Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = interlaminar failure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4697 KiB  
Article
The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications
by Mohamad Alsaadi, Tomas Flanagan, Daniel P. Fitzpatrick and Declan M. Devine
Sustainability 2025, 17(15), 6967; https://doi.org/10.3390/su17156967 (registering DOI) - 31 Jul 2025
Abstract
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) [...] Read more.
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) of a semi-unidirectional non-crimp basalt fibre (BF)-reinforced acrylic matrix and epoxy matrix composites was investigated. Optical and scanning electron microscopes were used to describe the fracture and interfacial failure mechanisms. The results show that the BF/Elium composite exhibited higher fracture toughness properties compared to the BF/Epoxy composite. The results of the mode I and mode II interlaminar fracture toughness values for the BF/Elium composite were 1280 J/m2 and 2100 J/m2, which are 14% and 56% higher, respectively, than those of the BF/Epoxy composite. The result values for both composites were normalised with respect to the density of each composite laminate. The saturated moisture content and diffusion coefficient values of seawater-aged samples at 45 °C and room temperature for the BF/Elium and BF/Epoxy composites were analysed. Both composites exhibited signs of polymer matrix decomposition and fibre surface degradation under the influence of seawater hydrothermal ageing, resulting in a reduction in the mode II interlaminar fracture toughness values. Enhancement was observed in mode I fracture toughness under hydrothermal ageing, particularly for the BF/Epoxy composite, due to matrix plasticisation and fibre bridging. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

18 pages, 3624 KiB  
Article
Repeated Impact Damage Behavior and Damage Tolerance of Bio-Inspired Helical-Structured Glass Fiber Resin Matrix Composites
by Liang He, Zhaoyue Yao, Lanlan Jiang, Zaoyang Guo and Qihui Lyu
Polymers 2025, 17(13), 1720; https://doi.org/10.3390/polym17131720 - 20 Jun 2025
Viewed by 363
Abstract
This study proposes a bionic helical configuration design concept, focusing on glass-fiber-reinforced polymer matrix composites. Through a combination of experimental and numerical simulation methods, it systematically investigates the resistance to multiple impacts and damage tolerance. The research designs and fabricates two types of [...] Read more.
This study proposes a bionic helical configuration design concept, focusing on glass-fiber-reinforced polymer matrix composites. Through a combination of experimental and numerical simulation methods, it systematically investigates the resistance to multiple impacts and damage tolerance. The research designs and fabricates two types of bionic laminates: a cross-helical and a symmetric-helical structures. By conducting repeated impact experiments at 5 J of energy for 1, 5, 10, and 15 impact times and employing advanced characterization techniques, such as ultrasonic C-scan and X-ray CT, the study reveals the mechanisms of interlaminar damage propagation and failure characteristics. Based on experimental findings, a finite element model encompassing the entire impact process and post-impact compression behavior is established. Utilizing this model, three optimized novel bionic configurations are further developed, providing new insights and theoretical support for the structural design of high-performance impact-resistant polymer matrix composites. Full article
Show Figures

Figure 1

19 pages, 10561 KiB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 1 | Viewed by 616
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

17 pages, 3502 KiB  
Article
Overcoming Low-Polarity Limitations in Polyphenylene Oxide Electrospinning: Chemical Functionalization and Polymer Hybridization for Interlaminar Toughening of Carbon Fiber Composites
by Yuan Huang, Yi Wei, Canyi Huang, Yiping Qiu, Bohong Gu and Bo Yang
Polymers 2025, 17(11), 1480; https://doi.org/10.3390/polym17111480 - 27 May 2025
Viewed by 513
Abstract
This study investigates the optimization of polyphenylene oxide (PPO) electrospinning for interlaminar toughening in composites, using sulfonation modification and physical blending with polylactic acid (PLA) and polystyrene (PS). Both strategies showed excellent electrospinning performance, significantly reducing fiber diameter (PPO: 12.1 ± 5.8 μm; [...] Read more.
This study investigates the optimization of polyphenylene oxide (PPO) electrospinning for interlaminar toughening in composites, using sulfonation modification and physical blending with polylactic acid (PLA) and polystyrene (PS). Both strategies showed excellent electrospinning performance, significantly reducing fiber diameter (PPO: 12.1 ± 5.8 μm; sulfonated PPO: 524 ± 42 nm; PPO-PLA: 4.73 ± 0.94 μm; PPO-PS: 3.43 ± 0.34 μm). In addition, the PPO-PS fibers were uniform, while PPO-PLA exhibited a mixture of fine and coarse fibers due to phase separation. Interlaminar fracture toughness testing showed that PPO-PS offered the greatest toughening, with GICini and GICpre increasing by 223% and 232%, respectively, compared to the values of the untoughened sample, and by 65% and 61.5% compared to those of the PPO sample. GIIC of the PPO-PS sample was 196% greater than that of the untoughened sample and 30% higher than that of the PPO sample. Scanning electron microscope (SEM) analysis of fracture morphology revealed that the high-toughness system dissipated energy through fiber bridging, plastic deformation, and multi-scale crack deflection, while the low-toughness samples failed due to interface debonding or cohesive failure. This work demonstrates that PPO-PS veils enhance interlaminar toughness through interface reinforcement and multiple toughening mechanisms, providing an effective approach for high-performance composites. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials, 5th Edition)
Show Figures

Figure 1

15 pages, 6088 KiB  
Article
Study on the Mechanical Properties of Carbon Fabric/Polyetherketoneketone Composites Under Different Environmental Conditions
by Xiangyu Xu, Baoyan Zhang, Fenghui Shi, Kai Liu, Gongqiu Peng and Junpeng Gao
Polymers 2025, 17(9), 1142; https://doi.org/10.3390/polym17091142 - 22 Apr 2025
Viewed by 707
Abstract
Carbon fabric reinforced polyetherketoneketone (CFF/PEKK) composites have garnered significant attention from researchers due to their superior properties and have been successfully applied in various engineering fields. Environmental conditions are known to directly influence the mechanical properties and service life of composites; however, limited [...] Read more.
Carbon fabric reinforced polyetherketoneketone (CFF/PEKK) composites have garnered significant attention from researchers due to their superior properties and have been successfully applied in various engineering fields. Environmental conditions are known to directly influence the mechanical properties and service life of composites; however, limited literature exists on the mechanical behavior of CFF/PEKK composites under different environmental conditions. This study elucidates the correlation between the bending and shear behaviors of CFF/PEKK composites and environmental factors, thereby offering robust data support for engineering applications. In this work, CFF/PEKK composite laminates with a fiber volume fraction of 55 vol% were fabricated and subjected to saturated moisture absorption treatments at 70 °C. The moisture absorption characteristics of the material were investigated. The bending and shear properties of CFF/PEKK composites were characterized under three environmental conditions: −55 °C dry state (CTD), room temperature dry state (RTD), and 70 °C wet state (ETW). Failure modes and mechanisms of composite specimens were also analyzed. The equilibrium moisture absorption rate of CFF/PEKK composites is approximately 0.27%. Hygrothermal aging resulted in noticeable fiber pull-out in mechanical specimens, indicating damage to the interfacial performance of the composites. Furthermore, no cracks or delamination were observed. Results indicate that in the CTD condition, the bending strength and shear strength of CFF/PEKK composites are higher compared to those in the RTD condition, while the modulus remains relatively unaffected. In the ETW condition, both bending and shear properties exhibit a significant decline, with the most pronounced reduction observed in interlaminar shear strength. No significant differences in failure modes were noted across different environmental conditions. Full article
Show Figures

Figure 1

15 pages, 8576 KiB  
Article
A Study on the Failure Behavior and Force Transmission of Composite Skin-Stringer Structures Under a Compressive Load
by Guoyang Zhao, Jian Shi, Wei Xu, Nan Sun, Jianjiang Zeng, Guang Yang, Kun Song and Jie Zheng
Materials 2025, 18(6), 1380; https://doi.org/10.3390/ma18061380 - 20 Mar 2025
Cited by 1 | Viewed by 447
Abstract
Carbon fiber-reinforced composite stringers, which support aircraft skins in resisting tensile, compressive, and shear loads, are widely used in aircraft structures. These composite structures play a crucial role in enhancing the performance and safety of the structural integration of aircrafts. To better understand [...] Read more.
Carbon fiber-reinforced composite stringers, which support aircraft skins in resisting tensile, compressive, and shear loads, are widely used in aircraft structures. These composite structures play a crucial role in enhancing the performance and safety of the structural integration of aircrafts. To better understand the load-bearing capacity of composite stringer structures, this study developed a novel model to study the complex failure and load transmission behavior of T800/3900S-2B fiber-reinforced composite skin-stringer structures under compressive loading. Compression strength tests were conducted on a composite stringer/skin structure, and a three-dimensional FEM was developed using Abaqus/Standard 2022. The model incorporated the modified 3D Hashin initiation criteria and Tserpes degradation law through a UMAT subroutine, which can effectively capture the in-plane ply failure and interlaminar damage. The results revealed a high degree of similarity between the load–displacement curves and failure modes (i.e., matrix compressive cracking, fiber compressive failure, and fiber–matrix shear-out failure) obtained from the simulations and those from the experiments. This study provides an efficient and accurate model to simulate the failure and load transfer of composite skin-stringer structures, offering significant advancements in understanding and predicting the behavior of these critical components. Full article
Show Figures

Figure 1

12 pages, 2641 KiB  
Article
Advanced Prediction and Analysis of Delamination Failure in Graphite-Reinforced Epoxy Composites Using VCCT-Based Finite Element Modelling Techniques
by Ahmed F. Mohamed, Mohammed Y. Abdellah, Mohamed K. Hassan and Ahmed H. Backar
Polymers 2025, 17(6), 771; https://doi.org/10.3390/polym17060771 - 14 Mar 2025
Cited by 1 | Viewed by 544
Abstract
The applications of graphite-reinforced composite laminates have gained significant importance since the last century and remain a highly attractive field due to their widespread and versatile applications. Among the various failure modes, delamination—defined as the separation of layers within the composite structure—stands out [...] Read more.
The applications of graphite-reinforced composite laminates have gained significant importance since the last century and remain a highly attractive field due to their widespread and versatile applications. Among the various failure modes, delamination—defined as the separation of layers within the composite structure—stands out as the most common and critical type of failure in these materials. In this study, the mode I interlaminar fracture energy was predicted using the virtual crack closure technique (VCCT) integrated with a finite element model (FEM), applied to a double cantilever beam (DCB) specimen. Additionally, a straightforward analytical model was developed to calculate the critical fracture energy in mode I. The analytical model used the material strength and stiffness. The results demonstrated strong agreement with experimental data, with a margin of error as low as 5%, highlighting the accuracy and reliability of the proposed methods. Full article
Show Figures

Figure 1

15 pages, 13403 KiB  
Article
Patch-Based Recycled Composites: Experimental Investigation and Modeling Techniques on Four-Point Bending and Curved Beam Traction Tests
by Roberto Palazzetti, Lorenzo Calervo, Alessandro Milite and Paolo Bettini
Polymers 2025, 17(6), 757; https://doi.org/10.3390/polym17060757 - 13 Mar 2025
Viewed by 1438
Abstract
Composite materials have experienced a significant increase in demand over the past five decades. This growing usage has led to a considerable production of waste, particularly from prepreg scraps, which can account for up to 35% of the purchased material. This paper explores [...] Read more.
Composite materials have experienced a significant increase in demand over the past five decades. This growing usage has led to a considerable production of waste, particularly from prepreg scraps, which can account for up to 35% of the purchased material. This paper explores the recycling of prepreg scraps by cutting them into smaller patches and reassembling them into new sheets. The study follows a dual approach: mechanical testing on two different types of samples is presented, along with numerical modeling strategies designed to capture not only the mechanical behavior of the new recycled material but also the failure modes of the samples. The experimental results demonstrate the feasibility of the proposed technique, with samples made from prepreg scraps retaining 85%, 57%, and 78% of the original flexural modulus, strength, and interlaminar strength, respectively. The numerical models not only fit closely to the experimental data but also successfully predict the failure modes of the new material under the two different loading conditions. The primary highlights of this work lie in (i) its innovative approach to recycling prepreg scraps, which is capable of successfully recovering material otherwise sent to landfill; (ii) an ordinated and easy-to-automate recovery process; and (iii) in the modeling strategies of the new material. The study eventually proposes the development of an “equivalent lamina” made of scrap material that can be used in standard lamination processes to manufacture components with load-bearing capabilities. Full article
Show Figures

Graphical abstract

30 pages, 12568 KiB  
Article
Numerical Modelling of Hybrid Polymer Composite Frame for Selected Construction Parts and Experimental Validation of Mechanical Properties
by Tegginamath Akshat, Michal Petru and Rajesh Kumar Mishra
Polymers 2025, 17(2), 168; https://doi.org/10.3390/polym17020168 - 11 Jan 2025
Viewed by 1202
Abstract
This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites [...] Read more.
This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized. The advantage of which would be the presence of similar mechanical properties as those of composites made from synthetic fibers along with a reduction in the overall weight of components, leading to much more eco-friendly vehicles. Finite element simulations (FEM) of mechanical properties were performed using ANSYS. The FEM simulations and analysis were performed using standards as required. Subsequently, actual beams/frames with a defined geometry were fabricated for applications in automotive body construction. The tensile performance of such frames was also simulated using ANSYS-based models and was experimentally verified. A correlation with the results of the FEM simulations of mechanical properties was established. The maximum tensile strength of 415 MPa was found for sample 1: G-E (glass–epoxy composite) and the minimum strength of 146 MPa was found for sample 2: F-G-E (G-4) (flax–glass–epoxy composite). The trends were similar, as obtained by simulation using ANSYS. A comparison of the results showed the accuracy of the numerical simulation and experimental specimens with a maximum error of about 8.05%. The experimental study of the tensile properties of polymer matrix composites was supplemented with interlaminar shear strength, and a high accuracy was found. Further, the maximum interlaminar shear strength (ILSS) of 18.5 MPa was observed for sample 1: G-E and the minimum ILSS of 17.0 MPa was observed for sample 2: F-G-E (G-4). The internal fractures were analyzed using a computer tomography analyzer (CTAn). Sample 2: F-G-E (G-4) showed significant interlaminar cracking, while sample 1: G-E showed fiber failure through the cross section rather than interlaminar failure. The results indicate a practical solution of a polymer composite frame as a replacement for existing heavier components in a car, thus helping towards weight reduction and fuel efficiency. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

24 pages, 5796 KiB  
Article
Dynamic In-Plane Compression and Fracture Growth in a Quasi-Isotropic Carbon-Fiber-Reinforced Polymer Composite
by Yogesh Kumar, Mohammad Rezasefat, Zahra Zaiemyekeh, Haoyang Li, Patricia Dolez and James Hogan
Materials 2024, 17(24), 6296; https://doi.org/10.3390/ma17246296 - 23 Dec 2024
Cited by 1 | Viewed by 1128
Abstract
This study presents an experimental investigation of the quasi-static and dynamic behavior of a quasi-isotropic carbon-fiber-reinforced composite subjected to in-plane compressive loading. The experiments were performed at strain rates ranging from 4×105 to ∼1200 s1 to quantifythe [...] Read more.
This study presents an experimental investigation of the quasi-static and dynamic behavior of a quasi-isotropic carbon-fiber-reinforced composite subjected to in-plane compressive loading. The experiments were performed at strain rates ranging from 4×105 to ∼1200 s1 to quantifythe strain-rate-dependent response, failure propagation, and damage morphology using advanced camera systems. Fiber bridging, kink band formation, dominance of interlaminar failure, and inter-fiber failure fracture planes are evidenced through post-mortem analysis. The evolution of the in-plane compressive strength, failure strength, and stiffness are quantified across the strain rates considered in this study. For an in-depth understanding of the failure propagation, crack speeds were determined in two subsets; (i) primary and secondary cracking, and (ii) the interfaces participating in the crack propagation. Lastly, a modified Zhu–Wang–Tang viscoelastic constitutive model was used to characterize the dynamic stress-strain and compressive behavior of the quasi-isotropic composite under in-plane compression. Full article
Show Figures

Figure 1

20 pages, 1508 KiB  
Article
Battery Housing for Electric Vehicles, a Durability Assessment Review
by Moises Jimenez-Martinez, José Luis Valencia-Sánchez, Sergio G. Torres-Cedillo and Jacinto Cortés-Pérez
Designs 2024, 8(6), 113; https://doi.org/10.3390/designs8060113 - 31 Oct 2024
Cited by 3 | Viewed by 2710
Abstract
Recent research emphasizes the growing use of advanced composite materials in modern transportation, highlighting their superior weight-to-strength ratio. These materials are increasingly replacing steel and aluminium in housings to enhance sustainability, improve efficiency, and reduce emissions. Considering these advancements, this article reviews recent [...] Read more.
Recent research emphasizes the growing use of advanced composite materials in modern transportation, highlighting their superior weight-to-strength ratio. These materials are increasingly replacing steel and aluminium in housings to enhance sustainability, improve efficiency, and reduce emissions. Considering these advancements, this article reviews recent studies on composite materials, focusing on fatigue life assessment models. These models, which include performance degradation, progressive damage, and S–N curve models, are essential for ensuring the reliability of composite materials. It is noted that the fatigue damage process in composite materials is complex, as failure can occur in the matrix, reinforcement, or transitions such as interlaminar and intralaminar delamination. Additionally, the article critically examines the integration of artificial intelligence techniques for predicting the fatigue life of composite materials, offering a comprehensive analysis of methods used to indicate the mechanical properties of battery shell composites. Incorporating neural networks into fatigue life analysis significantly enhances prediction reliability. However, the model’s accuracy depends heavily on the comprehensive data it includes, including material properties, loading conditions, and manufacturing processes, which help to reduce variability and ensure the precision of the predictions. This research underscores the importance of continued advancements and their significant scientific contributions to transportation sustainability, especially in the context of emerging artificial intelligence technologies. Full article
(This article belongs to the Special Issue Design and Manufacture of Electric Vehicles)
Show Figures

Figure 1

15 pages, 6728 KiB  
Article
Flexural Analysis of Additively Manufactured Continuous Fiber-Reinforced Honeycomb Sandwich Structures
by Rafael Guerra Silva, Esteban Gonzalez, Andres Inostroza and Gustavo Morales Pavez
J. Manuf. Mater. Process. 2024, 8(5), 226; https://doi.org/10.3390/jmmp8050226 - 10 Oct 2024
Cited by 1 | Viewed by 1725
Abstract
This study explores the flexural behavior of continuous fiber-reinforced composite sandwich structures built entirely using material extrusion additive manufacturing. The continuous fiber additive manufacturing system used in this study works sequentially, thus enabling the addition of fiber reinforcement just in the face sheets, [...] Read more.
This study explores the flexural behavior of continuous fiber-reinforced composite sandwich structures built entirely using material extrusion additive manufacturing. The continuous fiber additive manufacturing system used in this study works sequentially, thus enabling the addition of fiber reinforcement just in the face sheets, where it is most effective. Three-point bending tests were carried out on sandwich panel specimens built using thermoplastic reinforced with continuous glass fiber to quantify the effect of fiber reinforcement and infill density in the flexural properties and failure mode. Sandwich structures containing continuous fiber reinforcement had higher flexural strength and rigidity than unreinforced sandwiches. On the other hand, an increase in the lattice core density did not improve the flexural strength and rigidity. The elastic modulus of fiber-reinforced 3D-printed sandwich panels exceeded the predictions of the analytical models; the equivalent homogeneous model had the best performance, with a 15% relative error. However, analytical models could not correctly predict the failure mode: wrinkle failure occurs at 75% and 30% of the critical load in fiber-reinforced sandwiches with low- and high-density cores, respectively. Furthermore, no model is currently available to predict interlayer debonding between the matrix and the thermoplastic coating of fiber layers. Divergences between analytical models and experimental results could be attributed to the simplifications in the models that do not consider defects inherent to additive manufacturing, such as air gaps and poor interlaminar bonding. Full article
Show Figures

Figure 1

40 pages, 9960 KiB  
Article
Statistical Analysis of Large Format Additively Manufactured Polyethylene Terephthalate Glycol with 30% Carbon Fiber Tensile Data
by Katie A. Martin, Jedadiah F. Burroughs and Guillermo A. Riveros
Polymers 2024, 16(19), 2812; https://doi.org/10.3390/polym16192812 - 4 Oct 2024
Cited by 1 | Viewed by 1650
Abstract
In large format additive manufacturing (LFAM), a keener understanding of the relationship between the manufacture method and material temperature dependency is needed for the production of large polymer parts. Statistical analyses supported by material properties and a meso-structural understanding of LFAM are applied [...] Read more.
In large format additive manufacturing (LFAM), a keener understanding of the relationship between the manufacture method and material temperature dependency is needed for the production of large polymer parts. Statistical analyses supported by material properties and a meso-structural understanding of LFAM are applied to elucidate tensile data trends. The data from LFAM polyethylene terephthalate glycol with 30% carbon fiber (CF) (PETG CF30%) panels (diagonal, horizontal, and vertical in the x-y print plane) and injection-molded specimens tensile tested at six different testing temperatures (room temperature, 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C) were used for statistical analyses. A standard deviation, a coefficient of variation, and a two-way and one-way analyses of variance (ANOVA) were conducted. The manufacturing method (44.2%) and temperature (47.4%) have a strong effect on the ultimate tensile strength, in which temperature (82.6%) dominates Young's modulus. To explain the difference between the ultimate tensile strength of vertical, diagonal, and horizontal specimens at room temperature, a visual inspection of the specimen failure was conducted and the maximum stress at the crack tip was calculated analytically. The decreased strength in the diagonal specimens resulted from the reliance on interlaminar adhesion strength. Future work will consider the effect of the void space variation on tensile strength variance. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composites)
Show Figures

Figure 1

12 pages, 4588 KiB  
Article
Evolution of Atomic-Level Interfacial Fracture Mechanics in Magnesium–Zinc Compounds Used for Bioresorbable Vascular Stents
by Zhen Zhou, Chaoyue Ji, Dongyang Hou, Shunyong Jiang, Yuhang Ouyang, Fang Dong and Sheng Liu
Materials 2024, 17(19), 4734; https://doi.org/10.3390/ma17194734 - 26 Sep 2024
Viewed by 1041
Abstract
Bioresorbable magnesium-metal vascular stents are gaining popularity due to their biodegradable nature and good biological and mechanical properties. They are also suitable candidate materials for biodegradable stents. Due to the rapid degradation rate of Mg metal vascular scaffolds, a Mg/Zn bilayer composite was [...] Read more.
Bioresorbable magnesium-metal vascular stents are gaining popularity due to their biodegradable nature and good biological and mechanical properties. They are also suitable candidate materials for biodegradable stents. Due to the rapid degradation rate of Mg metal vascular scaffolds, a Mg/Zn bilayer composite was formed by a number of means, such as magnetron sputtering and physical vapor deposition, thus delaying the degradation time of the Mg metal vascular scaffolds while providing good radial support for the stenotic vessels. However, the interlaminar compounds at the metal interface have an essential impact on the mechanical properties of the bi-material interface, especially the cracking and delamination of the Mg matrix Zn coating vascular stent in the radially expanded process layer. Intermetallic compounds (IMCs) are commonly found in dual-layer composites, such as Mg/Zn composites and multi-layer structures. They are frequently overlooked in simulations aiming to predict mechanical properties. This paper analyses the interfacial failure processes and evolutionary mechanisms of interfacial fracture mechanics of a Mg/Zn interface with an intermetallic compound layer between coated Zn and Mg matrix metallic vascular stents. The simulation results show that the fracture mode in the Mg/Zn interface with an intermetallic compound involves typical ductile fracture under static tensile conditions. The dislocation line defects mainly occur on the side of the Mg, which induces the Mg/Zn interfacial crack to expand along the interface into the pure Mg. The stress intensity factor and the critical strain energy release rate decrease as the intermetallic compound layer’s thickness gradually increases, indicating that the intensity of stress and the force of the crack extending and expanding along the crack tip are weakened. The presence of intermetallic compounds at the interface can significantly strengthen the mechanical properties of the material interface and alleviate the crack propagation between the interfaces. Full article
Show Figures

Graphical abstract

15 pages, 3695 KiB  
Article
In Silico Investigation of the Interlaminar and Mechanical Fracture of Arteries with Atheromatic Plaque during Angioplasty Treatment
by Spyridon Psarras, Anargyros-Nektarios Skafidas and Vassilis Kostopoulos
Biomedicines 2024, 12(9), 2105; https://doi.org/10.3390/biomedicines12092105 - 14 Sep 2024
Viewed by 911
Abstract
The reduction in the inner diameter of the artery due to the creation of atheromatic plaque on the artery lumen, known as artery stenosis, disrupts the blood flow, leading to medical complications, which can be fatal. The angioplasty procedure aims to reopen the [...] Read more.
The reduction in the inner diameter of the artery due to the creation of atheromatic plaque on the artery lumen, known as artery stenosis, disrupts the blood flow, leading to medical complications, which can be fatal. The angioplasty procedure aims to reopen the artery and uses a stent to keep it open. In this study, an effort is made to determine the point of the stent, the plaque and the artery during the expansion phase of the angioplasty using the in silico Finite Element Analysis method. A literature-based design was chosen for the stent geometry, whereas simplified shapes of the balloon and the two artery layers were used. Additionally, two plaque designs were the benchmark for the eight distinct artery stenosis models within the Abaqus environment. In the context of stent angioplasty simulations, failure patterns were investigated. An inverse relationship was observed between artery stenosis and pressure at the artery failure point, while an increased danger of interlaminar failure was detected in models with larger artery stenosis. This study verifies the necessity for the inclusion of interlaminar failure in future angioplasty research. Full article
(This article belongs to the Collection Feature Papers in Biomedical Materials)
Show Figures

Figure 1

Back to TopTop