Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = inter-satellite link time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3340 KiB  
Article
Optimization and Verification of Acquisition Time Method Based on a Data-Driven Model for Laser Inter-Satellite Links
by Xiangnan Liu, Xiaoping Li, Zhongwen Deng and Haifeng Sun
Electronics 2025, 14(14), 2854; https://doi.org/10.3390/electronics14142854 - 17 Jul 2025
Viewed by 233
Abstract
High-speed communication can be achieved using laser inter-satellite links. However, laser terminals are highly sensitive to environmental conditions, which can lead to link disconnections. Therefore, an acquisition method capable of determining pointing errors is essential. In this study, a fast space–time fusion acquisition [...] Read more.
High-speed communication can be achieved using laser inter-satellite links. However, laser terminals are highly sensitive to environmental conditions, which can lead to link disconnections. Therefore, an acquisition method capable of determining pointing errors is essential. In this study, a fast space–time fusion acquisition method was developed. This method establishes the relationship between satellite position, capture time, and azimuth and elevation angles. The performance of the proposed acquisition time optimization method was verified in a practical engineering application. Experimental results show that the pointing error was reduced by five times, the acquisition rate increased by 40%, the acquisition speed improved by 300 times, and multiple interference factors were effectively addressed. Full article
Show Figures

Figure 1

17 pages, 1184 KiB  
Article
A Biologically Inspired Cost-Efficient Zero-Trust Security Approach for Attacker Detection and Classification in Inter-Satellite Communication Networks
by Sridhar Varadala and Hao Xu
Future Internet 2025, 17(7), 304; https://doi.org/10.3390/fi17070304 - 13 Jul 2025
Viewed by 234
Abstract
In next-generation Low-Earth-Orbit (LEO) satellite networks, securing inter-satellite communication links (ISLs) through strong authentication is essential due to the network’s dynamic and distributed structure. Traditional authentication systems often struggle in these environments, leading to the adoption of Zero-Trust Security (ZTS) models. However, current [...] Read more.
In next-generation Low-Earth-Orbit (LEO) satellite networks, securing inter-satellite communication links (ISLs) through strong authentication is essential due to the network’s dynamic and distributed structure. Traditional authentication systems often struggle in these environments, leading to the adoption of Zero-Trust Security (ZTS) models. However, current ZTS protocols typically introduce high computational overhead, especially as the number of satellite nodes grows, which can impact both security and network performance. To overcome these challenges, a new bio-inspired ZTS framework called Manta Ray Foraging Cost-Optimized Zero-Trust Security (MRFCO-ZTS) has been introduced. This approach uses data-driven learning methods to enhance security across satellite communications. It continuously evaluates access requests by applying a cost function that accounts for risk level, likelihood of attack, and computational delay. The Manta Ray Foraging Optimization (MRFO) algorithm is used to minimize this cost, enabling effective classification of nodes as either trusted or malicious based on historical authentication records and real-time behavior. MRFCO-ZTS improves the accuracy of attacker detection while maintaining secure data exchange between authenticated satellites. Its effectiveness has been tested through numerical simulations under different satellite traffic conditions, with performance measured in terms of security accuracy, latency, and operational efficiency. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems, 2nd Edition)
Show Figures

Figure 1

17 pages, 2103 KiB  
Article
Optimizing Time-Sensitive Traffic Scheduling in Low-Earth-Orbit Satellite Networks
by Wei Liu, Nan Xiao, Bo Liu, Yuxian Zhang and Taoyong Li
Sensors 2025, 25(14), 4327; https://doi.org/10.3390/s25144327 - 10 Jul 2025
Viewed by 332
Abstract
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and [...] Read more.
In contrast to terrestrial networks, the rapid movement of low-earth-orbit (LEO) satellites causes frequent changes in the topology of intersatellite links (ISLs), resulting in dynamic shifts in transmission paths and fluctuations in multi-hop latency. Moreover, limited onboard resources such as buffer capacity and bandwidth competition contribute to the instability of these links. As a result, providing reliable quality of service (QoS) for time-sensitive flows (TSFs) in LEO satellite networks becomes a challenging task. Traditional terrestrial time-sensitive networking methods, which depend on fixed paths and static priority scheduling, are ill-equipped to handle the dynamic nature and resource constraints typical of satellite environments. This often leads to congestion, packet loss, and excessive latency, especially for high-priority TSFs. This study addresses the primary challenges faced by time-sensitive satellite networks and introduces a management framework based on software-defined networking (SDN) tailored for LEO satellites. An advanced queue management and scheduling system, influenced by terrestrial time-sensitive networking approaches, is developed. By incorporating differentiated forwarding strategies and priority-based classification, the proposed method improves the efficiency of transmitting time-sensitive traffic at multiple levels. To assess the scheme’s performance, simulations under various workloads are conducted, and the results reveal that it significantly boosts network throughput, reduces packet loss, and maintains low latency, thus optimizing the performance of time-sensitive traffic in LEO satellite networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 1319 KiB  
Article
Autonomous Orbit Determination of LLO Satellite Using DRO–LLO Links and Lunar Laser Ranging
by Shixu Chen, Shuanglin Li, Jinghui Pu, Yingjie Xu and Wenbin Wang
Aerospace 2025, 12(7), 576; https://doi.org/10.3390/aerospace12070576 - 25 Jun 2025
Viewed by 401
Abstract
A stable and high-precision autonomous orbit determination scheme for a Low Lunar Orbit (LLO) spacecraft is proposed, leveraging satellite-to-satellite tracking (SST) measurement data and lunar laser ranging data. One satellite orbits around the LLO, while the other satellite orbits around the Distant Retrograde [...] Read more.
A stable and high-precision autonomous orbit determination scheme for a Low Lunar Orbit (LLO) spacecraft is proposed, leveraging satellite-to-satellite tracking (SST) measurement data and lunar laser ranging data. One satellite orbits around the LLO, while the other satellite orbits around the Distant Retrograde Orbit (DRO). An inter-satellite ranging link is established between the two satellites, while the LLO satellite conducts laser ranging with a Corner Cube Reflector (CCR) on the lunar surface. Both inter-satellite ranging data and lunar laser ranging data are acquired through measurements. By integrating these data with orbital dynamics and employing the Extended Kalman Filter (EKF) method, the position and velocity states of the two formation satellites are estimated. This orbit determination scheme operates independently of ground measurement and control stations, achieving a high degree of autonomy. Simulation results demonstrate that the position accuracy of the LLO satellite can reach 0.1 m, and that of the DRO satellite can reach 10 m. Compared to the autonomous orbit determination scheme relying solely on SST measurement data, this proposed scheme exhibits several advantages, including shorter convergence time, higher convergence accuracy, and enhanced robustness of the navigation system against initial orbit errors and orbital dynamic model errors. It can provide a valuable engineering reference for the autonomous navigation of lunar-orbiting satellites. Full article
(This article belongs to the Special Issue Precise Orbit Determination of the Spacecraft)
Show Figures

Figure 1

32 pages, 4042 KiB  
Article
A New Measurement Method for BDS Inter-Satellite Link Based on Co-Frequency Co-Time Full Duplex System
by Hao Feng, Zhuo Yang, Hong Ma, Yiwen Jiao, Tao Wu, Hongbin Ma and Qimin Chen
Sensors 2025, 25(11), 3538; https://doi.org/10.3390/s25113538 - 4 Jun 2025
Viewed by 587
Abstract
To meet the urgent need for high-precision ranging and large-capacity transmission in the current BeiDou-3 inter-satellite link system, this paper proposes a novel two-way measurement method based on Co-frequency Co-time Full Duplex (CCFD) system. This approach effectively addresses the limitations of traditional Time-Division [...] Read more.
To meet the urgent need for high-precision ranging and large-capacity transmission in the current BeiDou-3 inter-satellite link system, this paper proposes a novel two-way measurement method based on Co-frequency Co-time Full Duplex (CCFD) system. This approach effectively addresses the limitations of traditional Time-Division Half-Duplex (TDHD) systems, such as complex link establishment processes, constrained ranging accuracy, and limited transmission efficiency. Based on the spatial configuration of the BeiDou-3 satellite navigation constellation, a dynamic link constraint model is constructed, and a comprehensive link budget analysis is conducted for the entire inter-satellite measurement process. The fundamental principle, system model, and key errors of the two-way measurement in CCFD are derived in detail. Theoretical analysis and experimental simulations demonstrate that the proposed CCFD system is feasible and achieves remarkable ranging accuracy improvements. At a carrier-to-noise ratio of 61.6 dBHz, the system attains 1σ ranging accuracy of 1.9 cm, representing a 51.3% enhancement over the 3.9 cm accuracy of the TDHD system. When operating at 69.3 dBHz, the precision further improves to 0.8 cm, outperforming TDHD’s 2.2 cm by 66.8%. The introduction of CCFD technology can significantly enhance the performance level of the BeiDou-3 satellite navigation system, demonstrating broad application prospects for the future. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 2027 KiB  
Article
Unidirectional Orbit Determination for Extended Users Based on Navigation Ka-Band Inter-Satellite Links
by Yong Shangguan, Hua Zhang, Yong Yu, Wenjin Wang, Bin Liu, Haihan Li and Rong Ma
Sensors 2025, 25(8), 2566; https://doi.org/10.3390/s25082566 - 18 Apr 2025
Viewed by 397
Abstract
Traditional spacecraft orbit determination primarily employs two methodologies: ground station/survey ship-based orbit determination and global navigation satellite system (GNSS)-based orbit determination. The ground tracking measurement system, reliant on multiple tracking stations or ships, presents a less favorable efficiency-to-cost ratio. For high-orbit satellites, GNSS [...] Read more.
Traditional spacecraft orbit determination primarily employs two methodologies: ground station/survey ship-based orbit determination and global navigation satellite system (GNSS)-based orbit determination. The ground tracking measurement system, reliant on multiple tracking stations or ships, presents a less favorable efficiency-to-cost ratio. For high-orbit satellites, GNSS orbit determination is hindered by a limited number of receivable satellites, weak signal strength and suboptimal geometric configurations, thereby failing to meet the demands for the continuous, high-precision orbit measurement of overseas high-orbit satellites. Satellite navigation systems, characterized by global coverage and Ka-band inter-satellite links, offer measurement and communication services to extended users, such as satellites, aircraft, space stations and other spacecraft. With the widespread adoption of navigation satellite systems, particularly in scenarios where ground tracking, telemetry and command (TT&C) stations are out of sight, there is a growing demand among users for Ka-band inter-satellite links for high-precision ranging and orbit determination. This paper introduces an innovative unidirectional orbit-determination technology for extended users, leveraging the navigation Ka-band inter-satellite link. When extended users are constrained by weight and power consumption limitations, preventing the incorporation of high-precision atomic clocks, they utilize their extensive capture capability to conduct distance measurements between navigation satellites. This process involves constructing clock error models, calculating clock error parameters and compensating for these errors, thereby achieving high-precision time–frequency synchronization and bidirectional communication. The technology has enhanced the time and frequency accuracies by three and two orders of magnitude, respectively. Following the establishment of bidirectional communication, unidirectional ranging values are collected daily for one hour. Utilizing these bidirectional ranging values, a mechanical model and state-transfer matrix are established, resulting in orbit-determination calculations with an accuracy of less than 100 m. This approach addresses the challenge of high-precision time–frequency synchronization and orbit determination for users without atomic clocks, utilizing minimal inter-satellite link time slot resources. For the first time in China, extended users can access the navigation inter-satellite link with a minimal allocation of time slot resources, achieving orbit determination at the 100 m level. This advancement significantly enhances the robustness of extended users and provides substantial technical support for various extended users to employ the Ka inter-satellite link for emergency communication and orbit determination. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

24 pages, 718 KiB  
Article
An Accelerated Maximum Flow Algorithm with Prediction Enhancement in Dynamic LEO Networks
by Jiayin Sheng, Xinjie Guan, Fuliang Yang and Xili Wan
Sensors 2025, 25(8), 2555; https://doi.org/10.3390/s25082555 - 17 Apr 2025
Viewed by 558
Abstract
Efficient data transmission in low Earth orbit (LEO) satellite networks is critical for supporting real-time global communication, Earth observation, and numerous data-intensive space missions. A fundamental challenge in these networks involves solving the maximum flow problem, which determines the optimal data throughput across [...] Read more.
Efficient data transmission in low Earth orbit (LEO) satellite networks is critical for supporting real-time global communication, Earth observation, and numerous data-intensive space missions. A fundamental challenge in these networks involves solving the maximum flow problem, which determines the optimal data throughput across highly dynamic topologies with limited onboard energy and data processing capability. Traditional algorithms often fall short in these environments due to their high computational costs and inability to adapt to frequent topological changes or fluctuating link capacities. This paper introduces an accelerated maximum flow algorithm specifically designed for dynamic LEO networks, leveraging a prediction-enhanced approach to improve both speed and adaptability. The proposed algorithm integrates a novel energy-time expanded graph (e-TEG) framework, which jointly models satellite-specific constraints including time-varying inter-satellite visibility, limited onboard processing capacities, and dynamic link capacities. In addition, a learning-augmented warm-start strategy is introduced to enhance the Ford–Fulkerson algorithm. It generates near-optimal initial flows based on historical network states, which reduces the number of augmentation steps required and accelerates computation under dynamic conditions. Theoretical analyses confirm the correctness and time efficiency of the proposed approach. Evaluation results validate that the prediction-enhanced approach achieves up to a 32.2% reduction in computation time compared to conventional methods, particularly under varying storage capacity and network topologies. These results demonstrate the algorithm’s potential to support high-throughput, efficient data transmission in future satellite communication systems. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

67 pages, 689 KiB  
Article
New Applications of Elliptic Functions and Integrals in GPS Inter-Satellite Communications with Account of General Relativity Theory
by Bogdan Dimitrov
Mathematics 2025, 13(8), 1286; https://doi.org/10.3390/math13081286 - 14 Apr 2025
Cited by 1 | Viewed by 563
Abstract
During the last 15–20 years, the experimental methods for autonomous navigation and inter-satellite links have been developing rapidly in order to ensure navigation control and data processing without commands from Earth stations. Inter-satellite links are related to relative ranging between the satellites from [...] Read more.
During the last 15–20 years, the experimental methods for autonomous navigation and inter-satellite links have been developing rapidly in order to ensure navigation control and data processing without commands from Earth stations. Inter-satellite links are related to relative ranging between the satellites from one constellation or different constellations and measuring the distances between them with the precision of at least 1 μm micrometer (=106 m), which should account for the bending of the light (radio or laser) signals due to the action of the Earth’s gravitational field. Thus, the theoretical calculation of the propagation time of a signal should be described in the framework of general relativity theory and the s.c. null cone equation. This review paper summarizes the latest achievements in calculating the propagation time of a signal, emitted by a GPS satellite, moving along a plane elliptical orbit or a space-oriented orbit, described by the full set of six Kepler parameters. It has been proved that for the case of plane elliptical orbit, the propagation time is expressed by a sum of elliptic integrals of the first, the second and the third kind, while for the second case (assuming that only the true anomaly angle is the dynamical parameter), the propagation time is expressed by a sum of elliptic integrals of the second and of the fourth order. For both cases, it has been proved that the propagation time represents a real-valued expression and not an imaginary one, as it should be. For the typical parameters of a GPS orbit, numerical calculations for the first case give acceptable values of the propagation time and, especially, the Shapiro delay term of the order of nanoseconds, thus confirming that this is a propagation time for the signal and not for the time of motion of the satellite. Theoretical arguments, related to general relativity and differential geometry have also been presented in favor of this conclusion. A new analytical method has been developed for transforming an elliptic integral in the Legendre form into an integral in the Weierstrass form. Two different representations have been found, one of them based on the method of four-dimensional uniformization, exposed in the monograph of Whittaker and Watson. The result of this approach is a new formulae for the Weierstrass invariants, depending in a complicated manner on the modulus parameter q of the elliptic integral in the Legendre form. Full article
(This article belongs to the Special Issue Advances in Elliptic Equations and Their Applications)
30 pages, 2324 KiB  
Article
Multi-Satellite Task Parallelism via Priority-Aware Decomposition and Dynamic Resource Mapping
by Shangpeng Wang, Chenyuan Zhang, Zihan Su, Limin Liu and Jun Long
Mathematics 2025, 13(7), 1183; https://doi.org/10.3390/math13071183 - 3 Apr 2025
Viewed by 393
Abstract
Multi-satellite collaborative computing has achieved task decomposition and collaborative execution through inter-satellite links (ISLs), which has significantly improved the efficiency of task execution and system responsiveness. However, existing methods focus on single-task execution and lack multi-task parallel processing capability. Most methods ignore task [...] Read more.
Multi-satellite collaborative computing has achieved task decomposition and collaborative execution through inter-satellite links (ISLs), which has significantly improved the efficiency of task execution and system responsiveness. However, existing methods focus on single-task execution and lack multi-task parallel processing capability. Most methods ignore task priorities and dependencies, leading to excessive waiting times and poor scheduling results. To address these problems, this paper proposes a task decomposition and resource mapping method based on task priorities and resource constraints. First, we introduce a graph theoretic model to represent the task dependency and priority relationships explicitly, combined with a novel algorithm for task decomposition. Meanwhile, we construct a resource allocation model based on game theory and combine it with deep reinforcement learning to achieve resource mapping in a dynamic environment. Finally, we adopt the theory of temporal logic to formalize the execution order and time constraints of tasks and solve the dynamic scheduling problem through mixed-integer nonlinear programming to ensure the optimality and real-time updating of the scheduling scheme. The experimental results demonstrate that the proposed method improves resource utilization by up to about 24% and reduces overall execution time by up to about 42.6% in large-scale scenarios. Full article
(This article belongs to the Special Issue New Advances in Network and Edge Computing)
Show Figures

Figure 1

17 pages, 810 KiB  
Article
Fast Reroute Mechanism for Satellite Networks Based on Segment Routing and Dual Timers Switching
by Jinyan Du, Ran Zhang, Jiangbo Hu, Tian Xia and Jiang Liu
Aerospace 2025, 12(3), 233; https://doi.org/10.3390/aerospace12030233 - 13 Mar 2025
Viewed by 735
Abstract
Low-Earth-Orbit (LEO) satellite networks have the advantage of global internet coverage and low latency, and they have enjoyed great success in the past few years. In LEO satellite networks, laser-based inter-satellite links (ISLs) are widely employed to achieve on-board data relay, and further [...] Read more.
Low-Earth-Orbit (LEO) satellite networks have the advantage of global internet coverage and low latency, and they have enjoyed great success in the past few years. In LEO satellite networks, laser-based inter-satellite links (ISLs) are widely employed to achieve on-board data relay, and further to provide high-capacity backhaul worldwide. However, ISLs are prone to break due to the outage of the ISL capturing, tracking, and aiming systems. Meanwhile, breaks caused by different reasons can last from milliseconds to hours. The hybrid ISL fault leads to the on-board routing protocol to flap frequently, thus causing high routing overheads, low convergence speed, and degraded service consistency. In this work, we propose a hybrid fault detection mechanism to identify transient and long-term ISL outage. Further, for transient link outage, the segment routing-based loop-free backup path is adopted to provide real-time transmission recovery, and precise global route convergence is adopted to restore the long-term routing failure. For the inconsistent routing table switch between the phase from transient to long-term fault, we propose a dual timer mechanism to make sure the path can be smoothly switched without micro-loops. Simulation results validate the feasibility and efficiency of the proposed scheme. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

32 pages, 1019 KiB  
Article
Time Scale in Alternative Positioning, Navigation, and Timing: New Dynamic Radio Resource Assignments and Clock Steering Strategies
by Khanh Pham
Information 2025, 16(3), 210; https://doi.org/10.3390/info16030210 - 9 Mar 2025
Viewed by 895
Abstract
Terrestrial and satellite communications, tactical data links, positioning, navigation, and timing (PNT), as well as distributed sensing will continue to require precise timing and the ability to synchronize and disseminate time effectively. However, the supply of space-qualified clocks that meet Global Navigation Satellite [...] Read more.
Terrestrial and satellite communications, tactical data links, positioning, navigation, and timing (PNT), as well as distributed sensing will continue to require precise timing and the ability to synchronize and disseminate time effectively. However, the supply of space-qualified clocks that meet Global Navigation Satellite Systems (GNSS)-level performance standards is limited. As the awareness of potential disruptions to GNSS due to adversarial actions grows, the current reliance on GNSS-level timing appears costly and outdated. This is especially relevant given the benefits of developing robust and stable time scale references in orbit, especially as various alternatives to GNSS are being explored. The onboard realization of clock ensembles is particularly promising for applications such as those providing the on-demand dissemination of a reference time scale for navigation services via a proliferated Low-Earth Orbit (pLEO) constellation. This article investigates potential inter-satellite network architectures for coordinating time and frequency across pLEO platforms. These architectures dynamically allocate radio resources for clock data transport based on the requirements for pLEO time scale formations. Additionally, this work proposes a model-based control system for wireless networked timekeeping systems. It envisions the optimal placement of critical information concerning the implicit ensemble mean (IEM) estimation across a multi-platform clock ensemble, which can offer better stability than relying on any single ensemble member. This approach aims to reduce data traffic flexibly. By making the IEM estimation sensor more intelligent and running it on the anchor platform while also optimizing the steering of remote frequency standards on participating platforms, the networked control system can better predict the future behavior of local reference clocks paired with low-noise oscillators. This system would then send precise IEM estimation information at critical moments to ensure a common pLEO time scale is realized across all participating platforms. Clock steering is essential for establishing these time scales, and the effectiveness of the realization depends on the selected control intervals and steering techniques. To enhance performance reliability beyond what the existing Linear Quadratic Gaussian (LQG) control technique can provide, the minimal-cost-variance (MCV) control theory is proposed for clock steering operations. The steering process enabled by the MCV control technique significantly impacts the overall performance reliability of the time scale, which is generated by the onboard ensemble of compact, lightweight, and low-power clocks. This is achieved by minimizing the variance of the chi-squared random performance of LQG control while maintaining a constraint on its mean. Full article
(This article belongs to the Special Issue Sensing and Wireless Communications)
Show Figures

Graphical abstract

22 pages, 3393 KiB  
Article
A Dynamic Spatio-Temporal Traffic Prediction Model Applicable to Low Earth Orbit Satellite Constellations
by Kexuan Liu, Yasheng Zhang and Shan Lu
Electronics 2025, 14(5), 1052; https://doi.org/10.3390/electronics14051052 - 6 Mar 2025
Cited by 1 | Viewed by 1139
Abstract
Low Earth Orbit (LEO) constellations support the transmission of various communication services and have been widely applied in fields such as global Internet access, the Internet of Things, remote sensing monitoring, and emergency communication. With the surge in traffic volume, the quality of [...] Read more.
Low Earth Orbit (LEO) constellations support the transmission of various communication services and have been widely applied in fields such as global Internet access, the Internet of Things, remote sensing monitoring, and emergency communication. With the surge in traffic volume, the quality of user services has faced unprecedented challenges. Achieving accurate low Earth orbit constellation network traffic prediction can optimize resource allocation, enhance the performance of LEO constellation networks, reduce unnecessary costs in operation management, and enable the system to adapt to the development of future services. Ground networks often adopt methods such as machine learning (support vector machine, SVM) or deep learning (convolutional neural network, CNN; generative adversarial network, GAN) to predict future short- and long-term traffic information, aiming to optimize network performance and ensure service quality. However, these methods lack an understanding of the high-dynamics of LEO satellites and are not applicable to LEO constellations. Therefore, designing an intelligent traffic prediction model that can accurately predict multi-service scenarios in LEO constellations remains an unsolved challenge. In this paper, in light of the characteristics of high-dynamics and the high-frequency data streams of LEO constellation traffic, the authors propose a DST-LEO satellite-traffic prediction model (a dynamic spatio-temporal low Earth orbit satellite traffic prediction model). This model captures the implicit features among satellite nodes through multiple attention mechanism modules and processes the traffic volume and traffic connection/disconnection data of inter-satellite links via a multi-source data separation and fusion strategy, respectively. After splicing and fusing at a specific scale, the model performs prediction through the attention mechanism. The model proposed by the authors achieved a short-term prediction RMSE of 0.0028 and an MAE of 0.0018 on the Abilene dataset. For long-term prediction on the Abilene dataset, the RMSE was 0.0054 and the MAE was 0.0039. The RMSE of the short-term prediction on the dataset simulated by the internal low Earth orbit constellation business simulation system was 0.0034, and the MAE was 0.0026. For the long-term prediction, the RMSE reached 0.0029 and the MAE reached 0.0022. Compared with other time series prediction models, it decreased by 22.3% in terms of the mean squared error and 18.0% in terms of the mean absolute error. The authors validated the functions of each module within the model through ablation experiments and further analyzed the effectiveness of this model in the task of LEO constellation network traffic prediction. Full article
(This article belongs to the Special Issue Future Generation Non-Terrestrial Networks)
Show Figures

Figure 1

18 pages, 6429 KiB  
Article
Parameter Design for Inter-Satellite Laser Link Acquisition Under Weak Light Conditions
by Mengyang Zhao, Jia Shen, Juan Wang, Pan Li, Ruihong Gao and Ziren Luo
Remote Sens. 2025, 17(5), 738; https://doi.org/10.3390/rs17050738 - 20 Feb 2025
Viewed by 720
Abstract
For the Taiji program or other LISA-like space-based gravitational wave (GW) detection missions, establishing laser links is a prerequisite for entering the normal science mode. There has been a lack of in-depth research on inter-satellite link acquisition under weak light and low-speed conditions. [...] Read more.
For the Taiji program or other LISA-like space-based gravitational wave (GW) detection missions, establishing laser links is a prerequisite for entering the normal science mode. There has been a lack of in-depth research on inter-satellite link acquisition under weak light and low-speed conditions. In this paper, we comprehensively analyze the impact of key parameters, including scan speed, track width, acquisition camera integration time, and jitter, on the acquisition process. By introducing laser spot location error under weak light conditions, we derive an analytical expression for the acquisition failure probability. Focusing on variations in scan speed and track width and carefully selecting the appropriate acquisition camera integration time, we then simulate the actual acquisition process to closely replicate real conditions. Analytical results of the acquisition failure probability align closely with the simulation results. Under the Taiji program’s parameter settings, the scan speed is set to 3.31 μrad/s, the track width to 0.87 μrad, and the integration time to 800ms. These parameters are optimized to minimize the mean acquisition time over multiple scans, resulting in a single link acquisition time of 223.77s. The analytical model can be used for the parameter design of inter-satellite laser link acquisition under weak light conditions. Full article
Show Figures

Graphical abstract

18 pages, 6204 KiB  
Article
An Integrity Monitoring Method for Navigation Satellites Based on Multi-Source Observation Links
by Jie Xin, Dongxia Wang and Kai Li
Remote Sens. 2024, 16(23), 4574; https://doi.org/10.3390/rs16234574 - 6 Dec 2024
Cited by 2 | Viewed by 850
Abstract
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited [...] Read more.
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited by the communication capacity of inter-satellite links and the layout of ground monitoring stations. Low earth orbit (LEO) satellites have advantages in information-carrying rate and kinematic velocity and can be used as satellite-based monitoring stations for navigation satellites. Large numbers of LEO satellites can provide more monitoring data than ground monitoring stations and make it easier to obtain full-arc observation data. A new challenge of redundant data also arises. This study constructs multi-source observation links with satellite-to-ground, inter-satellite, and satellite-based observation data, proposes an integrity monitoring method with optimization of observation links, and verifies the performance of integrity monitoring with different observation links. The experimental results show four findings. (1) Based on the integrity status of BDS-3, the proposed system-level integrity mode can realize full-arc anomaly diagnosis in information and signals according to the observation conditions of the target satellite. Apart from basic navigation messages and satellite-based augmentation messages, autonomous messages and inter-satellite ranging data can be used to evaluate the state of the target satellite. (2) For a giant LEO constellation, only a small number of LEO satellites need to be selected to construct a minimum satellite-based observation unit that can realize multiple returns of navigation messages and reduce the redundancy of observation data. With the support of 12 and 30 LEO satellites, the minimum number of satellite-based observation links is 1 and 4, respectively, verifying that a small amount of LEO satellites could be used to construct a minimum satellite-based observation unit. (3) A small number of LEO satellites can effectively improve the observation geometry of the target satellite. An orbit determination observation unit, which consists of chosen satellite-to-ground and/or satellite-based observation links based on observation geometry, is proposed to carry out fast calculations of satellite orbit. If the orbit determination observation unit contains 6 satellite-to-ground monitoring links and 6/12/60 LEO satellites, the value of satellite position dilution of precision (SPDOP) is 38.37, 24.60, and 15.71, respectively, with a 92.95%, 95.49%, and 97.12% improvement than the results using 6 satellite-to-ground monitoring links only. (4) LEO satellites could not only expand the resolution of integrity parameters in real time but also augment the service accuracy of the navigation satellite system. As the number of LEO satellites increases, the area where UDRE parameters can be solved in real time is constantly expanding to a global area. The service accuracy is 0.93 m, 0.88 m, and 0.65 m, respectively, with augmentation of 6, 12, and 60 LEO satellites, which is an 8.9%, 13.7%, and 36.3% improvement compared with the results of regional service. LEO satellites have practical application values by improving the integrity monitoring of navigation satellites. Full article
Show Figures

Figure 1

17 pages, 4975 KiB  
Article
Research on Distributed Autonomous Timekeeping Algorithm for Low-Earth-Orbit Constellation
by Shui Yu, Jing Peng, Ming Ma, Hang Gong, Zongnan Li and Shaojie Ni
Remote Sens. 2024, 16(21), 4092; https://doi.org/10.3390/rs16214092 - 2 Nov 2024
Cited by 1 | Viewed by 1601
Abstract
The time of a satellite navigation system is primarily generated by the main control station of the ground system. Consequently, when ground stations fail, there is a risk to the continuous provision of time services to the equipment and users. Furthermore, the anticipated [...] Read more.
The time of a satellite navigation system is primarily generated by the main control station of the ground system. Consequently, when ground stations fail, there is a risk to the continuous provision of time services to the equipment and users. Furthermore, the anticipated launch of additional satellites will further strain the satellite–ground link. Next-generation satellite navigation systems will rely on time deviation measurements from inter-satellite links to independently establish and maintain a space-based time reference, enhancing the system’s reliability and robustness. The increasing number of low-Earth-orbit satellite navigation constellations provides ample resources for establishing a space-based time reference. However, this also introduces challenges, including extensive time scale computations, increased link noise, and low clock resource utilization. To address these issues, this paper proposes a Distributed Kalman Plus Weight (D-KPW) algorithm, which combines the benefits of Kalman filtering and the weighted average algorithm, balancing the performance with computational resources. Furthermore, an adaptive clock control algorithm, D-KPW (Control), is developed to account for both the short-term and long-term frequency stability of the time reference. The experimental results demonstrate that the frequency stability of the time reference established by the D-KPW (Control) algorithm reaches 7.40×1015 and 2.30×1015 for sampling intervals of 1000 s and 1,000,000 s, respectively, outperforming traditional algorithms such as ALGOS. The 20-day prediction error of the time reference is 1.55 ns. Compared to traditional algorithms such as AT1, ALGOS, Kalman, and D-KPW, the accuracy improves by 65%, 65%, 66%, and 67%, respectively. Full article
Show Figures

Figure 1

Back to TopTop