Dynamic In-Plane Compression and Fracture Growth in a Quasi-Isotropic Carbon-Fiber-Reinforced Polymer Composite
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Description and Sample Preparation
2.2. Mechanical Testing Setup
2.3. Digital Image Correlation Analysis
3. Results
3.1. Mechanical Response and Strain-Rate-Dependent Behavior
3.2. Damage Morphology and Failure Modes
3.3. Crack Speed Measurements
3.4. Dynamic Constitutive Model: ZWT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priyadarshini, S.; Singh, L.K.; Kaithwas, C.K.; Soren, S. A review on thermo-mechanical durability of glass fiber/polymer composites in water. In Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 2023; Volume 407, p. 2200124. [Google Scholar]
- Prabhakar, M.M.; Rajini, N.; Ayrilmis, N.; Mayandi, K.; Siengchin, S.; Senthilkumar, K.; Karthikeyan, S.; Ismail, S.O. An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Compos. Struct. 2019, 230, 111419. [Google Scholar] [CrossRef]
- Shah, S.; Karuppanan, S.; Megat-Yusoff, P.; Sajid, Z. Impact resistance and damage tolerance of fiber reinforced composites: A review. Compos. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Gara, N.; Jayaganthan, R.; Velmurugan, R. Strain Rate Studies on Metallic and Non-Metallic Materials for Tensile and Compressive Behaviour Under Impact Loading: A Review. In Composite Materials; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–19. [Google Scholar]
- Siengchin, S. A review on lightweight materials for defence applications: A present and future developments. Def. Technol. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Ishikawa, T.; Amaoka, K.; Masubuchi, Y.; Yamamoto, T.; Yamanaka, A.; Arai, M.; Takahashi, J. Overview of automotive structural composites technology developments in Japan. Compos. Sci. Technol. 2018, 155, 221–246. [Google Scholar] [CrossRef]
- Karsandik, Y.; Sabuncuoglu, B.; Yildirim, B.; Silberschmidt, V.V. Impact behavior of sandwich composites for aviation applications: A review. Compos. Struct. 2023, 314, 116941. [Google Scholar] [CrossRef]
- Syamsir, A.; Ean, L.W.; Asyraf, M.R.M.; Supian, A.B.M.; Madenci, E.; Özkılıç, Y.O.; Aksoylu, C. Recent Advances of GFRP Composite Cross Arms in Energy Transmission Tower: A Short Review on Design Improvements and Mechanical Properties. Materials 2023, 16, 2778. [Google Scholar] [CrossRef]
- Gangineni, P.K.; Gupta K, B.G.; Patnaik, S.; Prusty, R.K.; Ray, B.C. Recent advancements in interface engineering of carbon fiber reinforced polymer composites and their durability studies at different service temperatures. Polym. Compos. 2022, 43, 4126–4164. [Google Scholar] [CrossRef]
- Mirabedini, A.; Ang, A.; Nikzad, M.; Fox, B.; Lau, K.T.; Hameed, N. Evolving strategies for producing multiscale graphene-enhanced fiber-reinforced polymer composites for smart structural applications. Adv. Sci. 2020, 7, 1903501. [Google Scholar] [CrossRef]
- Bhat, A.; Naveen, J.; Jawaid, M.; Norrrahim, M.; Rashedi, A.; Khan, A. Advancement in fiber reinforced polymer, metal alloys and multi-layered armour systems for ballistic applications–A Review. J. Mater. Res. Technol. 2021, 15, 1300–1317. [Google Scholar] [CrossRef]
- Kumar, Y.; Rezasefat, M.; Hogan, J.D. Axial crushing of circular thin-walled specimens made of CFRP using progressive failure model (MAT54) in LS-Dyna. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Kumar, Y.; Khan, S.H.; Mourad, A.H.I. Role of ABS and EPS foams in determining the performance of motorcyclist helmet during impact loading. Int. J. Crashworthiness 2023, 29, 759–770. [Google Scholar] [CrossRef]
- Jambhulkar, T.; Sahu, R. Impact Response of Fibre-Reinforced Polymer Composite Materials: A Review. In Manufacturing Engineering and Materials Science; CRC Press: Boca Raton, FL, USA, 2024; pp. 49–67. [Google Scholar]
- Guo, R.; Li, C.; Niu, Y.; Xian, G. The fatigue performances of carbon fiber reinforced polymer composites—A review. J. Mater. Res. Technol. 2022, 21, 4773–4789. [Google Scholar] [CrossRef]
- Sierakowski, R. Strain rate effects in composites. Appl. Mech. Rev. 1997, 50, 741–761. [Google Scholar] [CrossRef]
- Woldesenbet, E.; Vinson, J.; Woldesenbet, E.; Vinson, J. Effect of specimen geometry in high-strain-rate testing of graphite/epoxy composites. In Proceedings of the 38th Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 7–10 April 1997; p. 1046. [Google Scholar]
- Ninan, L.; Tsai, J.; Sun, C. Use of split Hopkinson pressure bar for testing off-axis composites. Int. J. Impact Eng. 2001, 25, 291–313. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Choukri, S.; Nême, A. Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings. Compos. Sci. Technol. 2008, 68, 477–485. [Google Scholar] [CrossRef]
- Zhao, C.; Ren, R.; Sun, C.; Ren, J.; Zhong, J.; Zhang, Z. Compression mechanics for carbon-fiberreinforced epoxy resin composites under inplane and out-of-plane Quasi-Static and dynamic loadings. Mech. Compos. Mater. 2023, 59, 507–520. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, S.; Mao, Y.; He, L.; Han, X. Rate-related study on the ply orientation of carbon fiber reinforced epoxy composite laminates. Int. J. Mech. Sci. 2020, 188, 105968. [Google Scholar] [CrossRef]
- Okereke, M.I.; Buckley, C.P.; Akpoyomare, A.I. The mechanism of rate-dependent off-axis compression of a low fibre volume fraction thermoplastic matrix composite. Compos. Struct. 2017, 168, 685–697. [Google Scholar] [CrossRef]
- Pournoori, N.; Rodera, O.; Jokinen, J.; Hokka, M.; Kanerva, M. Failure prediction for high-strain rate and out-of-plane compression of fibrous composites. Compos. Sci. Technol. 2022, 218, 109141. [Google Scholar] [CrossRef]
- Chihi, M.; Tarfaoui, M.; Qureshi, Y.; Bouraoui, C.; Benyahia, H. Effect of carbon nanotubes on the in-plane dynamic behavior of a carbon/epoxy composite under high strain rate compression using SHPB. Smart Mater. Struct. 2020, 29, 085012. [Google Scholar] [CrossRef]
- Jia, S.; Wang, F.; Zhou, J.; Jiang, Z.; Xu, B. Study on the mechanical performances of carbon fiber/epoxy composite material subjected to dynamical compression and high temperature loads. Compos. Struct. 2021, 258, 113421. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, W.; Yang, H.; Jiang, X.; Wang, L.; Gao, Y.; Cai, X. Mechanical behavior and damage kinetics of a unidirectional carbon/epoxy laminated composite under dynamic compressive loading. Polym. Compos. 2022, 43, 2909–2923. [Google Scholar] [CrossRef]
- Changfang, Z.; Zhitan, Z.; Changxing, Z.; Hongwei, Z.; Kebin, Z.; Jianlin, Z.; Jie, R.; Guigao, L. Research on compression properties of unidirectional carbon fiber reinforced epoxy resin composite (UCFREP). J. Compos. Mater. 2021, 55, 1447–1458. [Google Scholar] [CrossRef]
- Perry, J.; Walley, S. Measuring the effect of strain rate on deformation and damage in fibre-reinforced composites: A review. J. Dyn. Behav. Mater. 2022, 8, 178–213. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, P.; Dang, H.; Nie, H.; Guo, Z.; Zhang, C.; Li, Y. Effects of loading rate and loading direction on the compressive failure behavior of a 2D triaxially braided composite. Int. J. Impact Eng. 2021, 156, 103928. [Google Scholar] [CrossRef]
- Wang, Z.; Xian, G. Impact performances of fiber reinforced polymer composites and cables: A review. Compos. Struct. 2023, 319, 117128. [Google Scholar] [CrossRef]
- Wang, S.; Wen, L.; Xiao, J.; Lei, M.; Liang, J. Influence of strain rate and temperature on mechanical properties of carbon woven-ply PPS thermoplastic laminates under dynamic compression. Polym. Test. 2020, 89, 106725. [Google Scholar] [CrossRef]
- Zhu, T.; Ren, Z.; Xu, J.; Shen, L.; Xiao, C.; Zhang, C.; Zhou, X.; Jian, X. Damage evolution model and failure mechanism of continuous carbon fiber-reinforced thermoplastic resin matrix composite materials. Compos. Sci. Technol. 2023, 244, 110300. [Google Scholar] [CrossRef]
- Rezasefat, M.; Torres, D.B.; Gonzalez-Jimenez, A.; Giglio, M.; Manes, A. A fast fracture plane orientation search algorithm for Puck’s 3D IFF criterion for UD composites. Mater. Today Commun. 2021, 28, 102700. [Google Scholar] [CrossRef]
- Rezasefat, M.; Gonzalez-Jimenez, A.; Giglio, M.; Manes, A. An evaluation of Cuntze and Puck inter fibre failure criteria in simulation of thin CFRP plates subjected to low velocity impact. Compos. Struct. 2021, 278, 114654. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Zhou, G.; Wen, H.; Wen, W.; Cui, H.; Zhang, Y. A transverse failure criterion for unidirectional composites based on the Puck failure surface theory. Compos. Sci. Technol. 2023, 242, 110192. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 2002, 62, 1633–1662. [Google Scholar] [CrossRef]
- Daniel, I.M. Failure of composite materials. Strain 2007, 43, 4–12. [Google Scholar] [CrossRef]
- Li, N.; Gu, J.; Chen, P. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state. Compos. Struct. 2018, 204, 466–474. [Google Scholar] [CrossRef]
- Hashin, Z. Fatigue failure criteria for combined cyclic stress. Int. J. Fract. 1981, 17, 101–109. [Google Scholar] [CrossRef]
- Arbaoui, J.; Tarfaoui, M.; Alaoui, A.E.M. Mechanical behavior and damage kinetics of woven E-glass/vinylester laminate composites under high strain rate dynamic compressive loading: Experimental and numerical investigation. Int. J. Impact Eng. 2016, 87, 44–54. [Google Scholar] [CrossRef]
- Koerber, H.; Camanho, P. High strain rate characterisation of unidirectional carbon–epoxy IM7-8552 in longitudinal compression. Compos. Part A Appl. Sci. Manuf. 2011, 42, 462–470. [Google Scholar] [CrossRef]
- Ochola, R.; Marcus, K.; Nurick, G.; Franz, T. Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates. Compos. Struct. 2004, 63, 455–467. [Google Scholar] [CrossRef]
- Sun, Q.; Guo, H.; Zhou, G.; Meng, Z.; Chen, Z.; Kang, H.; Keten, S.; Su, X. Experimental and computational analysis of failure mechanisms in unidirectional carbon fiber reinforced polymer laminates under longitudinal compression loading. Compos. Struct. 2018, 203, 335–348. [Google Scholar] [CrossRef]
- Ploeckl, M.; Kuhn, P.; Grosser, J.; Wolfahrt, M.; Koerber, H. A dynamic test methodology for analyzing the strain-rate effect on the longitudinal compressive behavior of fiber-reinforced composites. Compos. Struct. 2017, 180, 429–438. [Google Scholar] [CrossRef]
- Koerber, H.; Xavier, J.; Camanho, P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech. Mater. 2010, 42, 1004–1019. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Sun, L.; Huang, S. Static and dynamic mechanical properties of carbon fiber reinforced polymer with different stacking sequences. J. Reinf. Plast. Compos. 2023, 42, 893–902. [Google Scholar] [CrossRef]
- Ravichandran, G.; Subhash, G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J. Am. Ceram. Soc. 1994, 77, 263–267. [Google Scholar] [CrossRef]
- Ji, M.; Li, H.; Zheng, J.; Yang, S.; Zaiemyekeh, Z.; Hogan, J.D. An experimental study on the strain-rate-dependent compressive and tensile response of an alumina ceramic. Ceram. Int. 2022, 48, 28121–28134. [Google Scholar] [CrossRef]
- Zheng, J.; Ji, M.; Zaiemyekeh, Z.; Li, H.; Hogan, J.D. Strain-rate-dependent compressive and compression-shear response of an alumina ceramic. J. Eur. Ceram. Soc. 2022, 42, 7516–7527. [Google Scholar] [CrossRef]
- Zaiemyekeh, Z.; Li, H.; Romanyk, D.L.; Hogan, J.D. Strain-rate-dependent behavior of additively manufactured alumina ceramics: Characterization and mechanical testing. J. Mater. Res. Technol. 2024, 28, 3794–3804. [Google Scholar] [CrossRef]
- Karanjgaokar, A.; Li, H.; Hogan, J.D. Strain-rate-dependent dynamic compression–shear response of alumina. Ceram. Int. 2024, 50, 3861–3876. [Google Scholar] [CrossRef]
- Chen, W.W.; Song, B. Split Hopkinson (Kolsky) Bar: Design, Testing and Applications; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Song, B.; Chen, W.; Weerasooriya, T. Quasi-static and dynamic compressive behaviors of a S-2 glass/SC15 composite. J. Compos. Mater. 2003, 37, 1723–1743. [Google Scholar] [CrossRef]
- Thomson, D.; Quino, G.; Cui, H.; Pellegrino, A.; Erice, B.; Petrinic, N. Strain-rate and off-axis loading effects on the fibre compression strength of CFRP laminates: Experiments and constitutive modelling. Compos. Sci. Technol. 2020, 195, 108210. [Google Scholar] [CrossRef]
- Cintrón, R.; Saouma, V. Strain measurements with the digital image correlation system Vic-2D. System 2008, 106, 2D. [Google Scholar]
- Zhao, J.; Guo, L.; Zhang, L.; Wang, X.; Tang, Y.; Li, Z. Experimental investigations on the in-plane dynamic compressive behavior and upper limit of constant strain rate for 2D twill weave carbon fiber reinforced composite. Compos. Part B Eng. 2021, 220, 108993. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zhi, Z.; Guo, Y.; Ouyang, N. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates. Carbon 2013, 61, 97–104. [Google Scholar] [CrossRef]
- Sharma, A.P.; Khan, S.H.; Parameswaran, V. Response and failure of fiber metal laminates subjected to high strain rate tensile loading. J. Compos. Mater. 2019, 53, 1489–1506. [Google Scholar] [CrossRef]
- Shaker, W.; Awad, T.; Elhadary, M. The Effect of Strain Rate on Unidirectional Glass Fiber Composites in Both Bridging and Non-Bridging Scenarios. 2023. Available online: https://www.researchsquare.com/article/rs-3035718/v1 (accessed on 8 December 2024).
- Cui, H.; Thomson, D.; Pellegrino, A.; Wiegand, J.; Petrinic, N. Effect of strain rate and fibre rotation on the in-plane shear response of ±45 laminates in tension and compression tests. Compos. Sci. Technol. 2016, 135, 106–115. [Google Scholar] [CrossRef]
- Palmese, G.; McCullough, R.; Sottos, N. Relationship between interphase composition, material properties, and residual thermal stresses in composite materials. J. Adhes. 1995, 52, 101–113. [Google Scholar] [CrossRef]
- Li, Z.; Lambros, J. Dynamic thermomechanical behavior of fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 537–547. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Guo, L.; Wang, Z.; Zhao, J. Analysis on the turning point of dynamic in-plane compressive strength for a plain weave composite. Def. Technol. 2023, 32, 485–495. [Google Scholar] [CrossRef]
- Gao, D.; Bao, Z.; Han, W.; Wang, X.; Huang, S.; Huang, L.; Chen, Q.; Zhao, H.; Xu, Y. Effect of Strain Rate on Tensile Properties of Carbon Fiber-Reinforced Epoxy Laminates with Different Stacking Sequences and Ply Orientations. Polymers 2023, 15, 2711. [Google Scholar] [CrossRef]
- Berthe, J.; Deletombe, E.; Brieu, M.; Portemont, G.; Paulmier, P. Dynamic characterization of CFRP composite materials–toward a pre-normative testing protocol–application to T700GC/M21 material. Procedia Eng. 2014, 80, 165–182. [Google Scholar] [CrossRef]
- Guedes, R.; De Moura, M.; Ferreira, F. Failure analysis of quasi-isotropic CFRP laminates under high strain rate compression loading. Compos. Struct. 2008, 84, 362–368. [Google Scholar] [CrossRef]
- Gómez-del Río, T.; Rodríguez, J. Compression yielding of epoxy: Strain rate and temperature effect. Mater. Des. 2012, 35, 369–373. [Google Scholar] [CrossRef]
- Chaudhary, S.; Iqbal, N.; Mangla, V.; Kumar, D.; Roy, P.K. Strain rate sensitivity of toughened epoxy. Iran. Polym. J. 2015, 24, 871–881. [Google Scholar] [CrossRef]
- Gilat, A.; Goldberg, R.K.; Roberts, G.D. Strain rate sensitivity of epoxy resin in tensile and shear loading. J. Aerosp. Eng. 2007, 20, 75–89. [Google Scholar] [CrossRef]
- Ou, Y.; Zhu, D.; Zhang, H.; Yao, Y.; Mobasher, B.; Huang, L. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures. Compos. Part B Eng. 2016, 95, 123–136. [Google Scholar] [CrossRef]
- Oshima, S.; Higuchi, R.; Kobayashi, S. Experimental characterization of cracking behavior initiating from microdefects in cross-ply CFRP laminates. Eng. Fract. Mech. 2023, 281, 109116. [Google Scholar] [CrossRef]
- Yu, B.; Karthikeyan, K.; Deshpande, V.; Fleck, N. Perforation resistance of CFRP beams to quasi-static and ballistic loading: The role of matrix strength. Int. J. Impact Eng. 2017, 108, 389–401. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, H.; Yao, K.; Lei, H.; Pei, Y.; Fang, D. Experimental and theoretical studies on inter-fiber failure of unidirectional polymer-matrix composites under different strain rates. Int. J. Solids Struct. 2017, 113, 37–46. [Google Scholar] [CrossRef]
- Thomson, D.M.; Cui, H.; Erice, B.; Hoffmann, J.; Wiegand, J.; Petrinic, N. Experimental and numerical study of strain-rate effects on the IFF fracture angle using a new efficient implementation of Puck’s criterion. Compos. Struct. 2017, 181, 325–335. [Google Scholar] [CrossRef]
- Vural, M.; Ravichandran, G. Transverse failure in thick S2-glass/epoxy fiber-reinforced composites. J. Compos. Mater. 2004, 38, 609–623. [Google Scholar] [CrossRef]
- Kawai, M.; Saito, S. Off-axis strength differential effects in unidirectional carbon/epoxy laminates at different strain rates and predictions of associated failure envelopes. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1632–1649. [Google Scholar] [CrossRef]
- Ganesh, R.; Sockalingam, S.; Haque, B.Z.; Gillespie, J.W., Jr. Dynamic effects of single fiber break in unidirectional glass fiber-reinforced composites. J. Compos. Mater. 2017, 51, 1307–1320. [Google Scholar] [CrossRef]
- Schaefer, J.; Werner, B.; Daniel, I. Strain-rate-dependent failure of a toughened matrix composite. Exp. Mech. 2014, 54, 1111–1120. [Google Scholar] [CrossRef]
- Berbinau, P.; Soutis, C.; Guz, I. Compressive failure of 0 unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre microbuckling. Compos. Sci. Technol. 1999, 59, 1451–1455. [Google Scholar] [CrossRef]
- Skovsgård, S.P.H. Failure of Composite Materials by Kink Band Formation. Ph.D. Thesis, Aarhus Universitet, Aarhus, Denmark, 2019. [Google Scholar]
- Wadee, M.A.; Völlmecke, C.; Haley, J.F.; Yiatros, S. Geometric modelling of kink banding in laminated structures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1827–1849. [Google Scholar] [CrossRef]
- Patel, J.; Ayyar, A.; Peralta, P. Kink band evolution in polymer matrix composites under bending: A digital image correlation study. J. Reinf. Plast. Compos. 2020, 39, 852–866. [Google Scholar] [CrossRef]
- Skovsgaard, S.P.; Jensen, H.M. A general approach for the study of kink band broadening in fibre composites and layered materials. Eur. J. Mech.-A/Solids 2019, 74, 394–402. [Google Scholar] [CrossRef]
- Attwood, J.; Fleck, N.; Wadley, H.; Deshpande, V. The compressive response of ultra-high molecular weight polyethylene fibres and composites. Int. J. Solids Struct. 2015, 71, 141–155. [Google Scholar] [CrossRef]
- Jumahat, A.; Soutis, C.; Jones, F.; Hodzic, A. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading. Compos. Struct. 2010, 92, 295–305. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; Xu, Z.; Liu, H.; Lißner, M.; Erice, B.; Petrinic, N. A comprehensive experimental investigation of the rate-dependent interlaminar delamination behaviour of CFRP composites. Compos. Part B Eng. 2023, 261, 110788. [Google Scholar] [CrossRef]
- Medina, S.; González, E.; Blanco, N.; Pernas-Sánchez, J.; Artero-Guerrero, J. Guided Double Cantilever Beam test method for intermediate and high loading rates in composites. Int. J. Solids Struct. 2023, 264, 112118. [Google Scholar] [CrossRef]
- Riccio, A.; Russo, A.; Sellitto, A.; Toscano, C.; Alfano, D.; Zarrelli, M. Experimental and numerical assessment of fibre bridging toughening effects on the compressive behaviour of delaminated composite plates. Polymers 2020, 12, 554. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Zarrelli, M.; Sellitto, A.; Riccio, A. Fiber bridging induced toughening effects on the delamination behavior of composite stiffened panels under bending loading: A numerical/experimental study. Materials 2019, 12, 2407. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Meng, X.; Zhang, H.; Nie, H.; Zhang, C.; Li, Y. The dynamic crack propagation behavior of mode I interlaminar crack in unidirectional carbon/epoxy composites. Eng. Fract. Mech. 2019, 215, 65–82. [Google Scholar] [CrossRef]
- Wang, L.; Shi, S.; Chen, J.; Huang, D. Studies on ZWT non-linear thermoviscoelastic constitutive relation and its application. J. Ningbo Univ. Nat. Sci. Eng. Ed. 2000, 13, 141–149. [Google Scholar]
- Wang, L.; Shi, S. Research and application of ZWT nonlinear thermo viscoelastic constitutive model. J. Ningbo Univ. 2000, 13, 141–148. [Google Scholar]
- Liu, C.; Xu, F.; Jiang, Z.; Guo, H.; Wen, J.; Li, J. A viscoelastic-viscoplastic constitutive model for nanoparticle-reinforced epoxy composites: Particle, temperature, and strain rate effects. Mater. Today Commun. 2022, 33, 104849. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Q.; Zhang, G.; Li, Q.; Sun, G. On strain rate and temperature dependent mechanical properties and constitutive models for additively manufactured polylactic acid (PLA) materials. Thin-Walled Struct. 2022, 179, 109624. [Google Scholar] [CrossRef]
- Luo, G.; Wu, C.; Xu, K.; Liu, L.; Chen, W. Development of dynamic constitutive model of epoxy resin considering temperature and strain rate effects using experimental methods. Mech. Mater. 2021, 159, 103887. [Google Scholar] [CrossRef]
Experiment Type | Conditions | Strain Rate () | In-Plane Compression Strength (MPa) | Stiffness (MPa) | Failure Strain |
---|---|---|---|---|---|
Quasi-Static | Loading rate mm/s | 131.6 | 32,317 | 0.008 | |
126.0 | 31,652 | 0.007 | |||
132.6 | 22,990 | 0.008 | |||
Loading rate mm/s | 166.3 | 38,187 | 0.010 | ||
191.5 | 38,513 | 0.008 | |||
190.4 | 38,041 | 0.008 | |||
Dynamic | Pulse shaper = HDPE Pressure = 25 psi | 305.6 | 270.0 | 16,972 | 0.022 |
305.7 | 258.3 | 16,522 | 0.021 | ||
321.0 | 224.5 | 16,621 | 0.019 | ||
Pulse shaper = HDPE Pressure = 40 psi | 632.8 | 275.2 | 19,795 | 0.025 | |
643.4 | 227.8 | 19,038 | 0.013 | ||
658.6 | 289.2 | 19,607 | 0.029 | ||
Pulse shaper = Paper Pressure = 40 psi | 1169.4 | 259.6 | 19,270 | 0.028 | |
1188.1 | 259.2 | 19,861 | 0.032 | ||
1198.0 | 247.9 | 19,497 | 0.290 |
Strain Rate | Fracture Angle () | |
---|---|---|
QSR = | ||
QSR = | ||
Present study | HSR = | |
HSR = | ||
HSR = | ||
Puck et al. [36] | QSR | |
Vural et al. [75] | QSR | |
Koeber et. al [45] | HSR | |
Thomson et al. [74] | HSR |
Strain Rate | ||||
---|---|---|---|---|
305.6 | 5.7 | 15.5 | 0.34 | 10.0 |
658.6 | 4.4 | 27.2 | 8.8 | 10.0 |
1169.4 | 1.0 | 27.2 | 7.4 | 11.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, Y.; Rezasefat, M.; Zaiemyekeh, Z.; Li, H.; Dolez, P.; Hogan, J. Dynamic In-Plane Compression and Fracture Growth in a Quasi-Isotropic Carbon-Fiber-Reinforced Polymer Composite. Materials 2024, 17, 6296. https://doi.org/10.3390/ma17246296
Kumar Y, Rezasefat M, Zaiemyekeh Z, Li H, Dolez P, Hogan J. Dynamic In-Plane Compression and Fracture Growth in a Quasi-Isotropic Carbon-Fiber-Reinforced Polymer Composite. Materials. 2024; 17(24):6296. https://doi.org/10.3390/ma17246296
Chicago/Turabian StyleKumar, Yogesh, Mohammad Rezasefat, Zahra Zaiemyekeh, Haoyang Li, Patricia Dolez, and James Hogan. 2024. "Dynamic In-Plane Compression and Fracture Growth in a Quasi-Isotropic Carbon-Fiber-Reinforced Polymer Composite" Materials 17, no. 24: 6296. https://doi.org/10.3390/ma17246296
APA StyleKumar, Y., Rezasefat, M., Zaiemyekeh, Z., Li, H., Dolez, P., & Hogan, J. (2024). Dynamic In-Plane Compression and Fracture Growth in a Quasi-Isotropic Carbon-Fiber-Reinforced Polymer Composite. Materials, 17(24), 6296. https://doi.org/10.3390/ma17246296