Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (889)

Search Parameters:
Keywords = interfacial reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3810 KiB  
Article
Solar-Driven Selective Benzyl Alcohol Oxidation in Pickering Emulsion Stabilized by CNTs/GCN Hybrids Photocatalyst
by Yunyi Han, Yuwei Hou, Xuezhong Gong, Yu Zhang, Meng Wang, Pekhyo Vasiliy Ivanovich, Meili Guan and Jianguo Tang
Catalysts 2025, 15(8), 753; https://doi.org/10.3390/catal15080753 - 7 Aug 2025
Abstract
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl [...] Read more.
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl alcohol oxidation within a Pickering emulsion system. The relationship between emulsion droplet size and solid emulsifier dosage was investigated and optimized. The enhanced photocatalytic function was supported by an improved photocurrent response and reduced charge-transfer resistance, attributed to superior charge separation efficiency. Consequently, the benzyl alcohol conversion efficiency achieved in the Pickering emulsion system (58.9%) was three-fold of that observed in a traditional oil–water non-emulsion system (19.0%). Key active species were identified as photoholes, and an interfacial reaction mechanism was proposed. This work provides a new approach for extending photocatalytic applications in aqueous environments to diverse organic conversion reactions through the construction of multifunctional photocatalysts. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 9914 KiB  
Article
Phase Equilibria of Si-C-Cu System at 700 °C and 810 °C and Implications for Composite Processing
by Kun Liu, Zhenxiang Wu, Dong Luo, Xiaozhong Huang, Wei Yang and Peisheng Wang
Materials 2025, 18(15), 3689; https://doi.org/10.3390/ma18153689 - 6 Aug 2025
Abstract
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis [...] Read more.
The phase equilibria of the Si-C-Cu ternary system at 700 °C and 810 °C were experimentally investigated for the first time. Fifteen key alloys were prepared via powder metallurgy and analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Isothermal sections were constructed based on the identified equilibrium phases. At 700 °C, eight single-phase regions and six three-phase regions—(C)+(Cu)+hcp, (C)+hcp+γ-Cu33Si7, (C)+γ-Cu33Si7+SiC, γ-Cu33Si7+SiC+ε-Cu15Si4, SiC+ε-Cu15Si4+η-Cu3Si(ht), and SiC+(Si)+η-Cu3Si(ht)—were determined. At 810 °C, nine single-phase regions and seven three-phase regions were identified. The solubility of C and Si/Cu in the various phases was quantified and found to be significantly higher at 810 °C compared to 700 °C. Key differences include the presence of the bcc (β) and liquid phases at 810 °C. The results demonstrate that higher temperatures promote increased mutual solubility and reaction tendencies among Cu, C, and Si. Motivated by these findings, the influence of vacuum hot pressing parameters on SiC-fiber-reinforced Cu composites (SiCf/Cu) was investigated. The optimal processing condition (1050 °C, 60 MPa, 90 min) yielded a high bending strength of 998.61 MPa, attributed to enhanced diffusion and interfacial bonding facilitated by the high-temperature phase equilibria. This work provides essential fundamental data for understanding interactions and guiding processing in SiC-reinforced Cu composites. Full article
Show Figures

Figure 1

14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

12 pages, 3890 KiB  
Article
Visualization of Film Formation Process of Copolyesteramide Containing Phthalazine Moieties During Interfacial Polymerization
by Zeyuan Liu, Hailong Li, Qian Liu, Zhaoqi Wang, Danhui Wang, Peiqi Xu, Xigao Jian and Shouhai Zhang
Membranes 2025, 15(8), 233; https://doi.org/10.3390/membranes15080233 - 1 Aug 2025
Viewed by 201
Abstract
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct [...] Read more.
Interfacial polymerization (IP) has been widely utilized to synthesize composite membranes. However, precise control of this reaction remains a challenge due to the complexity of the IP process. Herein, an optical three-dimensional microscope was used to directly observe the IP process. To construct copolyesteramide containing phthalazine moiety films, rigid monomer 4-(4′-hydroxyphenyl)-2,3-phthalazin-1-one (DHPZ) and flexible monomer piperazine (PIP) were used as aqueous phase monomers, and trimesoyl chloride (TMC) served as the organic phase monomer. Multilayer cellular structures were observed for the copolyesteramide films during the IP process. The effects of multiple factors including the ratio between flexible and rigid monomers, co-solvents, and the addition of phase transfer catalysts on the film growth and the morphologies were investigated. This research aims to deepen our understanding of the IP process, especially for the principles which govern polymer film growth and morphology, to promote new methodologies for regulating interfacial polymerization in composite membrane preparation. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

14 pages, 4080 KiB  
Article
High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance
by Zijun Qian, Kang Li, Yabin Zhou, Hao Xu, Haiyan Qian and Yihua Huang
Materials 2025, 18(15), 3598; https://doi.org/10.3390/ma18153598 - 31 Jul 2025
Viewed by 220
Abstract
This study demonstrates the successful fabrication of high-performance reaction-bonded silicon carbide (RBSC) ceramics through an optimized liquid silicon infiltration (LSI) process employing multi-modal SiC particle gradation and nano-carbon black (0.6 µm) additives. By engineering porous preforms with hierarchical SiC distributions and tailored carbon [...] Read more.
This study demonstrates the successful fabrication of high-performance reaction-bonded silicon carbide (RBSC) ceramics through an optimized liquid silicon infiltration (LSI) process employing multi-modal SiC particle gradation and nano-carbon black (0.6 µm) additives. By engineering porous preforms with hierarchical SiC distributions and tailored carbon sources, the resulting ceramics achieved a compressive strength of 2393 MPa and a flexural strength of 380 MPa, surpassing conventional RBSC systems. Microstructural analyses revealed homogeneous β-SiC formation and crack deflection mechanisms as key contributors to mechanical enhancement. Ultrafine SiC particles (0.5–2 µm) refined pore architectures and mediated capillary dynamics during infiltration, enabling nanoscale dispersion of residual silicon phases and minimizing interfacial defects. Compared to coarse-grained counterparts, the ultrafine SiC system exhibited a 23% increase in compressive strength, attributed to reduced sintering defects and enhanced load transfer efficiency. This work establishes a scalable strategy for designing RBSC ceramics for extreme mechanical environments, bridging material innovation with applications in high-stress structural components. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 225
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

13 pages, 1041 KiB  
Article
Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications
by Gennaro Ruggiero, Davide Di Rosa, Francesco Caso, Roberto Sorrentino, Fernando Zarone and Giuseppe Caso
Materials 2025, 18(15), 3550; https://doi.org/10.3390/ma18153550 - 29 Jul 2025
Viewed by 442
Abstract
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into [...] Read more.
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into the polymer matrix. This study presents the synthesis and FT-IR/Raman characterization of GRAPHYMERE®, a novel graphene oxide-based monomer obtained through exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate. Methods: A novel GO-based monomer, GRAPHYMERE®, was synthesized through a three-step process involving GO exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate to introduce polymerizable acrylic groups. The resulting product was characterized using FT-IR and Raman spectroscopy. Results: Spectroscopic analyses confirmed the presence of aliphatic chains and amine functionalities on the GO surface. Although some expected signals were overlapped, the data suggest successful surface modification and partial insertion of methacrylamide groups. The process is straightforward, uses low-toxicity reagents, and avoids complex reaction steps. Conclusions: GRAPHYMERE® represents a chemically modified GO monomer potentially suitable for copolymerization within dental resin matrices. While its structural features support compatibility with radical polymerization systems, further studies are required to assess its mechanical performance and functional properties in dental resin applications. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications (2nd Edition))
Show Figures

Graphical abstract

31 pages, 10339 KiB  
Review
Performance of Asphalt Materials Based on Molecular Dynamics Simulation: A Review
by Chengwei Xing, Zhihang Xiong, Tong Lu, Haozongyang Li, Weichao Zhou and Chen Li
Polymers 2025, 17(15), 2051; https://doi.org/10.3390/polym17152051 - 27 Jul 2025
Viewed by 460
Abstract
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes [...] Read more.
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes the recent advances in applying MD to asphalt research. It first outlines molecular model construction approaches, including average models, three- and four-component systems, and modified models incorporating SBS, SBR, PU, PE, and asphalt–aggregate interfaces. It then analyzes how MD reveals the key performance aspects—such as high-temperature stability, low-temperature flexibility, self-healing behavior, aging processes, and interfacial adhesion—by capturing the molecular interactions. While MD offers significant advantages, challenges remain: idealized modeling, high computational demands, limited chemical reaction simulation, and difficulties in multi-scale coupling. This paper aims to provide theoretical insights and methodological support for future studies on asphalt performance and highlights MD simulation as a promising tool in pavement material science. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 5652 KiB  
Article
Modeling and Optimization of the Vacuum Degassing Process in Electric Steelmaking Route
by Bikram Konar, Noah Quintana and Mukesh Sharma
Processes 2025, 13(8), 2368; https://doi.org/10.3390/pr13082368 - 25 Jul 2025
Viewed by 270
Abstract
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at [...] Read more.
Vacuum degassing (VD) is a critical refining step in electric arc furnace (EAF) steelmaking for producing clean steel with reduced nitrogen and hydrogen content. This study develops an Effective Equilibrium Reaction Zone (EERZ) model focused on denitrogenation (de-N) by simulating interfacial reactions at the bubble–steel interface (Z1). The model incorporates key process parameters such as argon flow rate, vacuum pressure, and initial nitrogen and sulfur concentrations. A robust empirical correlation was established between de-N efficiency and the mass of Z1, reducing prediction time from a day to under a minute. Additionally, the model was further improved by incorporating a dynamic surface exposure zone (Z_eye) to account for transient ladle eye effects on nitrogen removal under deep vacuum (<10 torr), validated using synchronized plant trials and Python-based video analysis. The integrated approach—combining thermodynamic-kinetic modeling, plant validation, and image-based diagnostics—provides a robust framework for optimizing VD control and enhancing nitrogen removal control in EAF-based steelmaking. Full article
Show Figures

Figure 1

12 pages, 10100 KiB  
Article
Surface Microstructure Engineering for Enhancing Li-Ion Diffusion and Structure Stability of Ni-Rich Cathode Materials
by Huanming Zhuo, Shuangshuang Zhao, Ruijie Xu, Lu Zhou, Ye Li, Yuehuan Peng, Xuelong Rao, Yuqiang Tao and Xing Ou
Nanomaterials 2025, 15(15), 1144; https://doi.org/10.3390/nano15151144 - 24 Jul 2025
Viewed by 348
Abstract
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an [...] Read more.
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an example, a surface heterojunction structure construction strategy to enhance the interface characteristics of high-nickel materials by introducing interfacial ZnO sites has been designed (NCA@ZnO). Impressively, this heterointerface creates a strong built-in electric field, which significantly improves electron/Li-ion diffusion kinetics. Concurrently, the ZnO layer acts as an effective physical barrier against electrolyte corrosion, notably suppressing interfacial parasitic reactions and ultimately optimizing the structure stability of NCA@ZnO. Benefiting from synchronous optimization of interface stability and kinetics, NCA@ZnO exhibits advanced cycling performance with the capacity retention of 83.7% after 160 cycles at a superhigh rate of 3 C during 3.0–4.5 V. The prominent electrochemical performance effectively confirms that the surface structure design provides a critical approach toward obtaining high-performance cathode materials with enhanced long-cycling stability. Full article
Show Figures

Graphical abstract

16 pages, 2285 KiB  
Article
Evaluating the Heat of Hydration, Conductivity, and Microstructural Properties of Cement Composites with Recycled Concrete Powder
by Damir Barbir, Pero Dabić, Miće Jakić and Ivana Weber
Buildings 2025, 15(15), 2613; https://doi.org/10.3390/buildings15152613 - 23 Jul 2025
Viewed by 209
Abstract
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron [...] Read more.
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron microscopy revealed that RCP modified the hydration behavior and microstructural development. The results showed a linear 16.5% reduction in the total heat of hydration (from 145.38 to 121.44 J/g) at 30% RCP content, accompanied by a 26.5% decrease in peak electrical conductivity (19.16 to 14.08 mS/cm) and delayed reaction kinetics. Thermal analysis demonstrated an increased stability of hydration products, with portlandite decomposition temperatures rising by up to 10.8 °C. Microstructural observations confirmed the formation of denser but more amorphous C–S–H phases alongside increased interfacial porosity at higher RCP contents. The study provides quantitative evidence of RCP’s dual functionality as both an inert filler and a nucleation agent, identifying an optimal 20–25% replacement range that balances performance and sustainability. These findings advance the understanding of construction waste utilization in cementitious materials and provide practical solutions for developing more sustainable building composites while addressing circular economy objectives in the construction sector. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

17 pages, 3437 KiB  
Article
Effects of Heavy-Metal-Sludge Sintered Aggregates on the Mechanical Properties of Ultra-High-Strength Concrete
by Weijun Zhong, Sheng Wang, Yue Chen, Nan Ye, Kai Shu, Rongnan Dai and Mingfang Ba
Materials 2025, 18(14), 3422; https://doi.org/10.3390/ma18143422 - 21 Jul 2025
Viewed by 219
Abstract
To investigate the effects of heavy-metal-sludge sintered aggregates on the workability, mechanical properties, and fracture toughness of ultra-high-strength concrete (UHSC), this study systematically evaluated the influence of different aggregate replacement ratios and particle gradations on the fluidity, flexural strength, compressive strength, and fracture [...] Read more.
To investigate the effects of heavy-metal-sludge sintered aggregates on the workability, mechanical properties, and fracture toughness of ultra-high-strength concrete (UHSC), this study systematically evaluated the influence of different aggregate replacement ratios and particle gradations on the fluidity, flexural strength, compressive strength, and fracture energy of UHSC. Microstructural characterization techniques including SEM, XRD, TG, and FTIR were employed to analyze the hydration mechanism and interfacial transition zone evolution. The results demonstrated the following: Fluidity continuously improved with the increase in the sintered aggregate replacement ratio, with coarse aggregates exhibiting the most significant enhancement due to the “ball-bearing effect” and paste enrichment. The mechanical properties followed a trend of an initial increase followed by a decrease, peaking at 15–20% replacement ratio, at which flexural strength, compressive strength, and fracture energy were optimally enhanced; excessive replacement led to strength reduction owing to skeletal structure weakening, with coarse aggregates providing superior improvement. Microstructural analysis revealed that the sintered aggregates accelerated hydration reactions, promoting the formation of C-S-H gel and Ca(OH)2, thereby densifying the ITZ. This study identified 15–20% of coarse sintered aggregates as the optimal replacement ratio, which synergistically improved the workability, mechanical properties, and fracture toughness of UHSC. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 7478 KiB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 - 20 Jul 2025
Viewed by 408
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

20 pages, 2314 KiB  
Article
Effects of 2-Hydroxypropyl-β-Cyclodextrin on the Antioxidant Efficiency of Some Gallic Acid Derivatives in Soybean Oil-in-Water Emulsions
by Tamara Martínez-Senra, Sonia Losada-Barreiro and Carlos Bravo-Díaz
Antioxidants 2025, 14(7), 887; https://doi.org/10.3390/antiox14070887 - 18 Jul 2025
Viewed by 322
Abstract
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for [...] Read more.
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for the formation of host–guest complexes, modifying their physicochemical properties and their location in multiphasic systems. Here, we investigated the effects of 2-hydroxypropyl-β-cyclodextrin (HPCD) on the efficiency of a series of gallic acid derivatives (propyl (PG), butyl (BG), octyl (OG), and lauryl (LG) gallates) in inhibiting the oxidation of soybean oil-in-water emulsions. For this purpose, we investigated the effects of HPCD on both the kinetics of lipid oxidation and the distribution of antioxidants in the same intact emulsions. The results show that in an aqueous solution, the antioxidants form 1:1 inclusion complexes with HPCD, with inclusion constants ranging from 383 M−1 (PG) to 1946 M−1 (OG). The results also show that the addition of HPCD to emulsions containing antioxidants does not lead to significant changes in their antioxidant effectiveness, with their efficiency being similar to that when no HPCD molecules are present. The results are interpreted in terms of the blocking effect exerted by the Tween 20 molecules, which act as effective guest competitors capable of removing the antioxidants from the HPCD cavity. The Tween 20 surfactant molecules need to be employed to stabilize the emulsions kinetically. This blocking effect, as a primary consequence, indicates that the interfacial concentration of the antioxidants, which is the region where the inhibition reaction takes place, remains constant; thus, their efficiency is not altered. Full article
(This article belongs to the Special Issue Antioxidants for the Oxidative Stabilisation of Food Lipids)
Show Figures

Figure 1

Back to TopTop