Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = interfering ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4712 KiB  
Article
Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
by Lifeng Chen, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei and Di Wu
Toxics 2025, 13(8), 624; https://doi.org/10.3390/toxics13080624 - 25 Jul 2025
Viewed by 278
Abstract
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when [...] Read more.
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when it is used to combine with radionuclides. In this paper, we characterized a coconut shell activated carbon (CSAC) and a coal-based activated carbon (CBAC) for the adsorption of P204 and then evaluated their adsorption performance through batch and column experiments. The results found that, except for the main carbon matrix, CSAC and CBAC carried rich oxygen-containing functional groups and a small amount of inorganic substances. Both adsorbents had porous structures with pore diameters less than 4 nm. CSAC and CBAC showed good removal performance for P204 under low pH conditions, with removal efficiencies significantly higher than those of commonly used adsorption resins (XAD-4 and IRA900). The adsorption kinetics of P204 conformed to the pseudo-second-order kinetic model, and the adsorption isotherms conformed to the Langmuir model, indicating a monolayer chemical reaction mechanism. Both adsorbents exhibited strong anti-interference capabilities; their adsorption performance for P204 did not change greatly with the ambient temperature or the concentrations of common interfering ions. Column experiments demonstrated that CSAC could effectively fix dissolved P204 with a removal efficiency exceeding 90%. The fixed P204 could be desorbed with acetone. The findings provide an effective method for the recovery of P204 and the regeneration of spent activated carbon, which shows promise for practical applications in the future. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

19 pages, 1187 KiB  
Article
Derivatizing Agent Selection for Hydrophilic Lysine- and Arginine-Containing Tetradecapeptide Analysis in Human Plasma by RP HPLC-MS/MS
by Margarita A. Tokareva, Evgeny S. Melnikov, Elizaveta N. Fisher, Tatiana A. Rodina, Igor E. Shohin and Maria V. Belova
Analytica 2025, 6(3), 23; https://doi.org/10.3390/analytica6030023 - 10 Jul 2025
Viewed by 252
Abstract
The application of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) in the analysis of peptide therapeutics demonstrates its capacity to achieve high sensitivity and selectivity, which are essential qualities for the expanding peptide therapeutic industry. Given the challenges posed by hydrophilic peptides [...] Read more.
The application of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) in the analysis of peptide therapeutics demonstrates its capacity to achieve high sensitivity and selectivity, which are essential qualities for the expanding peptide therapeutic industry. Given the challenges posed by hydrophilic peptides in reversed-phase chromatography, we investigated the necessity of a derivatization procedure to improve chromatographic separation and quasimolecular ion fragmentation during MS/MS detection. We investigated how eight different derivatizing agents react with a hydrophilic lysine- and arginine-containing human ezrin peptide-1 (HEP-1) to identify the most suitable one. The results showed that the reaction of HEP-1 with propionic anhydride proceeds most rapidly and completely, providing a high and reproducible yield of the product, which has sufficient retention on the RP column. The 4-propionylated derivative of HEP-1, compared to the other derivatives considered, demonstrates the most pronounced MS/MS fragmentation. The retention time of 2.42 min allows the separation of the substance from the interfering components of the blood plasma matrix and provides a limit of quantification of 5.00 ng/mL, which allows the use of this derivatizing agent for subsequent applications in pharmacokinetic studies, and this approach can improve the analytical parameters of similar peptides in other HPLC-MS/MS studies. Full article
(This article belongs to the Section Chromatography)
Show Figures

Figure 1

15 pages, 3453 KiB  
Article
Feasibility of Struvite Crystals Obtained from Swine Wastewater and Urban Sewage Sludge Liquid Fraction as Fertilising Product
by Rubén Rodríguez-Alegre, Sergi Durán-Videra, Manuel Cepero-Sánchez, Laura Pérez Megías, Carlos Andecochea Saiz and Xialei You
Sustainability 2025, 17(13), 6080; https://doi.org/10.3390/su17136080 - 2 Jul 2025
Viewed by 400
Abstract
Increasing global food demand has led to an intensive use of synthetic fertilisers. In this regard, the use of non-conventional streams such as swine wastewater (SW) and urban sewage sludge liquid fraction (USS) for the production of bio-based fertilisers can increase the sustainability [...] Read more.
Increasing global food demand has led to an intensive use of synthetic fertilisers. In this regard, the use of non-conventional streams such as swine wastewater (SW) and urban sewage sludge liquid fraction (USS) for the production of bio-based fertilisers can increase the sustainability of both the fertiliser industry and agriculture while reducing the reliance on imported nutrients. In this work, USS and SW were assessed for the production of struvite at different PO43−:Mg2+ ratios. Significant differences were found in terms of struvite crystals’ shape and size among both feedstocks due to the different saturation indexes, and it was concluded that PO43−:Mg2+ ratios of 1:2 for SW and 1:1 for USS were the most suitable for obtaining big crystals suitable to be used for direct fertilisation. In addition, it was observed that the crystallisation process is highly dependent on the presence of interfering ions (mainly Ca) that can result in the formation of hydroxyapatite instead of struvite. Finally, recovering struvite from SW and USS could potentially reduce the European import of P by up to 6.5%. Full article
Show Figures

Graphical abstract

19 pages, 3384 KiB  
Article
High-Sensitivity Sensor for Palladium Detection in Organic Solvent
by Adrianna Pach, Agnieszka Podborska and Magdalena Luty-Błocho
Int. J. Mol. Sci. 2025, 26(12), 5613; https://doi.org/10.3390/ijms26125613 - 11 Jun 2025
Viewed by 300
Abstract
A tandem UV–Vis and fluorescence spectroscopy method was developed for the detection of Pd(II) ions in ethanol. The formation of a complex between Pd(II) ions and tropaeolin OO (TR OO) is accompanied by a change in the color of the solution and evolution [...] Read more.
A tandem UV–Vis and fluorescence spectroscopy method was developed for the detection of Pd(II) ions in ethanol. The formation of a complex between Pd(II) ions and tropaeolin OO (TR OO) is accompanied by a change in the color of the solution and evolution of the characteristic UV–Vis as well as fluorescence spectra. The optimal detection conditions were achieved at a 3:1 (mL/mL) volume ratio of Pd(II) to TR OO, at 50 °C. UV–Vis spectroscopy enabled the detection of complex formation process over time, while fluorescence spectroscopy allowed a rapid response within 10 min. The limit of detection (LOD) of Pd(II) ions using UV–Vis spectrophotometry was 10 μmol/dm3 at 535 nm. For spectrofluorimetric detection, the LOD was 10 μmol/dm3, with an emission signal observed at 630 nm after 10 min. The kinetics studies showed a stepwise complex formation pathway, supported by DFT calculations. The performance of the method was verified in the presence of interfering metal ions, including Li(I), Na(I), Al(III), Ni(II), Mg(II), Ca(II), Co(II), and Zn(II), confirming its applicability in complex matrices. This approach provides efficient palladium determination in organic solvents, contributing to sustainable practices in metal recycling. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

13 pages, 2721 KiB  
Article
Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions
by Xiaonan Geng, Lixin Zhang, Duan Xiong, Zhen Su and Qingqing Guan
Sensors 2025, 25(11), 3470; https://doi.org/10.3390/s25113470 - 30 May 2025
Viewed by 428
Abstract
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. [...] Read more.
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. Herein we report a dual-mode supramolecular sensing system constructed from a unique three-component assembly involving a terpyridine platinum (II) complex, oxalate, and Zn2+, enabling highly specific detection performance for Zn2+. The supramolecular sensing system exhibits excellent selectivity among various interfering substances, accompanied by ultra-low detection limit (0.199 μM) and fast response (<3 s). The high recognization capacity comes from tri-component-based supramolecular assembly, while the dual-mode response arises from the generation of intermelcular Pt-Pt and π-π interactions, which yields absorption and emission originating from low-energy metal–metal-to-ligand charge transfer (MMLCT) transitions. This work marks a pioneering demonstration for highly specific detection of Zn2+ and inspires an alternative strategy for designing cation probes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

20 pages, 5360 KiB  
Article
Highly Efficient Removal of Cadmium from Wastewater Using Eco-Friendly and Cost-Effective Amorphous Silicoaluminophosphates as Adsorbent Particles
by Hamza Annath, Oluwafikayo Jaiyeola and Chirangano Mangwandi
Separations 2025, 12(5), 128; https://doi.org/10.3390/separations12050128 - 16 May 2025
Viewed by 805
Abstract
This article presents a study on the development of amorphous aluminophosphate (Am-AlP) and silico-aluminophosphate (Am-SiAlP) materials for the removal of cadmium (Cd) from wastewater. Cadmium is a toxic heavy metal that poses significant environmental and health risks, and its removal from water sources [...] Read more.
This article presents a study on the development of amorphous aluminophosphate (Am-AlP) and silico-aluminophosphate (Am-SiAlP) materials for the removal of cadmium (Cd) from wastewater. Cadmium is a toxic heavy metal that poses significant environmental and health risks, and its removal from water sources is crucial. This study explores the synthesis of these materials, focusing on the impact of silicon content on their adsorption properties. The materials were characterized using various techniques, including FTIR, XRD, TGA, and BET analysis, which revealed that the incorporation of silicon increased the surface area and porosity of the adsorbents, enhancing their cadmium removal efficiency. The Am-SiAlP (7.5) sample, with a 7.5 mol% Si content, showed the highest adsorption capacity (52.63 mg g−1) and removal efficiency (93%). Kinetic studies revealed that over 90% of cadmium was removed within the first 30 min, indicating rapid adsorption capabilities. The adsorption process was found to follow a pseudo-second-order kinetic model, indicating chemisorption as the rate-limiting step. The Langmuir isotherm model best described the adsorption, suggesting monolayer adsorption of cadmium on the adsorbent surface. This study also investigated the effect of interfering ions, showing that while the presence of other ions slightly reduced the adsorption efficiency, the Am-SiAlP (7.5) material still performed well. This research concludes that Am-SiAlP materials, particularly Am-SiAlP (7.5), are promising adsorbents for cadmium removal due to their high efficiency, cost-effectiveness, and environmental friendliness. Full article
(This article belongs to the Special Issue Adsorption/Degradation Methods for Water and Wastewater Treatment)
Show Figures

Figure 1

12 pages, 3257 KiB  
Article
Enhanced Separation of Palladium from Nuclear Wastewater by the Sulfur-Rich Functionalized Covalent Organic Framework
by Junli Wang, Chen Luo, Wentao Wang, Hui Wang, Yao Liu, Jianwei Li and Taihong Yan
Nanomaterials 2025, 15(10), 714; https://doi.org/10.3390/nano15100714 - 9 May 2025
Cited by 1 | Viewed by 798
Abstract
The separation of palladium from radioactive waste streams represents a critical aspect of the secure handling and disposal of such hazardous materials. Palladium, in addition to its radioactive nature, holds intrinsic value as a resource. Despite the urgency, prevailing adsorbents fall short in [...] Read more.
The separation of palladium from radioactive waste streams represents a critical aspect of the secure handling and disposal of such hazardous materials. Palladium, in addition to its radioactive nature, holds intrinsic value as a resource. Despite the urgency, prevailing adsorbents fall short in their ability to effectively separate palladium under highly acidic environments. To surmount this challenge, our research has pioneered the development of 1,3,5-tris(4-aminophenyl)benzene-2,5-Bis(methylthio)terephthalaldehyde COF (TAPB-BMTTPA-COF), a novel material distinguished by its remarkable stability and an abundance of sulfur-containing functional groups. Leveraging the pronounced affinity of the soft ligands’ nitrogen and sulfur within its molecular architecture, TAPB-BMTTPA-COF demonstrates an exceptional capability for the selective adsorption of palladium. Empirical evidence underscores the material’s swift adsorption kinetics, with equilibrium achieved in as little as ten minutes, and its broad tolerance to varying acidity levels ranging from 0.1 to 3 M HNO3. Furthermore, TAPB-BMTTPA-COF boasts an impressive adsorption capacity, peaking at 343.6 mg/g, coupled with high selectivity in 13 interfering ions’ environment and the ability to be regenerated, making it a sustainable solution. Comprehensive analyses, including Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), alongside Density Functional Theory (DFT) calculations, have corroborated the pivotal role played by densely packed nitrogen and sulfur active sites within the framework. These sites exhibit a robust affinity for Pd(II), which is the cornerstone of the material’s outstanding adsorption efficacy. The outcomes of this research underscore the immense potential of COFs endowed with resilient linkers and precisely engineered functional groups. Such COFs can adeptly capture metal ions with high selectivity, even in the face of severe environmental conditions, thereby paving the way for the more effective and environmentally responsible management of radioactive waste. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

18 pages, 4815 KiB  
Article
Functionalization of Rice Husk for High Selective Extraction of Germanium
by Qunshan Wei, Wei Zeng, Siyi Ding, Zhemin Shen, Xinshan Song, Yuhui Wang, Charles Nzila and Christopher W. K. Chow
Processes 2025, 13(5), 1367; https://doi.org/10.3390/pr13051367 - 29 Apr 2025
Viewed by 554
Abstract
It is of strategic significance to extract germanium (Ge) in an ecological way for sustainable development. Adsorbents that already adsorb Ge have disadvantages such as poor selectivity and low adsorption capacity. In this study, a novel adsorbent material based on rice husk functionalized [...] Read more.
It is of strategic significance to extract germanium (Ge) in an ecological way for sustainable development. Adsorbents that already adsorb Ge have disadvantages such as poor selectivity and low adsorption capacity. In this study, a novel adsorbent material based on rice husk functionalized with tannic acid was developed for the efficient extraction of Ge from simulated coal fly ash leachate. The adsorption capacity of tannic acid-functionalized rice husk (TA-EPI-ORH) for Ge was 19.9 times higher than that of untreated rice husk, demonstrating significantly improved performance. The results showed that the adsorption process of Ge by TA-EPI-ORH is consistent with pseudo-second-order kinetic and Freundlich isotherm model. TA-EPI-ORH had excellent selective adsorption properties, with adsorption of 1.40 mg L−1 Ge exceeding 95% and solid-liquid partition coefficients of 4380 mL g−1, even in the presence of nine impurity metal ions (average concentration: 479.08 mg L−1). When compared with the two main coexistence ions—aluminum (Al) and calcium (Ca)—both of which have the relatively highest concentrations (Al: 1594.20 mg L−1, Ca: 1740.13 mg L−1), the separation factors for Ge still maintain relatively high level with SF(Ge/Al) = 42.57 and SF(Ge/Ca) = 39.93. Compared to existing studies, TA-EPI-ORH exhibits superior selective adsorption performance even with the presence of more interfering ions. After elution of the adsorbed Ge from TA-EPI-ORH, the extraction rate of Ge with low initial concentration (1.40 mg L−1) reached 85.17%, while the extraction rates of Al and Ca were only 1.02% and 1.18%, respectively. Further research revealed that the catechol groups on the surface of TA-EPI-ORH formed stable complexes with Ge, whereas the complexes with coexisting ions (e.g., Ca and Al) were unstable, thereby ensuring high selectivity for Ge. This green chemistry-based functionalization of rice husk not only enables high-value utilization of agricultural waste but also provides a sustainable and eco-friendly strategy for efficient Ge separation and recovery. Full article
Show Figures

Figure 1

15 pages, 6658 KiB  
Article
Green Synthesis of Silver Nanoclusters for Sensitive and Selective Detection of Toxic Metal Ions
by Sayed M. Saleh, Shahad Altaiyah and Reham Ali
Analytica 2025, 6(2), 15; https://doi.org/10.3390/analytica6020015 - 24 Apr 2025
Viewed by 834
Abstract
This research introduces a novel synthetic method for introducing highly luminescent silver nanoclusters (AgNCs). The technique relies on coffee Arabica seed extraction (CSE), which is the focus of this study. Our developed and manufactured ecologically friendly approach has enhanced the selectivity [...] Read more.
This research introduces a novel synthetic method for introducing highly luminescent silver nanoclusters (AgNCs). The technique relies on coffee Arabica seed extraction (CSE), which is the focus of this study. Our developed and manufactured ecologically friendly approach has enhanced the selectivity of AgNCs for Hg(II) ions. The coffee extract was employed in the synthesis process to stabilize and enhance the quantity of AgNCs generated. Various advanced techniques were used to characterize the AgNCs precisely in their prepared condition concerning size, surface modification, and composition. The fluorescence quenching of the AgNCs was the mechanism via which the CSE-AgNCs reacted to the principal metal ions in the experiment. Using this sensing methodology, a very accurate and selective sensing method is provided for Hg(II) in the dynamic range of 0.117 µM to 1.4 µM, with a limit of detection (LOD) equal to 35.21 nM. Comparative research was conducted to determine how selective CSE-AgNCs are for Hg(II) ions compared to other ions. Consequently, a notable degree of selectivity of AgNCs towards these Hg(II) metal ions was achieved, allowing the sensitive detection of Hg(II) metal ions, even their interfering metal ions, in the environment. AgNCs can detect Hg(II) at acceptable values within the nanomolar range. Based on their characteristics, Hg(II) ions were detected in real samples using CSE-AgNCs. Full article
Show Figures

Figure 1

18 pages, 1818 KiB  
Article
Bisphenol A Exposure Modifies the Vasoactive Response of the Middle Cerebral Artery
by Henrique Eloi Costa, Margarida Lorigo and Elisa Cairrao
Int. J. Mol. Sci. 2025, 26(8), 3896; https://doi.org/10.3390/ijms26083896 - 20 Apr 2025
Viewed by 836
Abstract
Bisphenol A (BPA) is the most used widely synthetic compound for the manufacture of polycarbonate plastics and epoxy resins produced worldwide. Given its androgenic and estrogenic activities, BPA is an endocrine disruptor that is linked to neurological and vascular outcomes, including strokes. Therefore, [...] Read more.
Bisphenol A (BPA) is the most used widely synthetic compound for the manufacture of polycarbonate plastics and epoxy resins produced worldwide. Given its androgenic and estrogenic activities, BPA is an endocrine disruptor that is linked to neurological and vascular outcomes, including strokes. Therefore, this study aims to investigate the mechanisms by which a 24 h exposure to BPA (0.002–20 μM) modifies the contractile function of rat middle cerebral artery (MCA) smooth muscle cells (SMCs). Thus, MCA explants were isolated from Wistar rats, and the SMC-MCA vasoactive response was assessed using planar cell surface area, while the gene expression of proteins and ion channel subunits involved in the MCA vasoactive response was evaluated by real-time quantitative PCR. The exposure to BPA (0.02 and 2 μM) decreased the noradrenaline (NA) vasocontractile response and sodium nitroprusside (SNP) vasorelaxant response. Moreover, exposure to BPA (0.02 and 2 μM) increased the gene expression of the soluble guanyl cyclase protein and the large conductance Ca2+-activated K+ channels (1.1 α-subunit). These results suggest an impairment of the SMC-MCA vasoactive response induced by intermediate BPA concentrations, an effect not attained for the lowest or highest exposure concentrations (non-monotonic inverted U-shaped response). In summary, these findings suggest that BPA exposure modifies MCA vascular homeostasis by interfering with the nitric oxide (NO) pathway and may, thus, be involved in ischemic stroke development. Full article
Show Figures

Graphical abstract

28 pages, 17349 KiB  
Article
Removal of Hexavalent Chromium Ions from Industrial Effluents Using Natural and Modified Diatomite, Taurite, Lewatit M500, and Activated Carbon
by Bagdaulet Kenzhaliyev, Dametken Fischer, Saniya Temirova, Almagul Ultarakova, Zhazira Baltabekova, Nauryzbek Bakhytuly and Kenzhegali Smailov
Processes 2025, 13(4), 997; https://doi.org/10.3390/pr13040997 - 26 Mar 2025
Cited by 1 | Viewed by 388
Abstract
Hexavalent chromium Cr (VI) compounds present in ilmenite concentrate not only pose significant environmental hazards due to their toxicity but also complicate further processing, interfering with technological operations in industrial production. The high chromium content in ilmenite concentrates hinders their conversion into titanium-containing [...] Read more.
Hexavalent chromium Cr (VI) compounds present in ilmenite concentrate not only pose significant environmental hazards due to their toxicity but also complicate further processing, interfering with technological operations in industrial production. The high chromium content in ilmenite concentrates hinders their conversion into titanium-containing slag, necessitating the removal of chromium ions to permissible residual levels to produce titanium dioxide. In this study, various sorbents were investigated for the removal of chromate ions from the industrial effluents generated during ilmenite concentrate processing. The sorbents examined included natural and modified diatomite, activated carbon, taurite (shungite), and the ion-exchange resin Lewatit M500. The structures of both natural and modified diatomite were analyzed using scanning electron microscopy (SEM). It was determined that natural diatomite samples consist of diatom frustules of various shapes and their fragments, with structural element sizes ranging from submicron dimensions to 50 µm. A mathematical analysis of the sorption data for hexavalent chromium ion removal from solutions was performed. The results demonstrated high sorption efficiencies for Lewatit M500 (98.34%) and diatomite modified with iron compounds (98.95%). The findings suggest that diatomite is a promising sorbent for chromate ion removal from wastewater due to its availability and potential for chemical modification. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

11 pages, 5152 KiB  
Article
Synthesis of Tumbleweed-like MoSe2 Nanostructures for Ultrasensitive Electrochemical Detection of Uric Acid
by Peizheng Shi, Ningbin Zhao, Zhuang Sun, Kaiqiang Sun, Wubo Chu, Hsu-Sheng Tsai, Lidong Wu, Tao Cai, Yuezhong Wang, Nan Jiang, Chen Ye, Li Fu, Lixin Xu and Cheng-Te Lin
Chemosensors 2025, 13(3), 81; https://doi.org/10.3390/chemosensors13030081 - 2 Mar 2025
Cited by 1 | Viewed by 1249
Abstract
Uric acid (UA), the final metabolic product of purines, plays a crucial role in human health monitoring. The UA concentration in biological fluids serves as a diagnostic marker for various disorders, particularly kidney diseases, and represents a potential therapeutic target. Given the growing [...] Read more.
Uric acid (UA), the final metabolic product of purines, plays a crucial role in human health monitoring. The UA concentration in biological fluids serves as a diagnostic marker for various disorders, particularly kidney diseases, and represents a potential therapeutic target. Given the growing emphasis on preventive healthcare, developing methods for real-time UA detection has become increasingly significant. Here, we demonstrate the synthesis of novel tumbleweed-like molybdenum diselenide (MoSe2) nanostructures through a single-step hydrothermal process. The synthesized MoSe2 was subsequently hybridized with reduced graphene oxide (rGO) to construct electrodes for UA sensing. Differential pulse voltammetry (DPV) measurements revealed that the MoSe2/rGO-modified glassy carbon electrode (GCE) exhibited excellent UA detection capabilities under optimized conditions. The sensor demonstrated a remarkably low limit of detection (LOD) of 28.4 nM and maintained linearity across a wide concentration range (40 nM to 200 μM). Notably, the sensor showed high selectivity for UA detection even in the presence of common interfering species, including citric acid (CA), dopamine (DA), ascorbic acid (AA), cysteine (Cys), glucose (Glu), oxalic acid (OA), sodium ions (Na+), and potassium ions (K+). The developed sensor displayed outstanding selectivity, stability, and reproducibility characteristics. This synthetic approach offers promising opportunities for developing MoSe2-based electrochemical sensing platforms suitable for diverse bioanalytical applications. Full article
Show Figures

Figure 1

42 pages, 3322 KiB  
Review
Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications
by Mahsa Motshakeri, Barbara Angoro, Anthony R. J. Phillips, Darren Svirskis, Paul A. Kilmartin and Manisha Sharma
Sensors 2025, 25(5), 1474; https://doi.org/10.3390/s25051474 - 27 Feb 2025
Cited by 1 | Viewed by 1369
Abstract
Efforts to quantify iron ion concentrations across fields such as environmental, chemical, health, and food sciences have intensified over the past decade, which drives advancements in analytical methods, particularly electrochemical sensors known for their simplicity, portability, and reliability. The development of electrochemical methods [...] Read more.
Efforts to quantify iron ion concentrations across fields such as environmental, chemical, health, and food sciences have intensified over the past decade, which drives advancements in analytical methods, particularly electrochemical sensors known for their simplicity, portability, and reliability. The development of electrochemical methods using non-mercury electrodes is increasing as alternatives to environmentally unsafe mercury-based electrodes. However, detecting iron species such as Fe(II) and Fe(III) remains challenging due to their distinct chemical properties, continuous oxidation-state interconversion, presence of interfering species, and complex behavior in diverse environments and matrixes. Selective trace detection demands careful optimization of electrochemical methods, including proper electrode materials selection, electrode surface modifications, operating conditions, and sample pretreatments. This review critically evaluates advancements over the past decade in mercury-free electrode materials and surface modification strategies for iron detection. Strategies include incorporating a variety of nanomaterials, composites, conducting polymers, membranes, and iron-selective ligands to improve sensitivity, selectivity, and performance. Despite advancements, achieving ultra-low detection limits in real-world samples with minimal interference remains challenging and emphasizes the need for enhanced sample pretreatment. This review identifies challenges, knowledge gaps, and future directions and paves the way for advanced iron electrochemical sensors for environmental monitoring, health diagnostics, and analytical precision. Full article
Show Figures

Figure 1

15 pages, 5808 KiB  
Article
Synthesis of Zeolitic Imidazolate Framework-8 from Waste Electrodes via Ball Milling for Efficient Uranium Removal
by Minhua Su, Jinyao Zhu, Ruoning Wu, Jiaqi Pan, Jingran Yang, Jiaxue Zhao, Diyun Chen, Changzhong Liao, Kaimin Shih and Shengshou Ma
Separations 2025, 12(2), 40; https://doi.org/10.3390/separations12020040 - 6 Feb 2025
Cited by 1 | Viewed by 911
Abstract
Developing a cost-effective approach for the remediation of wastewater containing uranyl [U(VI)] ions is essentially important to ecosystems and human health. In this study, a Zn-based ZIF-8 framework was fabricated from wasted batteries through an environmentally friendly ball milling process featuring a distinct [...] Read more.
Developing a cost-effective approach for the remediation of wastewater containing uranyl [U(VI)] ions is essentially important to ecosystems and human health. In this study, a Zn-based ZIF-8 framework was fabricated from wasted batteries through an environmentally friendly ball milling process featuring a distinct microstructure compared to those synthesized from commercial Zn(II) sources. The as-obtained Zn-based ZIF-8 framework can effectively remove U(VI) ions from water, and a high removal efficiency of up to 99% is achieved across different process parameters, including initial dosage, pH values, and the presence of interfering ions. The superior U(VI) removal performance is attributed to the synergistic effect of microstructural features (e.g., crystallite size, specific surface area and pore diameter) and chemical interaction within the framework of Zn-based ZIF-8, resulting in the formation of the U···N chelates. This study integrates waste upcycling and hazardous U(VI) removal in an environmentally sound way, thereby promoting a circular economy. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

19 pages, 3209 KiB  
Article
Lipidomics Analysis Reveals the Effects of Docosahexaenoic Acid from Different Sources on Prefrontal-Cortex Synaptic Plasticity
by Zude He, Wei Xiong, Yue Yang, Yifan Zhang, Boying Li, Fuqing Wang, Yixuan Li, Ran Wang and Yanan Sun
Nutrients 2025, 17(3), 457; https://doi.org/10.3390/nu17030457 - 27 Jan 2025
Viewed by 1719
Abstract
Background: Docosahexaenoic Acid (DHA) is an extensively used nutrition supplement in dairy food because of its beneficial effects on cognition. To find an effective DHA intervention for the synapses in the cortex during this period, this study aimed to use targeted lipidomics to [...] Read more.
Background: Docosahexaenoic Acid (DHA) is an extensively used nutrition supplement in dairy food because of its beneficial effects on cognition. To find an effective DHA intervention for the synapses in the cortex during this period, this study aimed to use targeted lipidomics to evaluate the lipid composition of prefrontal-cortex (PFC) tissue in different DHA interference methods. Methods: Analyzed samples were taken from interfering feeding Bama pigs (BPs) (3 months) fed with soybean oil (Group B), blended oil (Group M), naturally DHA-supplemented milk with blended oil (Group OM), and DHA from fish oil (FO) with blended oil (Group Y). We also examined the protein expression levels of BDNF, GAP43, and MBP. Results: The lipidomics analysis identified 80 different related negative-ion lipid content and filtered the biomarker lipids in PFC tissue. We observed significant lipid composition changes between group Y and other groups, especially for content levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM). The same observations were made from mRNA and protein expressions related to lipid transportation, phosphatidylserine (PS) synthetase, and synaptic plasticity in PFC tissues between group Y and other groups, including the mRNA expression levels of CD36, BDNF, and PTDSS1. The analysis of protein expression levels showed that the metabolism mode of DHA intervention from FO benefited the PFC, PS metabolism, and PFC synaptic plasticity of infants. Conclusions: The results highlight further prospects for the DHA intervention mode, which provides new routes for other studies on polyunsaturated-fatty-acid (PUFA) interference for infants. Full article
(This article belongs to the Special Issue Nutrition Interventions and Their Impact on Brain Health and Disease)
Show Figures

Graphical abstract

Back to TopTop