Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,186)

Search Parameters:
Keywords = interface bond strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 1290 KiB  
Article
The Impact of Substituting Chalk with Fly Ash in Formulating a Two-Component Polyurethane Adhesive on Its Physicochemical and Mechanical Properties
by Edyta Pęczek, Renata Pamuła, Żaneta Ciastowicz, Paweł Telega, Łukasz Bobak and Andrzej Białowiec
Materials 2025, 18(15), 3591; https://doi.org/10.3390/ma18153591 - 30 Jul 2025
Viewed by 294
Abstract
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a [...] Read more.
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a chalk-to-fly ash ratio as a filler. The study evaluated rheological, mechanical, thermal, and environmental parameters. Mechanical tests confirmed cohesive failure within the bonded material, indicating that the bond strength at the adhesive–substrate interface exceeded the internal strength of the substrate. The highest contaminant elution levels recorded were 0.62 mg/kg for molybdenum and 0.20 mg/kg for selenium, which represent only 6.2% and 40% of the regulatory limits, respectively. Dissolved organic carbon (DOC) and total dissolved solids (TDS) did not exceed 340 mg/kg and 4260 mg/kg, respectively. GC-MS analysis did not reveal the presence of prominent volatile organic compound emissions. Initial screening suggests possible compatibility with low-emission certification schemes (e.g., A+, AgBB, EMICODE®), though confirmation requires further quantitative testing. The results demonstrate that fly ash can be an effective substitute for chalk in polyurethane adhesives, ensuring environmental compliance and maintaining functional performance while supporting the principles of the circular economy. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 240
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 203
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

16 pages, 2050 KiB  
Article
Effects of Activated Cold Regenerant on Pavement Properties of Emulsified Asphalt Cold Recycled Mixture
by Fuda Chen, Jiangmiao Yu, Yuan Zhang, Zengyao Lin and Anxiong Liu
Materials 2025, 18(15), 3529; https://doi.org/10.3390/ma18153529 - 28 Jul 2025
Viewed by 274
Abstract
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, [...] Read more.
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, a cold regenerant was independently prepared to rapidly penetrate, soften, and activate aged asphalt at ambient temperature in this paper, and its effects on the volumetric composition, mechanical strength, and pavement performance of EACRM were systematically investigated. The results showed that as the cold regenerant content increased, the air voids, indirect tensile strength (ITS), and high-temperature deformation resistance of EACRM decreased, while the dry–wet ITS ratio, cracking resistance, and fatigue resistance increased. Considering the comprehensive pavement performance requirements of cold recycled pavements, the optimal content of the activated cold regenerant for EACRM was determined to be approximately 0.6%. Full article
Show Figures

Figure 1

25 pages, 6014 KiB  
Article
Research on Synergistic Enhancement of UHPC Cold Region Repair Performance by Steel Fibers and Early-Strength Agent
by Ming Xie, Zhangdong Wang, Li’e Yin and Hao Li
Buildings 2025, 15(15), 2630; https://doi.org/10.3390/buildings15152630 - 25 Jul 2025
Viewed by 271
Abstract
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance [...] Read more.
This study looked at the performance requirements of repair materials for concrete structures in cold regions, systematically analyzing the effects of steel fiber dosage (0.7–2.1%), early-strength agent PRIORITY dosage (6–10%), and their coupling effects on the workability, interfacial bond strength, and freeze–thaw resistance of rapid-hardening ultra-high-performance concrete (UHPC). Through fluidity testing, bond interface failure analysis, freeze–thaw cycle testing, and pore analysis, the mechanism of steel fibers and early-strength agent on the multi-dimensional performance of fast-hardening UHPC was revealed. The results showed that when the steel fiber dosage exceeded 1.4%, the flowability was significantly reduced, while a PRIORITY dosage of 8% improved the flowability by 20.5% by enhancing the paste lubricity. Single addition of steel fibers decreased the interfacial bond strength, but compound addition of 8% PRIORITY offset the negative impact by optimizing the filling effect of hydration products. Under freeze–thaw cycles, excessive steel fibers (2.1%) exacerbated the mass loss (1.67%), whereas a PRIORITY dosage of 8% increased the retention rate of relative dynamic elastic modulus by 10–15%. Pore analysis shows that the synergistic effect of 1.4% steel fiber and 8% PRIORITY can reduce the number of pores, optimize the pore distribution, and make the structure denser. The study determined that the optimal compound mixing ratio was 1.4% steel fibers and 8% PRIORITY. This combination ensures construction fluidity while significantly improving the interfacial bond durability and freeze–thaw resistance, providing a theoretical basis for the design of concrete repair materials in cold regions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

27 pages, 7191 KiB  
Review
Advances in Nano-Reinforced Polymer-Modified Cement Composites: Synergy, Mechanisms, and Properties
by Yibo Gao, Jianlin Luo, Jie Zhang, Muhammad Asad Ejaz and Liguang Liu
Buildings 2025, 15(15), 2598; https://doi.org/10.3390/buildings15152598 - 23 Jul 2025
Viewed by 224
Abstract
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead [...] Read more.
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead to degradation in mechanical performances of polymer-modified cement-based composite (PMC). Nanomaterials provide unique advantages in enhancing the properties of PMC due to their characteristic ultrahigh specific surface area, quantum effects, and interface modulation capabilities. This review systematically examines recent advances in nano-reinforced PMC (NPMC), elucidating their synergistic optimization mechanisms. The synergistic effects of nanomaterials—nano-nucleation, pore-filling, and templating mechanisms—refine the microstructure, significantly enhancing the mechanical strength, impermeability, and erosion resistance of NPMC. Furthermore, nanomaterials establish interpenetrating network structures (A composite structure composed of polymer networks and other materials interwoven with each other) with polymer cured film (The film formed after the polymer loses water), enhancing load-transfer efficiency through physical and chemical action while optimizing dispersion and compatibility of nanomaterials and polymers. By systematically analyzing the synergy among nanomaterials, polymer, and cement matrix, this work provides valuable insights for advancing high-performance repair materials. Full article
Show Figures

Figure 1

22 pages, 3746 KiB  
Article
Shear Performance of UHPC-NC Composite Structure Interface Treated with Retarder: Quantification by Fractal Dimension and Optimization of Process Parameters
by Runcai Weng, Zhaoxiang He, Jiajie Liu, Bin Lei, Linhai Huang, Jiajing Xu, Lingfei Liu and Jie Xiao
Buildings 2025, 15(15), 2591; https://doi.org/10.3390/buildings15152591 - 22 Jul 2025
Cited by 1 | Viewed by 310
Abstract
Prefabricated Ultra-High-Performance Concrete (UHPC) and cast-in-place Normal Concrete (NC) composite members are increasingly used in bridge engineering because they combine high performance with cost-effectiveness. The bond at the UHPC-NC interface is critical as it directly impacts the composite structure’s safety. This study employed [...] Read more.
Prefabricated Ultra-High-Performance Concrete (UHPC) and cast-in-place Normal Concrete (NC) composite members are increasingly used in bridge engineering because they combine high performance with cost-effectiveness. The bond at the UHPC-NC interface is critical as it directly impacts the composite structure’s safety. This study employed 3D laser scanning acquired the UHPC substrate geometry, utilized fractal dimension analysis to quantify the interface roughness, and adopted the slant shear test to evaluate the effects of retarder application mass and hydration delay duration on roughness and bond strength. The research results indicate that the failure modes of UHPC-NC specimens can be categorized into interface shear failure and NC splitting tensile failure. With the extension of hydration delay duration, both the interface roughness and bond strength show a decreasing trend. The influence of retarder dosage on interface roughness and bond strength exhibits a threshold effect. This study also confirms the effectiveness of fractal dimension as a quantitative tool for characterizing the macroscopic roughness features of the bonding interface. The findings of this paper provide a solid theoretical basis and quantitative support for optimizing key process parameters such as retarder dosage and precisely controlling hydration delay duration, offering significant engineering guidance for enhancing the interface bonding performance of UHPC-NC composite structures. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

19 pages, 4069 KiB  
Article
Influence of Silane-Modified Coal Gangue Ceramsite on Properties of Ultra-High-Performance Concrete
by Yuanjie Qin, Sudong Hua, Dongrui Zhang and Hongfei Yue
Appl. Sci. 2025, 15(14), 7968; https://doi.org/10.3390/app15147968 - 17 Jul 2025
Viewed by 266
Abstract
In this study, a kind of sustainable ultra-high-performance concrete (UHPC) was designed by using coal gangue ceramsite (CGC) and a modified Andreasen–Andersen model. However, when CGC lightweight aggregate with high water absorption is used in UHPC with a low water–cement ratio, CGC has [...] Read more.
In this study, a kind of sustainable ultra-high-performance concrete (UHPC) was designed by using coal gangue ceramsite (CGC) and a modified Andreasen–Andersen model. However, when CGC lightweight aggregate with high water absorption is used in UHPC with a low water–cement ratio, CGC has an adverse effect on the working performance of UHPC and may lead to the decrease of mechanical properties. This study found that a 5% silane coupling agent KH560 can make CGC hydrophobic, and cause its contact angle to increase from 0° to 111.32°. Adding 100% hydrophobic modified CGC into UHPC will significantly improve its working performance, with the highest increase of 38.51%. At the same time, the addition of 20% modified CGC can further improve the compressive strength of UHPC (28 days reached 150.1 MPa), reduce the internal porosity by 21.4%, and make the interface bond more compact. In addition, the hydration degree of UHPC has also been improved, a result caused by the cement obtaining more free water for a more complete hydration reaction. This study can provide a new scheme for solving the problem of the solid waste of coal gangue. Full article
Show Figures

Figure 1

16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 309
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 229
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

22 pages, 16538 KiB  
Article
Experimental Study on Interface Bonding Performance of Frost-Damaged Concrete Reinforced with Yellow River Sedimentary Sand Engineered Cementitious Composites
by Binglin Tan, Ali Raza, Ge Zhang and Chengfang Yuan
Materials 2025, 18(14), 3278; https://doi.org/10.3390/ma18143278 - 11 Jul 2025
Viewed by 387
Abstract
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged [...] Read more.
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged concrete using engineered cementitious composites (ECC) prepared with Yellow River sedimentary sand (YRS), employed as a 100% mass replacement for quartz sand to promote sustainability. The interface bonding performance of ECC-C40 specimens was evaluated by testing the impact of various surface roughness treatments, freeze–thaw cycles, and interface agents. A multi-factor predictive formula for determining interface bonding strength was created, and the bonding mechanism and model were examined through microscopic analysis. The results show that ECC made with YRS significantly improved the interface bonding performance of ECC-C40 specimens. Specimens treated with a cement expansion slurry as the interface agent and those subjected to the splitting method for surface roughness achieves the optimal reinforced condition, exhibited a 27.57%, 35.17%, 43.57%, and 42.92% increase in bonding strength compared to untreated specimens under 0, 50, 100, and 150 cycles, respectively. Microscopic analysis revealed a denser interfacial microstructure. Without an interface agent, the bond interface followed a dual-layer, three-zone model; with the interface agent, a three-layer, three-zone model was observed. Full article
Show Figures

Graphical abstract

20 pages, 9819 KiB  
Article
Performance Degradation and Chloride Ion Migration Behavior of Repaired Bonding Interfaces inSeawater-Freeze-Thaw Environment
by Mengdie Niu, Xiang He, Yaxin Wang, Yuxuan Shen, Wei Zhang and Guoxin Li
Buildings 2025, 15(14), 2431; https://doi.org/10.3390/buildings15142431 - 10 Jul 2025
Viewed by 242
Abstract
The bond interface is the weakest part of the repair system, and its performance is a key factor impacting the repair effectiveness of damaged concrete constructions. However, the research on the damage law and the mechanism of repair of the bonded interface in [...] Read more.
The bond interface is the weakest part of the repair system, and its performance is a key factor impacting the repair effectiveness of damaged concrete constructions. However, the research on the damage law and the mechanism of repair of the bonded interface in the cold region marine environment is not in-depth. In this study, the influence of polyvinyl alcohol (PVA) fibers and crystalline admixtures (CAs) on the mechanical properties and volumetric deformation performance of cementitious repair materials was researched. Furthermore, the deterioration patterns of the bond strength and chloride ion diffusion characteristics of the repair interface under the coupling of seawater-freeze-thaw cycles were investigated. Combined with the composition, micro-morphology, and micro-hardness of hydration products before and after erosion, the damage mechanism of the repaired bonding interface was revealed. The results indicate that the synergistic use of PVA fibers and CAs can significantly improve the compressive strength, bond strength and volume stability of the repair materials. The compressive strength and 40° shear strength of S0.6CA at 28 d were 101.7 MPa and 45.95 MPa, respectively. Under the seawater-freeze-thaw cycle action, the relationship between the contents of free and bound chloride ions in the bonded interface can be better fitted by the Langmuir equation. The deterioration process of the bonding interface and the penetration rate of chloride ions can be effectively delayed by PVA fiber and CAs. After 700 seawater-freeze-thaw cycles, the loss rates of bond strength and chloride diffusion coefficient of S0.6CA were reduced by 26.34% and 52.5%, respectively, compared with S0. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 4106 KiB  
Article
Effect of Alumina Microparticle-Infused Polymer Matrix on Mechanical Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite
by Ganesh Radhakrishnan, Teodora Odett Breaz, Abdul Hamed Hamed Al Hinai, Fisal Hamed Al Busaidi, Laqman Malik Al Sheriqi, Mohammed Ali Al Hattali, Mohammed Ibrahim Al Rawahi, Mohammed Nasser Al Rabaani and Kadhavoor R. Karthikeyan
J. Compos. Sci. 2025, 9(7), 360; https://doi.org/10.3390/jcs9070360 - 10 Jul 2025
Viewed by 326
Abstract
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the [...] Read more.
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the field of transportation and building engineering, replacing conventional materials due to their attractive properties as mentioned. In this work, a CFRP laminate is fabricated with carbon fiber mats and epoxy by a hand layup technique. Alumina (Al2O3) micro particles are used as a filler material, mixed with epoxy at different weight fractions of 0% to 4% during the fabrication of CFRP laminates. The important objective of the study is to investigate the influence of alumina micro particles on the mechanical performance of the laminates through characterization for various physical and mechanical properties. It is revealed from the results of study that the mass density of the laminates steadily increased with the quantity of alumina micro particles added and subsequently, the porosity of the laminates is reduced significantly. The SEM micrograph confirmed the constituents of the laminate and uniform distribution of Al2O3 micro particles with no significant agglomeration. The hardness of the CFRP laminates increased significantly for about 60% with an increase in weight % of Al2O3 from 0% to 4%, whereas the water gain % gradually drops from 0 to 2%, after which a substantial rise is observed for 3 to 4%. The improved interlocking due to the addition of filler material reduced the voids in the interfaces and thereby resist the absorption of water and in turn reduced the plasticity of the resin too. Tensile, flexural and inter-laminar shear strengths of the CFRP laminate were improved appreciably with the addition of alumina particles through extended grain boundary and enhanced interfacial bonding between the fibers, epoxy and alumina particles, except at 1 and 3 wt.% of Al2O3, which may be due to the pooling of alumina particles within the matrix. Inclusion of hard alumina particles resulted in a significant drop in impact strength due to appreciable reduction in softness of the core region of the laminates. Full article
Show Figures

Figure 1

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 365
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

Back to TopTop