jia, S.; Yi, H.; Tang, X.; Yu, Q.; Gao, F. Utilization of steel slag in air pollution and greenhouse gas emission reduction-application, mechanism and challenge: A review. J. Environ. Chem. Eng. 2024, 12, 114090. [Google Scholar] [CrossRef]
- Liu, W.; Teng, L.; Rohani, S.; Qin, Z.; Zhao, B.; Xu, C. CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Ragipani, R.; Bhattacharya, S.; Suresh, A. Kinetics of steel slag dissolution: From experiments to modelling. Proc. R. Soc. A 2019, 475, 20180830. [Google Scholar] [CrossRef]
- Seo, S.; Kwon, C.; Kim, S.; Lee, C. Experiment and kinetic modeling for leaching of blast furnace slag using ligand. J. CO2 Util. 2018, 27, 188–195. [Google Scholar] [CrossRef]
- Eloneva, S.; Said, A.; Fogelholm, C.; Zevenhoven, R. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl. Energy 2012, 90, 329–334. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Jeong, S.; Youn, M.; Nguyen, D.; Chang, S. Calcium extraction from steelmaking slag and production of precipitated calcium carbonate from calcium oxide for carbon dioxide fixation. J. Ind. Eng. Chem. 2017, 53, 233–240. [Google Scholar] [CrossRef]
- Jo, H.; Lee, M.; Park, J.; Jung, K. Preparation of high-purity nano-CaCO3 from steel slag. Energy 2016, 120, 884–894. [Google Scholar] [CrossRef]
- Rushendra, T.; Palanivelu, K.; Ramachandran, A. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environ. Sci. Pollut. Res. Int. 2016, 23, 7349–7359. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Ling, D.; Sarvaramini, A.; Guo, M.; Elsen, J.; Larachi, F. Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. Chem. Eng. J. 2012, 203, 239–250. [Google Scholar] [CrossRef]
- Biava, G.; Depero, E.; Bontempi, E. Accelerated Carbonation of Steel Slag and Their Valorisation in Cement Products: A Review. Span. J. Soil Sci. 2024, 14, 12908. [Google Scholar] [CrossRef]
- Lei, X.; Yu, H.; Feng, P.; Ling, T. Flue gas carbonation curing of steel slag blocks: Effects of residual heat and water vapor. Constr. Build. Mater. 2023, 384, 131330. [Google Scholar] [CrossRef]
- Dobner, S.; Sterns, L.; Graff, R.; Squires, A. Cyclic Calcination and Recarbonation of Calcined Dolomite. Ind. Eng. Chem. Process Des. Dev. 1997, 16, 557–565. [Google Scholar] [CrossRef]
- Tamás, K.; Gábor, M.; Sanjay, K.; Kristály, F. Carbon-dioxide sequestration by mechanical activation of Linz-Donawitz steel slag; the effect of water on CO2 capture. Fuel 2023, 352, 128951. [Google Scholar] [CrossRef]
- Symonds, R.; Lu, D.; Hughes, R.; Anthony, E.; Macchi, A. CO2 Capture from Simulated Syngas via Cyclic Carbonation/Calcination for a Naturally Occurring Limestone: Pilot-Plant Testing. Ind. Eng. Chem. Res. 2009, 48, 8431–8440. [Google Scholar] [CrossRef]
- Wang, C.; Jia, L.; Tan, Y.; Anthony, E. Carbonation of fly ash in oxy-fuel CFB combustion. Fuel 2008, 87, 1108–1114. [Google Scholar] [CrossRef]
- Nikulshina, V.; Gálvez, M.; Steinfeld, A. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle. Chem. Eng. J. 2007, 129, 75–83. [Google Scholar] [CrossRef]
- GB/T 38216.3-2023; Steel slag—Determination of f-Cao—EDTA Titration and Thermogravimetric Analysis. China Iron and Steel Industry Association: Beijing, China, 2023.
- DiGiovanni, C.; Hisseine, A.-O.; Awolayo, N.-A. Carbon dioxide sequestration through steel slag carbonation: Review of mechanisms, process parameters, and cleaner upcycling pathways. J. CO2 Util. 2024, 81, 102736. [Google Scholar] [CrossRef]
- Lackner, K.; Wendt, C.; Butt, D.; Joyce, E.-L., Jr.; Sharp, D. Carbon dioxide disposal in carbonate minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Zevenhoven, R.; Kohlmann, J.; Mukherjee, A. Direct dry mineral carbonation for CO2 emissions reduction in Finland. In Proceedings of the 27th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, USA, 4–7 March 2002. [Google Scholar]
- Wei, X.; Ni, W.; Wang, X.; Li, K. Current Research of the Carbonization Technology of Steel Slag. Conserv. Util. Miner. Resour. 2019, 39, 99–104. [Google Scholar] [CrossRef]
- Fan, Y.; Liang, W.; Hu, X. The Direct Carbonation Behavior of Steel Slag with CO2-Containing Water Vapor. Metals 2025, 15, 237. [Google Scholar] [CrossRef]
- Liu, W.; Su, S.; Xu, K.; Chen, Q.; Xu, J.; Sun, Z.; Wang, Y.; Hu, S.; Wang, X.; Xue, Y.; et al. CO2 sequestration by direct gas–solid carbonation of fly ash with steam addition. J. Clean. Prod. 2018, 178, 98–107. [Google Scholar] [CrossRef]
- Diao, J. Experimental Study of Using Carbon Dioxide to Digesting Free calcium Oxide of Steel Slag. Master’s Thesis, University of Science and Technology Liaoning, Anshan, China, 2015. [Google Scholar]
- Peng, B. Modification and Its Physicochemical Property of Molten Steel Slag. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2016. [Google Scholar]
- Zhang, Q.; Feng, P.; Shen, X.; Cai, Y.; Zhen, H.; Liu, Z. Comparative analysis of carbonation strengthening mechanisms in full solid waste materials: Steel slag vs. carbide slag. Cem. Concr. Compos. 2025, 157, 105927. [Google Scholar] [CrossRef]
- Long, W.; Zhu, C.; Zhang, Y. Elucidating hardening mechanism of carbonatable binders prepared with steel slag based on distribution of microhardness. Constr. Build. Mater. 2024, 424, 135895. [Google Scholar] [CrossRef]
- Long, W.; Zhao, L.; Zhang, Y. Strengthening effect of mechanical vibration on the carbonation properties of steel slag compact. Constr. Build. Mater. 2024, 443, 137741. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, F.; Song, Q.; Deng, Y.; Ye, W. A Review on the Carbonation of Steel Slag: Properties, Mechanism, and Application. Materials 2024, 17, 2066. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Wang, D.; Fang, Y. Effects of mineralogical changes in BOFS during carbonation on pH and Ca and Si leaching. Constr. Build. Mater. 2018, 192, 584–592. [Google Scholar] [CrossRef]
- Mo, L.; Lin, S.; Meng, X.; Qu, L.; Chang, W.; Xiao, Y. Research on volume expansion characteristics of steel slag and simulation of bulging crack. China J. Highw. Transp. 2021, 34, 180–189. [Google Scholar] [CrossRef]
Components | CaO | Fe2O3 | SiO2 | MgO | Al2O3 | MnO | P2O5 | TiO2 | Cr2O3 | V2O5 | SO3 | Else | f-CaO * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 42.10 | 26.30 | 10.91 | 6.86 | 5.25 | 4.07 | 2.26 | 0.82 | 0.42 | 0.27 | 0.26 | 0.48 | 7.34 |
Raw Material | Method | Carbonation Parameter | Carbonation Effect | Ref. |
---|---|---|---|---|
steel slag | direct gas–solid carbonation | H2O = 20 mL/min; CO2 40 mL/min; t = 30 min; particle size = 75 μm | calcium carbonate production = 1.38% | [31] |
steel slag | direct gas–solid carbonation | T = 60 °C; L/S = 30:1; t = 10 h | carbonation efficiency = 58.64% | [32] |
steel slag | direct gas–solid carbonation | T = 70 °C; H2O = 20 mL/min; CO2 = 80 mL/min | f-CaO residue = 0.91%; conversion rate = 54.95% | [33] |
steel slag | direct gas–solid carbonation | composite gas of CO2 and water vapor | f-CaO residue = 0.85% | [34] |
steel slag | direct gas–solid carbonation | T = 550 °C; H2O = 15 mL/min; CO2 = 85 mL/min; t = 2 h; particle size = 75 μm | CaCO3 fixation capacity = 12.02%; f-CaO residue = 0.61%; conversion rate = 91.73% | This work |
Chemical Reaction Equation | Variation in Standard Gibbs Free Energy of Reaction (kJ/mol) |
---|---|
CaO + CO2 = CaCO3 (3) | |
CaO + H2O = Ca(OH)2 (4) | |
Ca(OH)2 + CO2 = CaCO3+H2O (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yue, C.; Lu, G.; Huo, X.; Yi, G.; Li, H.; Guo, M.; Zhang, M. Steam Efficiently Enhancing CO2 Direct Mineralization Steel Slag Towards Actual Production: Phase Evolution, Microstructure, and Mechanisms. Materials 2025, 18, 4786. https://doi.org/10.3390/ma18204786
Wang X, Yue C, Lu G, Huo X, Yi G, Li H, Guo M, Zhang M. Steam Efficiently Enhancing CO2 Direct Mineralization Steel Slag Towards Actual Production: Phase Evolution, Microstructure, and Mechanisms. Materials. 2025; 18(20):4786. https://doi.org/10.3390/ma18204786
Chicago/Turabian StyleWang, Xiaoqian, Changsheng Yue, Guanghua Lu, Xiangtao Huo, Guilan Yi, Haokun Li, Min Guo, and Mei Zhang. 2025. "Steam Efficiently Enhancing CO2 Direct Mineralization Steel Slag Towards Actual Production: Phase Evolution, Microstructure, and Mechanisms" Materials 18, no. 20: 4786. https://doi.org/10.3390/ma18204786
APA StyleWang, X., Yue, C., Lu, G., Huo, X., Yi, G., Li, H., Guo, M., & Zhang, M. (2025). Steam Efficiently Enhancing CO2 Direct Mineralization Steel Slag Towards Actual Production: Phase Evolution, Microstructure, and Mechanisms. Materials, 18(20), 4786. https://doi.org/10.3390/ma18204786