Functionalization of Rice Husk for High Selective Extraction of Germanium
Abstract
:1. Introduction
2. Experiment and Method
2.1. Materials and Reagents
2.2. Synthesis of Adsorbents
2.3. Adsorption Experiment
2.3.1. Effect of pH on Ge Adsorption
2.3.2. Effect of Adsorbent Mass on Ge Adsorption
2.3.3. Effect of Adsorbent Type on Ge Adsorption
2.3.4. Effect of Time on Ge Adsorption
2.3.5. Adsorption Isotherm
2.3.6. Selective Adsorption Study
2.4. Desorption
2.5. Analytical Method
3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. SEM
3.1.2. FTIR
3.1.3. Specific Surface and Porosity Analyser
3.2. Effect of pH on Ge Adsorption
3.3. Effect of Adsorbent Mass on Ge Adsorption
3.4. Effect of Adsorbent Type on Ge Adsorption
3.5. Effect of Adsorption Time on Ge Adsorption
3.6. Adsorption Isotherm
3.7. Adsorption Thermodynamics
3.8. Selective Adsorption Properties
Absorbent | Selective Results | Refs. | ||
---|---|---|---|---|
Composition of Ions (mg L−1) | Number of Ions b | Ge SF Range a | ||
catechol-functionalized silica | Ge: 10 B: 10, Te: 10 (pH 4.5) | 2 | 5.3 (Te)-281.8 (B) | [19] |
catechol-formaldehyde resin | Ge: 10 Zn: 10, Si: 10 (pH 6) | 2 | 5 (Zn)-28 (Si) | [20] |
Three Dimension-α-FeOOH | Ge: 5 Ga: 5 (pH 12) | 1 | Ga (41.56) | [28] |
SOL-KELEX | Ge: 51.3 Zn: 2.5, Sb: 4.5, As: 61.8, Ni: 27.8 (pH 6.2) | 4 | 28.7 (Zn)-no ads (Sb) | [43] |
TA-EPI-ORH | Ge: 1.40 Al, Ca, Fe, Na, K, Ga, Zn, Cu, Mg (Table 1) (pH 2) | 9 | 33.18 (Cu)-147.07 (Na) | this work |
3.9. Selective Adsorption Mechanism
3.10. Desorption of Adsorbents
3.11. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rafiee, P.; Ghassa, S.; Moosakazemi, F.; Khosravi, R.; Siavoshi, H. Recovery of a critical metal from electronic wastes: Germanium extraction with organic acid. J. Clean. Prod. 2021, 315, 128223. [Google Scholar] [CrossRef]
- Tan, Z.D.; Jin, X.; Zhen, Y.; Wei, C.; Li, X.B.; Deng, Z.G.; Li, M.T. Recovery of indium and germanium from In-Ge residue leaching solution using solvent extraction and tannin precipitation. Sep. Purif. Technol. 2023, 323, 124416. [Google Scholar] [CrossRef]
- Moskalyk, R.R. Review of germanium processing worldwide. Miner. Eng. 2004, 17, 393–402. [Google Scholar] [CrossRef]
- Frenzel, M.; Ketris, M.P.; Gutzmer, J. On the geological availability of germanium. Miner. Depos. 2014, 49, 471–486. [Google Scholar] [CrossRef]
- Arroyo, F.; Fernández-Pereira, C. Hydrometallurgical recovery of germanium from coal gasification fly ash. solvent extraction method. Ind. Eng. Chem. Res. 2008, 47, 3186–3191. [Google Scholar] [CrossRef]
- Huang, Y.F.; Wang, M.M.; Liu, B.B.; Su, S.P.; Sun, H.; Yang, S.Z.; Han, G.H. The extraction and separation of scarce critical metals: A review of gallium, Indium and germanium extraction and separation from solid wastes. Separations 2024, 11, 91. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Lee, M.S. A review on germanium resources and its extraction by hydrometallurgical method. Miner. Process. Extr. Metall. Rev. 2020, 42, 406–426. [Google Scholar] [CrossRef]
- Hong, Y.; Di, H.K.; Li, S.W.; Yang, K.; Zhang, L.B. Mechanism of extracting germanium from Ge-Containing solution with tannins. Metals 2023, 13, 774. [Google Scholar] [CrossRef]
- Drzazga, M.; Palmowski, A.; Benke, G.; Ciszewski, M.; Leszczynska-Sejda, K. Recovery of germanium and indium from leaching solution of germanium dross using solvent extraction with TOA, TBP and D2EHPA. Hydrometallurgy 2021, 202, 105605. [Google Scholar] [CrossRef]
- Kamran Haghighi, H.; Irannajad, M.; Fortuny, A.; Sastre, A.M. Recovery of germanium from leach solutions of fly ash using solvent extraction with various extractants. Hydrometallurgy 2018, 175, 164–169. [Google Scholar] [CrossRef]
- Liu, F.P.; Liu, Z.H.; Li, Y.H.; Wilson, B.P.; Liu, Z.Y.; Zeng, L.; Lundström, M. Recovery and separation of gallium(III) and germanium(IV) from zinc refinery residues: Part II: Solvent extraction. Hydrometallurgy 2017, 171, 149–156. [Google Scholar] [CrossRef]
- Wang, P.C.; Liu, Z.H.; Zhang, T.; Liu, Z.Y.; Zhu, D.Q.; Jiang, T. Extraction mechanism of germanium in sulfate solutions using a tertiary amine (N235)-based solvent extraction system. Sep. Purif. Technol. 2023, 311, 123305. [Google Scholar] [CrossRef]
- Hernández-Expósito, A.; Chimenos, J.M.; Fernández, A.I.; Font, O.; Querol, X.; Coca, P.; García Peña, F. Ion flotation of germanium from fly ash aqueous leachates. Chem. Eng. J. 2006, 118, 69–75. [Google Scholar] [CrossRef]
- Cote, G.; Bauer, D. liquid–liquid extraction of germanium with oxine derivatives. Hydrometallurgy 1980, 5, 149–160. [Google Scholar] [CrossRef]
- De Schepper, A. liquid–liquid extraction of germanium by LIX 63. Hydrometallurgy 1976, 1, 291–298. [Google Scholar] [CrossRef]
- Tao, J.; Tao, Z.; Liu, Z.H. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction. J. Clean. Prod. 2021, 294, 126217. [Google Scholar] [CrossRef]
- Ahmad, K.; Shah, I.A.; Ali, S.; Khan, M.T.; Qureshi, M.B.A.; Shah, S.H.A.; Ali, A.; Rashid, W.; Gul, H.N. Synthesis and evaluation of Ca-doped ferrihydrite as a novel adsorbent for the efficient removal of fluoride. Environ. Sci. Pollut. Res. 2022, 29, 6375–6388. [Google Scholar] [CrossRef]
- Patel, M.; Karamalidis, A.K. Catechol-Functionalized chitosan synthesis and selective extraction of germanium (IV) from acidic solutions. Ind. Eng. Chem. Res. 2023, 62, 2892–2903. [Google Scholar] [CrossRef]
- Cui, W.; Wang, S.; Peng, J.; Zhang, L.; Zhang, G. Catechol-functionalized nanosilica for adsorption of germanium ions from aqueous media. J. Sol-Gel Sci. Technol. 2015, 77, 666–674. [Google Scholar] [CrossRef]
- Arrambide Cruz, C.; Marie, S.; Arrachart, G.; Pellet-Rostaing, S. Selective extraction and separation of germanium by catechol based resins. Sep. Purif. Technol. 2018, 193, 214–219. [Google Scholar] [CrossRef]
- Nozoe, A.; Abe, M.; Ohto, K.; Kawakita, H. Germanium recovery using polyphenol microspheres prepared by horseradish peroxidase reaction. J. Chem. Technol. Biotechnol. 2011, 86, 1374–1378. [Google Scholar] [CrossRef]
- Nozoe, A.; Ohto, K.; Kawakita, H. Germanium recovery using catechol complexation and permeation through an anion-exchange membrane. Sep. Sci. Technol. 2012, 47, 62–65. [Google Scholar] [CrossRef]
- Virolainen, S.; Heinonen, J.I.; Paatero, E. Selective recovery of germanium with N-methylglucamine functional resin from sulfate solutions. Sep. Purif. Technol. 2013, 104, 193–199. [Google Scholar] [CrossRef]
- Yasuda, S.; Kawazu, K. Separation of germanium from ethylene glycol distillates by N-methylglucamine resin. Sep. Sci. Technol. 1991, 26, 1273–1277. [Google Scholar] [CrossRef]
- Khan, A.S.; Chow, A. X-ray fluorescence spectrometric determination of germanium after extraction with polyurethane foam. Anal. Chim. Acta 1990, 238, 423–426. [Google Scholar] [CrossRef]
- Marco-Lozar, J.P.; Cazorla-Amorós, D.; Linares-Solano, A. A new strategy for germanium adsorption on activated carbon by complex formation. Carbon 2007, 45, 2519–2528. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Liu, X.; Kang, P. Sorption behavior of germanium(IV) on titanium dioxide nanoparticles. Russ. J. Inorg. Chem. 2012, 57, 622–628. [Google Scholar] [CrossRef]
- Wu, X.Q.; Yuan, M.Y.; Guo, X.J.; Zhang, L. Fast coadsorption and selective separation of gallium(III) and germanium(IV) from aqueous solutions by 3D hierarchical porous hoya-like α-FeOOH. ACS Sustain. Chem. Eng. 2019, 7, 15939–15947. [Google Scholar] [CrossRef]
- Geromel-Costa, C.G.A.; Corbi, J.J.; Gorni, G.R.; Colombo, V.; Correa, R.C.; Fiamingo, A.; Campana-Filho, S.P. Adsorption of metals by crosslinked chitosan beads in sugarcane contaminated streams. Biomass Bioenergy 2018, 119, 128–134. [Google Scholar] [CrossRef]
- Li, Y.; Tsend, N.; Li, T.; Liu, H.; Yang, R.; Gai, X.; Wang, H.; Shan, S. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Bioresour. Technol. 2019, 273, 136–143. [Google Scholar] [CrossRef]
- Ye, H.; Zhu, Q.; Du, D. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk. Bioresour. Technol. 2010, 101, 5175–5179. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Sillanpää, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Xiong, Y.; Cui, X.; Wang, D.; Wang, Y.; Lou, Z.; Shan, W.; Fan, Y. Diethanolamine functionalized rice husk for highly efficient recovery of gallium(III) from solution and a mechanism study. Mater. Sci. Eng. C 2019, 99, 1115–1122. [Google Scholar] [CrossRef]
- O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008, 99, 6709–6724. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, C.; Dang, Z.; Zhang, H.; Yi, X.; Liu, C. Preparation of cellulose derived from corn stalk and its application for cadmium ion adsorption from aqueous solution. Carbohydr. Polym. 2012, 90, 1008–1015. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhu, L.; Wang, Y.; Lou, Z.N.; Shan, W.J.; Xiong, Y.; Fan, Y. Preparation of a biomass adsorbent for gallium(III) based on corn stalk modified by iminodiacetic acid. J. Taiwan Inst. Chem. Eng. 2018, 91, 291–298. [Google Scholar] [CrossRef]
- Du, J.F.; Zhang, M.M.; Dong, Z.; Yang, X.; Zhao, L. Facile fabrication of tannic acid functionalized microcrystalline cellulose for selective recovery of Ga(III) and In(III) from potential leaching solution. Sep. Purif. Technol. 2022, 286, 120442. [Google Scholar] [CrossRef]
- Hossain, M.F.; Akther, N.; Lu, J.; Duan, C.; Khan, M.T.; Munyaneza, J.; Zhou, Y. Highly effective and reusable cellulose-based amphoteric adsorbent for dye removal from single and binary system. Int. J. Environ. Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Wang, Y.C.; Jiang, X.; Zhang, C.; Jing, X.L.; Liu, Y.H. Synthesis of epoxide functionalized hyperbranched polyurethane and its blending with benzoxazine: Cure kinetics and thermal properties. Polym. Bull. 2017, 74, 4209–4222. [Google Scholar] [CrossRef]
- Patel, M.; Karamalidis, A.K. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies. Sep. Purif. Technol. 2021, 275, 118981. [Google Scholar] [CrossRef]
- Cheng, Y.X.; He, P.; Dong, F.Q.; Nie, X.Q.; Ding, C.C.; Wang, S.; Zhang, Y.; Liu, H.H.; Zhou, S.P. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem. Eng. J. 2019, 367, 198–207. [Google Scholar] [CrossRef]
- Tran, H.N.; Lima, E.C.; Juang, R.-S.; Bollinger, J.-C.; Chao, H.-P. Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study. J. Environ. Chem. Eng. 2021, 9, 106674. [Google Scholar] [CrossRef]
- Park, H.J.; Tavlarides, L.L. Germanium(IV) adsorption from aqueous solution using a Kelex-100 functional adsorbent. Ind. Eng. Chem. Res. 2009, 48, 4014–4021. [Google Scholar] [CrossRef]
- Raj, P.; Patel, M.; Karamalidis, A.K. Chemically modified polymeric resins with catechol derivatives for adsorption, separation and recovery of gallium from acidic solutions. J. Environ. Chem. Eng. 2023, 11, 110790. [Google Scholar] [CrossRef]
Initial Ge | Competing Ion | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al | Fe | Ca | Zn | Cu | Mg | Na | K | Ga | |
14.63 | 1575.90 | 249.07 | 1740.13 | 4.53 | 1.93 | 523.80 | 191.10 | 120.27 | 12.00 |
1.40 | 1594.20 | 236.33 | 1740.13 | 4.13 | 1.87 | 515.80 | 98.73 | 119.60 | 0.97 |
Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|
Experimental Equilibrium Qe (mg g−1) | Model Equilibrium Qem (mg g−1) | k1 (h−1) | R2 | Model Equilibrium Qem (mg g−1) | k2 (g mg−1 h−1) | R2 |
3.77 | 3.38 | 2.34 | 0.79 | 3.61 | 0.93 | 0.94 |
Isotherm Model | Parameters | TA-EPI-ORH |
---|---|---|
Langmuir | Qmax (mg g−1) | 10.98 |
kL (L mg−1) | 0.081 | |
R2 | 0.98 | |
Freundlich | n | 2.24 |
kF ((mg g−1)·(L mg−1)1/n) | 1.60 | |
R2 | 0.99 | |
Temkin | A (L mg−1) | 0.82 |
b ((kJ mol−1)·(g mg−1)) | 1.04 | |
R2 | 0.98 |
T(K) | ΔG0 (kJ mol−1) | ΔH0 (kJ mol−1) | ΔS0 (KJ mol−1 K−1) |
---|---|---|---|
298 | −21.51 | −60.55 | −0.13 |
308 | −19.51 | ||
318 | −18.66 | ||
328 | −17.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Zeng, W.; Ding, S.; Shen, Z.; Song, X.; Wang, Y.; Nzila, C.; Chow, C.W.K. Functionalization of Rice Husk for High Selective Extraction of Germanium. Processes 2025, 13, 1367. https://doi.org/10.3390/pr13051367
Wei Q, Zeng W, Ding S, Shen Z, Song X, Wang Y, Nzila C, Chow CWK. Functionalization of Rice Husk for High Selective Extraction of Germanium. Processes. 2025; 13(5):1367. https://doi.org/10.3390/pr13051367
Chicago/Turabian StyleWei, Qunshan, Wei Zeng, Siyi Ding, Zhemin Shen, Xinshan Song, Yuhui Wang, Charles Nzila, and Christopher W. K. Chow. 2025. "Functionalization of Rice Husk for High Selective Extraction of Germanium" Processes 13, no. 5: 1367. https://doi.org/10.3390/pr13051367
APA StyleWei, Q., Zeng, W., Ding, S., Shen, Z., Song, X., Wang, Y., Nzila, C., & Chow, C. W. K. (2025). Functionalization of Rice Husk for High Selective Extraction of Germanium. Processes, 13(5), 1367. https://doi.org/10.3390/pr13051367