Advanced Prediction and Analysis of Delamination Failure in Graphite-Reinforced Epoxy Composites Using VCCT-Based Finite Element Modelling Techniques
Abstract
:1. Introduction
2. Virtual Crack Closure Technique (VCCT)
2.1. Damage Evaluation Criteria
2.2. Finite Element Modelling
3. Analytical Model
Delamination
4. Material
5. Results and Discussion
6. Conclusions
- Delamination is one of the most critical failure modes in composite laminates. Accurate prediction methods are essential.
- The finite element method (FEM) has proven to be a valuable approach in predicting delamination. In this study, FEM was integrated with the VCCT.
- The proposed model showed good agreement with experimental results:
- IM7/8552 carbon fiber laminates: 0.77% error.
- T300/913: 1.5% error.
- The analytical model, developed using VCCT data, demonstrated high accuracy in predicting the resistance curve and crack opening displacement (COD).
- Errors ranged from 2% to 14%, which is acceptable from a scientific perspective.
- The peak load after crack initiation was estimated analytically with high accuracy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, M.K.; Mohammed, Y.; Salem, T.; Hashem, A. Prediction of nominal strength of composite structure open hole specimen through cohesive laws. Int. J. Mech. Mech. Eng. IJMME-IJENS 2012, 12, 1–9. [Google Scholar]
- Chau-Dinh, T.; Zi, G.; Lee, P.-S.; Rabczuk, T.; Song, J.-H. Phantom-node method for shell models with arbitrary cracks. Comput. Struct. 2012, 92–93, 242–256. [Google Scholar] [CrossRef]
- Nguyen-Thanh, N.; Valizadeh, N.; Nguyen, M.N.; Nguyen-Xuan, H.; Zhuang, X.; Areias, P.; Zi, G.; Bazilevs, Y.; De Lorenzis, L.; Rabczuk, T. An extended isogeometric thin shell analysis based on Kirchhoff–Love theory. Comput. Methods Appl. Mech. Eng. 2015, 284, 265–291. [Google Scholar] [CrossRef]
- Nilsson, K.-F.; Giannakopoulos, A.E. A finite element analysis of configurational stability and finite growth of buckling driven delamination. J. Mech. Phys. Solids 1995, 43, 1983–2021. [Google Scholar] [CrossRef]
- Robinson, P.; Javidrad, F.; Hitchings, D. Finite element modelling of delamination growth in the DCB and edge delaminated DCB specimens. Compos. Struct. 1995, 32, 275–285. [Google Scholar] [CrossRef]
- Fleming, D.C. Delamination Modeling of Composites for Improved Crash Analysis. J. Compos. Mater. 2001, 35, 1777–1792. [Google Scholar] [CrossRef]
- La Saponara, V.; Muliana, H.; Haj-Ali, R.; Kardomateas, G.A. Experimental and numerical analysis of delamination growth in double cantilever laminated beams. Eng. Fract. Mech. 2002, 69, 687–699. [Google Scholar] [CrossRef]
- Camanho, P.P. Numerical Simulation of Delamination Growth in Composite Materials; NASA Langley Technical Report Server: Hampton, VA, USA, 2001.
- Roudolff, F.; Ousset, Y. Comparison between two approaches for the simulation of delamination growth in a D.C.B. specimen. Aerosp. Sci. Technol. 2002, 6, 123–130. [Google Scholar] [CrossRef]
- Rybicki, E.F.; Kanninen, M.F. A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 1977, 9, 931–938. [Google Scholar] [CrossRef]
- Abdellah, M.Y. Delamination modeling of double cantilever beam of unidirectional composite laminates. J. Fail. Anal. Prev. 2017, 17, 1011–1018. [Google Scholar] [CrossRef]
- Elder, D.J.; Thomson, R.S.; Nguyen, M.Q.; Scott, M.L. Review of delamination predictive methods for low speed impact of composite laminates. Compos. Struct. 2004, 66, 677–683. [Google Scholar] [CrossRef]
- Geng, D.; Liu, Y.; Shao, Z.; Lu, Z.; Cai, J.; Li, X.; Jiang, X.; Zhang, D. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Compos. Struct. 2019, 216, 168–186. [Google Scholar] [CrossRef]
- Lu, X.; Ridha, M.; Chen, B.Y.; Tan, V.B.C.; Tay, T.E. On cohesive element parameters and delamination modelling. Eng. Fract. Mech. 2019, 206, 278–296. [Google Scholar] [CrossRef]
- Kumar, D.; Roy, R.; Kweon, J.-H.; Choi, J.-H. Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements. Appl. Compos. Mater. 2016, 23, 397–419. [Google Scholar] [CrossRef]
- Marjanović, M.; Meschke, G.; Vuksanović, D. A finite element model for propagating delamination in laminated composite plates based on the Virtual Crack Closure method. Compos. Struct. 2016, 150, 8–19. [Google Scholar] [CrossRef]
- Krueger, R. 1—The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In Numerical Modelling of Failure in Advanced Composite Materials; Camanho, P.P., Hallett, S.R., Eds.; Woodhead Publishing: Wimblington, UK, 2015; pp. 3–53. [Google Scholar] [CrossRef]
- Li, D.H. Delamination and transverse crack growth prediction for laminated composite plates and shells. Comput. Struct. 2016, 177, 39–55. [Google Scholar] [CrossRef]
- Whitcomb, J.D. Three-Dimensional Analysis of a Postbuckled Embedded Delamination. J. Compos. Mater. 1989, 23, 862–889. [Google Scholar] [CrossRef]
- Chen, H.-P. Shear deformation theory for compressive delamination buckling and growth. AIAA J. 1991, 29, 813–819. [Google Scholar] [CrossRef]
- Hitchings, D.; Robinson, P.; Javidrad, F. A finite element model for delamination propagation in composites. Comput. Struct. 1996, 60, 1093–1104. [Google Scholar] [CrossRef]
- Aymerich, F.; Lecca, G.; Priolo, P. Modelling of delamination growth in composite laminates by the virtual internal bond method. Compos. Part A Appl. Sci. Manuf. 2008, 39, 145–153. [Google Scholar] [CrossRef]
- Mohammed, Y.; Hassan, M.K.; Hashem, A. Analytical model to predict multiaxial laminate fracture toughness from 0 ply fracture toughness. Polym. Eng. Sci. 2014, 54, 234–238. [Google Scholar] [CrossRef]
- Abdellah, M.Y.; Hassan, M.K.; Mohamed, A.F.; Khalil, K.A. A novel and highly effective natural vibration modal analysis to predict nominal strength of open hole glass fiber reinforced polymer composites structure. Polymers 2021, 13, 1251. [Google Scholar] [CrossRef]
- van der Meer, F.P.; Moës, N.; Sluys, L.J. A level set model for delamination—Modeling crack growth without cohesive zone or stress singularity. Eng. Fract. Mech. 2012, 79, 191–212. [Google Scholar] [CrossRef]
- Krueger, R. Virtual crack closure technique: History, approach, and applications. Appl. Mech. Rev. 2004, 57, 109–143. [Google Scholar] [CrossRef]
- Jokinen, J.; Kanerva, M.; Wallin, M.; Saarela, O. The simulation of a double cantilever beam test using the virtual crack closure technique with the cohesive zone modelling. Int. J. Adhes. Adhes. 2019, 88, 50–58. [Google Scholar] [CrossRef]
- Abdellah, M.Y.; Gelany, A.F.; Mohamed, A.F.; Khoshaim, A.B. Protection of limestone Coated with Different Polymeric Materials. Am. J. Mech. Eng. 2017, 5, 51. [Google Scholar] [CrossRef]
- Abdellah, M.Y. Ductile Fracture and S–N Curve Simulation of a 7075-T6 Aluminum Alloy under Static and Constant Low-Cycle Fatigue. J. Fail. Anal. Prev. 2021, 21, 1476–1488. [Google Scholar] [CrossRef]
- Abdellah, M.Y. Essential Work of Fracture Assessment for Thin Aluminium Strips Using Finite Element Analysis. Eng. Fract. Mech. 2017, 179, 190–202. [Google Scholar] [CrossRef]
- Wanthal, S.; Schaefer, J.; Justusson, B.; Hyder, I.; Engelstad, S.; Rose, C. Verification and validation process for progressive damage and failure analysis methods in the NASA Advanced Composites Consortium. In Proceedings of the American Society for Composites (ASC) Technical Conference, West Lafayette, IN, USA, 22–25 October 2017. [Google Scholar]
- Alharthi, H.; Abdellah, M.Y. Stress Analysis and Strength Prediction of Carbon Fiber Composite Laminates with Multiple Holes Using Cohesive Zone Models. Polymers 2025, 17, 124. [Google Scholar] [CrossRef]
- Alssayegh, A.; Abdellah, M.Y.; Hassan, M.K.; Azam, S.; Melaibari, A.; Khashaba, U. Optimizing high cycle fatigue predictions in notched Al 7075-T6: An analytical approach to rotating bending behavior. Results Eng. 2025, 25, 103623. [Google Scholar] [CrossRef]
- Czabaj, M.W.; Ratcliffe, J.G. Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite. Compos. Sci. Technol. 2013, 89, 15–23. [Google Scholar] [CrossRef]
- Librescu, L.; Song, O. Thin-Walled Composite Beams: Theory and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 131. [Google Scholar]
- Wang, C.H. Introduction to Fracture Mechanics; DSTO Aeronautical and Maritime Research Laboratory: Melbourne, Australia, 1996. [Google Scholar]
- Song, W.; Chen, Y.; Mu, Z.; Wang, Y.; Zhang, Z.; Wang, Z.; Liu, L.; Zhang, B.; Li, Y.; Li, B. A feather-inspired interleaf for enhanced interlaminar fracture toughness of carbon fiber reinforced polymer composites. Compos. Part B Eng. 2022, 236, 109827. [Google Scholar] [CrossRef]
- Dávila, C.G.; Rose, C.A.; Camanho, P.P. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites. Int. J. Fract. 2009, 158, 211–223. [Google Scholar] [CrossRef]
- Budiansky, B.; Hutchinson, J.W.; Evans, A.G. Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids 1986, 34, 167–189. [Google Scholar] [CrossRef]
- Reeder, J.R.; Crews, J.H., Jr. Mixed-mode bending method for delamination testing. AIAA J. 1990, 28, 1270–1276. [Google Scholar] [CrossRef]
- Murri, G.B. Evaluation of delamination growth characterization methods under mode I fatigue loading. In Proceedings of the 15th US-Japan Conference on Composite Materials, Arlington, TX, USA, 1–3 October 2012. [Google Scholar]
- Anderson, T.L.; Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Khan, R. Fiber bridging in composite laminates: A literature review. Compos. Struct. 2019, 229, 111418. [Google Scholar] [CrossRef]
- Krueger, R. An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes; NASA Langley Technical Report Server: Hampton, VA, USA, 2008.
- Pinho, S.T. Modelling Failure of Laminated Composites Using Physically-Based Failure Models; University of London: London, UK, 2005. [Google Scholar]
Properties | E1 | E3 = E2 | µ13 | µ12 | µ23 | G12 | G13 | G23 |
---|---|---|---|---|---|---|---|---|
GPa | 152.69 | 8.703 | 0.32 | 0.32 | 0.45 | 5.16 | 5.16 | 5.16 |
Laminate System | Surface Release Energy , kJ/m2 | Model Equation (13) | Error, % |
---|---|---|---|
T300/913 [45] | 0.258 | 0.26 | 0.77 |
IM7/8552 [11] | 0.27 | 0.26 | 3.7 |
Model [11] | 0.23 | 0.26 | 11 |
Ref. [34] | 0.24 | 0.27 | 12.5 |
Experimental, COD, mm [11] | VCCT, COD, mm | Error, % |
---|---|---|
2.45 | 2.34 | 4 |
3.56 | 3.5 | 2 |
3.7 | 3.53 | 5 |
4.2 | 3.8 | 10 |
6 | 5.14 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.F.; Abdellah, M.Y.; Hassan, M.K.; Backar, A.H. Advanced Prediction and Analysis of Delamination Failure in Graphite-Reinforced Epoxy Composites Using VCCT-Based Finite Element Modelling Techniques. Polymers 2025, 17, 771. https://doi.org/10.3390/polym17060771
Mohamed AF, Abdellah MY, Hassan MK, Backar AH. Advanced Prediction and Analysis of Delamination Failure in Graphite-Reinforced Epoxy Composites Using VCCT-Based Finite Element Modelling Techniques. Polymers. 2025; 17(6):771. https://doi.org/10.3390/polym17060771
Chicago/Turabian StyleMohamed, Ahmed F., Mohammed Y. Abdellah, Mohamed K. Hassan, and Ahmed H. Backar. 2025. "Advanced Prediction and Analysis of Delamination Failure in Graphite-Reinforced Epoxy Composites Using VCCT-Based Finite Element Modelling Techniques" Polymers 17, no. 6: 771. https://doi.org/10.3390/polym17060771
APA StyleMohamed, A. F., Abdellah, M. Y., Hassan, M. K., & Backar, A. H. (2025). Advanced Prediction and Analysis of Delamination Failure in Graphite-Reinforced Epoxy Composites Using VCCT-Based Finite Element Modelling Techniques. Polymers, 17(6), 771. https://doi.org/10.3390/polym17060771