Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (935)

Search Parameters:
Keywords = intelligent manufacturing systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 21105 KiB  
Review
A Review: The Beauty of Serendipity Between Integrated Circuit Security and Artificial Intelligence
by Chen Dong, Decheng Qiu, Bolun Li, Yang Yang, Chenxi Lyu, Dong Cheng, Hao Zhang and Zhenyi Chen
Sensors 2025, 25(15), 4880; https://doi.org/10.3390/s25154880 (registering DOI) - 7 Aug 2025
Abstract
Integrated circuits are the core of a cyber-physical system, where tens of billions of components are integrated into a tiny silicon chip to conduct complex functions. To maximize utilities, the design and manufacturing life cycle of integrated circuits rely on numerous untrustworthy third [...] Read more.
Integrated circuits are the core of a cyber-physical system, where tens of billions of components are integrated into a tiny silicon chip to conduct complex functions. To maximize utilities, the design and manufacturing life cycle of integrated circuits rely on numerous untrustworthy third parties, forming a global supply chain model. At the same time, this model produces unpredictable and catastrophic issues, threatening the security of individuals and countries. As for guaranteeing the security of ultra-highly integrated chips, detecting slight abnormalities caused by malicious behavior in the current and voltage is challenging, as is achieving computability within a reasonable time and obtaining a golden reference chip; however, artificial intelligence can make everything possible. For the first time, this paper presents a systematic review of artificial-intelligence-based integrated circuit security approaches, focusing on the latest attack and defense strategies. First, the security threats of integrated circuits are analyzed. For one of several key threats to integrated circuits, hardware Trojans, existing attack models are divided into several categories and discussed in detail. Then, for summarizing and comparing the numerous existing artificial-intelligence-based defense strategies, traditional and advanced artificial-intelligence-based approaches are listed. Finally, open issues on artificial-intelligence-based integrated circuit security are discussed from three perspectives: in-depth exploration of hardware Trojans, combination of artificial intelligence, and security strategies involving the entire life cycle. Based on the rapid development of artificial intelligence and the initial successful combination with integrated circuit security, this paper offers a glimpse into their intriguing intersection, aiming to draw greater attention to these issues. Full article
(This article belongs to the Collection Integrated Circuits and Systems for Smart Sensor Applications)
Show Figures

Figure 1

21 pages, 3921 KiB  
Article
A Unified Transformer Model for Simultaneous Cotton Boll Detection, Pest Damage Segmentation, and Phenological Stage Classification from UAV Imagery
by Sabina Umirzakova, Shakhnoza Muksimova, Abror Shavkatovich Buriboev, Holida Primova and Andrew Jaeyong Choi
Drones 2025, 9(8), 555; https://doi.org/10.3390/drones9080555 - 7 Aug 2025
Abstract
The present-day issues related to the cotton-growing industry, namely yield estimation, pest effect, and growth phase diagnostics, call for integrated, scalable monitoring solutions. This write-up reveals Cotton Multitask Learning (CMTL), a transformer-driven multitask framework that launches three major agronomic tasks from UAV pictures [...] Read more.
The present-day issues related to the cotton-growing industry, namely yield estimation, pest effect, and growth phase diagnostics, call for integrated, scalable monitoring solutions. This write-up reveals Cotton Multitask Learning (CMTL), a transformer-driven multitask framework that launches three major agronomic tasks from UAV pictures at one go: boll detection, pest damage segmentation, and phenological stage classification. CMTL does not change separate pipelines, but rather merges these goals using a Cross-Level Multi-Granular Encoder (CLMGE) and a Multitask Self-Distilled Attention Fusion (MSDAF) module that both allow mutual learning across tasks and still keep their specific features. The biologically guided Stage Consistency Loss is the part of the architecture of the network that enables the system to carry out growth stage transitions that occur in reality. We executed CMTL on a tri-source UAV dataset that fused over 2100 labeled images from public and private collections, representing a variety of crop stages and conditions. The model showed its virtues state-of-the-art baselines in all the tasks: setting 0.913 mAP for boll detection, 0.832 IoU for pest segmentation, and 0.936 accuracy for growth stage classification. Additionally, it runs at the fastest speed of performance on edge devices such as NVIDIA Jetson Xavier NX (Manufactured in Shanghai, China), which makes it ideal for deployment. These outcomes evoke CMTL’s promise as a single and productive instrument of aerial crop intelligence in precision cotton agriculture. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Figure 1

21 pages, 5215 KiB  
Article
A Cyber-Physical Integrated Framework for Developing Smart Operations in Robotic Applications
by Tien-Lun Liu, Po-Chun Chen, Yi-Hsiang Chao and Kuan-Chun Huang
Electronics 2025, 14(15), 3130; https://doi.org/10.3390/electronics14153130 - 6 Aug 2025
Abstract
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues [...] Read more.
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues of intelligent robots with cognitive and coordination capability by introducing cyber-physical integration technology. The authors propose a system architecture with open-source software and low-cost hardware based on the 5C hierarchy and then conduct experiments to verify the proposed framework. These experiments involve the collection of real-time data using a depth camera, object detection to recognize obstacles, simulation of collision avoidance for a robotic arm, and cyber-physical integration to perform a robotic task. The proposed framework realizes the scheme of the 5C architecture of Industry 4.0 and establishes a digital twin in cyberspace. By utilizing connection, conversion, calculation, simulation, verification, and operation, the robotic arm is capable of making independent judgments and appropriate decisions to successfully complete the assigned task, thereby verifying the proposed framework. Such a cyber-physical integration system is characterized by low cost but good effectiveness. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

30 pages, 2414 KiB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

29 pages, 3542 KiB  
Review
Digital Twins, AI, and Cybersecurity in Additive Manufacturing: A Comprehensive Review of Current Trends and Challenges
by Md Sazol Ahmmed, Laraib Khan, Muhammad Arif Mahmood and Frank Liou
Machines 2025, 13(8), 691; https://doi.org/10.3390/machines13080691 - 6 Aug 2025
Abstract
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their [...] Read more.
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their individual importance is increasing, a consistent understanding of how these technologies interact and collectively improve AM procedures is lacking. Focusing on the integration of digital twins (DTs), modular AI, and cybersecurity in AM, this review presents a comprehensive analysis of over 137 research publications from Scopus, Web of Science, Google Scholar, and ResearchGate. The publications are categorized into three thematic groups, followed by an analysis of key findings. Finally, the study identifies research gaps and proposes detailed recommendations along with a framework for future research. The study reveals that traditional AM processes have undergone significant transformations driven by digital threads, digital threads (DTs), and AI. However, this digitalization introduces vulnerabilities, leaving AM systems prone to cyber-physical attacks. Emerging advancements in AI, Machine Learning (ML), and Blockchain present promising solutions to mitigate these challenges. This paper is among the first to comprehensively summarize and evaluate the advancements in AM, emphasizing the integration of DTs, Modular AI, and cybersecurity strategies. Full article
(This article belongs to the Special Issue Neural Networks Applied in Manufacturing and Design)
Show Figures

Figure 1

17 pages, 3205 KiB  
Review
Microbiome–Immune Interaction and Harnessing for Next-Generation Vaccines Against Highly Pathogenic Avian Influenza in Poultry
by Yongming Sang, Samuel N. Nahashon and Richard J. Webby
Vaccines 2025, 13(8), 837; https://doi.org/10.3390/vaccines13080837 - 6 Aug 2025
Abstract
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating [...] Read more.
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating vaccine-induced immunity, including enhancement of mucosal IgA production, CD8+ T-cell activation, and modulation of systemic immune responses. Engineered commensal bacteria such as Lactococcus lactis, Bacteroides ovatus, Bacillus subtilis, and Staphylococcus epidermidis have emerged as promising live vectors for antigen delivery. Postbiotic and synbiotic strategies further enhance protective efficacy through targeted modulation of the gut microbiota. Additionally, artificial intelligence (AI)-driven tools enable predictive modeling of host–microbiome interactions, antigen design optimization, and early detection of viral antigenic drift. These integrative technologies offer a new framework for mucosal, broadly protective, and field-deployable vaccines for HPAI control. However, species-specific microbiome variation, ecological safety concerns, and scalable manufacturing remain critical challenges. This review synthesizes emerging evidence on microbiome–immune crosstalk, commensal vector platforms, and AI-enhanced vaccine development, emphasizing the urgent need for One Health integration to mitigate zoonotic adaptation and pandemic emergence. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

35 pages, 1832 KiB  
Review
Enabling Intelligent Industrial Automation: A Review of Machine Learning Applications with Digital Twin and Edge AI Integration
by Mohammad Abidur Rahman, Md Farhan Shahrior, Kamran Iqbal and Ali A. Abushaiba
Automation 2025, 6(3), 37; https://doi.org/10.3390/automation6030037 - 5 Aug 2025
Abstract
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly [...] Read more.
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly enhancing system reliability, product quality, and efficiency. This review explores the transformative role of ML across three key domains: Predictive Maintenance (PdM), Quality Control (QC), and Process Optimization (PO). It also analyzes how Digital Twin (DT) and Edge AI technologies are expanding the practical impact of ML in these areas. Our analysis reveals a marked rise in deep learning, especially convolutional and recurrent architectures, with a growing shift toward real-time, edge-based deployment. The paper also catalogs the datasets used, the tools and sensors employed for data collection, and the industrial software platforms supporting ML deployment in practice. This review not only maps the current research terrain but also highlights emerging opportunities in self-learning systems, federated architectures, explainable AI, and themes such as self-adaptive control, collaborative intelligence, and autonomous defect diagnosis—indicating that ML is poised to become deeply embedded across the full spectrum of industrial operations in the coming years. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

33 pages, 1619 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 - 1 Aug 2025
Viewed by 281
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
Show Figures

Figure 1

28 pages, 694 KiB  
Article
Artificial Intelligence-Enabled Digital Transformation in Circular Logistics: A Structural Equation Model of Organizational, Technological, and Environmental Drivers
by Ionica Oncioiu, Diana Andreea Mândricel and Mihaela Hortensia Hojda
Logistics 2025, 9(3), 102; https://doi.org/10.3390/logistics9030102 - 1 Aug 2025
Viewed by 219
Abstract
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a [...] Read more.
Background: Digital transformation is increasingly present in modern logistics, especially in the context of sustainability and circularity pressures. The integration of technologies such as Internet of Things (IoT), Radio Frequency Identification (RFID), and automated platforms involves not only infrastructure but also a strategic vision, a flexible organizational culture, and the ability to support decisions through artificial intelligence (AI)-based systems. Methods: This study proposes an extended conceptual model using structural equation modelling (SEM) to explore the relationships between five constructs: technological change, strategic and organizational readiness, transformation environment, AI-enabled decision configuration, and operational redesign. The model was validated based on a sample of 217 active logistics specialists, coming from sectors such as road transport, retail, 3PL logistics services, and manufacturing. The participants are involved in the digitization of processes, especially in activities related to operational decisions and sustainability. Results: The findings reveal that the analysis confirms statistically significant relationships between organizational readiness, transformation environment, AI-based decision processes, and operational redesign. Conclusions: The study highlights the importance of an integrated approach in which technology, organizational culture, and advanced decision support collectively contribute to the transition to digital and circular logistics chains. Full article
Show Figures

Figure 1

22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 - 1 Aug 2025
Viewed by 298
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

20 pages, 3729 KiB  
Article
Can AIGC Aid Intelligent Robot Design? A Tentative Research of Apple-Harvesting Robot
by Qichun Jin, Jiayu Zhao, Wei Bao, Ji Zhao, Yujuan Zhang and Fuwen Hu
Processes 2025, 13(8), 2422; https://doi.org/10.3390/pr13082422 - 30 Jul 2025
Viewed by 380
Abstract
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in [...] Read more.
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in conceptual and technical design, functional module design, and the training of the perception ability to accelerate prototyping. Taking the design of an apple-harvesting robot, for example, we demonstrate a basic framework of the AIGC-assisted robot design methodology, leveraging the generation capabilities of available multimodal large language models, as well as the human intervention to alleviate AI hallucination and hidden risks. Second, we study the enhancement effect on the robot perception system using the generated apple images based on the large vision-language models to expand the actual apple images dataset. Further, an apple-harvesting robot prototype based on an AIGC-aided design is demonstrated and a pick-up experiment in a simulated scene indicates that it achieves a harvesting success rate of 92.2% and good terrain traversability with a maximum climbing angle of 32°. According to the tentative research, although not an autonomous design agent, the AIGC-driven design workflow can alleviate the significant complexities and challenges of intelligent robot design, especially for beginners or young engineers. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

25 pages, 3785 KiB  
Article
Evolutionary Algorithms for the Optimal Design of Robotic Cells: A Dual Approximation for Space and Time
by Raúl-Alberto Sánchez-Sosa and Ernesto Chavero-Navarrete
Appl. Sci. 2025, 15(15), 8455; https://doi.org/10.3390/app15158455 - 30 Jul 2025
Viewed by 222
Abstract
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of [...] Read more.
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of real-world applications. In response, this study presents a dual approach to optimize both spatial design and traversal time in robotic cells, using bioinspired evolutionary algorithms. Initially, a genetic algorithm is employed to optimize the layout of the cell elements, reducing space usage and avoiding interferences between workstations. Subsequently, an ant colony optimization algorithm is used to optimize the robots’ trajectories, minimizing cycle time. Through simulations and a digital model of the cell, key metrics such as total space reduction, operational time improvement, and productivity increase are evaluated. The results demonstrate that the combination of both approaches achieves significant improvements, enabling an average reduction of 21.19% in the occupied area and up to 20.15% in operational cycle time, consistently outperforming traditional methods. This approach has the potential to be applied in various industrial configurations, representing a relevant contribution in the integration of artificial intelligence techniques for the enhancement of robotic systems. Full article
Show Figures

Graphical abstract

21 pages, 764 KiB  
Article
Sustainable Optimization of the Injection Molding Process Using Particle Swarm Optimization (PSO)
by Yung-Tsan Jou, Hsueh-Lin Chang and Riana Magdalena Silitonga
Appl. Sci. 2025, 15(15), 8417; https://doi.org/10.3390/app15158417 - 29 Jul 2025
Viewed by 240
Abstract
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt [...] Read more.
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt temperature and holding pressure) and product quality is amplified by PSO’s intelligent search capability, which efficiently navigates the high-dimensional parameter space. Together, this hybrid approach achieves what neither method could accomplish alone: the BPNN accurately models the intricate process-quality relationships, while PSO rapidly converges on optimal parameter sets that simultaneously meet strict quality targets (66–70 g weight, 3–5 mm thickness) and minimize energy consumption. The significance of this integration is demonstrated through three key outcomes: First, the BPNN-PSO combination reduced optimization time by 40% compared to traditional trial-and-error methods. Second, it achieved remarkable prediction accuracy (RMSE 0.8229 for thickness, 1.5123 for weight) that surpassed standalone BPNN implementations. Third, the method’s efficiency enabled SMEs to achieve CAE-level precision without expensive software, reducing setup costs by approximately 25%. Experimental validation confirmed that the optimized parameters decreased energy use by 28% and material waste by 35% while consistently producing parts within specifications. This research provides manufacturers with a practical, scalable solution that transforms injection molding from an experience-dependent craft to a data-driven science. The BPNN-PSO framework not only delivers superior technical results but does so in a way that is accessible to resource-constrained manufacturers, marking a significant step toward sustainable, intelligent production systems. For SMEs, this framework offers a practical pathway to achieve both economic and environmental sustainability, reducing reliance on resource-intensive CAE tools while cutting production costs by an estimated 22% through waste and energy savings. The study provides a replicable blueprint for implementing data-driven sustainability in injection molding operations without compromising product quality or operational efficiency. Full article
(This article belongs to the Special Issue Advancement in Smart Manufacturing and Industry 4.0)
Show Figures

Figure 1

28 pages, 3144 KiB  
Review
Artificial Intelligence-Driven and Bio-Inspired Control Strategies for Industrial Robotics: A Systematic Review of Trends, Challenges, and Sustainable Innovations Toward Industry 5.0
by Claudio Urrea
Machines 2025, 13(8), 666; https://doi.org/10.3390/machines13080666 - 29 Jul 2025
Viewed by 675
Abstract
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics [...] Read more.
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics control studies (2023–2025), including an expanded bio-inspired/human-centric subset, to evaluate: (1) the dominant and emerging control methodologies; (2) the transformative role of digital twins and 5G-enabled connectivity; and (3) the persistent technical, ethical, and environmental challenges. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, the study employs a rigorous methodology, focusing on adaptive control, deep reinforcement learning (DRL), human–robot collaboration (HRC), and quantum-inspired algorithms. The key findings highlight up to 30% latency reductions in real-time optimization, up to 22% efficiency gains through digital twins, and up to 25% energy savings from bio-inspired designs (all percentage ranges are reported relative to the comparator baselines specified in the cited sources). However, critical barriers remain, including scalability limitations (with up to 40% higher computational demands) and cybersecurity vulnerabilities (with up to 20% exposure rates). The convergence of AI, bio-inspired systems, and quantum computing is poised to enable sustainable, autonomous, and human-centric robotics, yet requires standardized safety frameworks and hybrid architectures to fully support the transition from Industry 4.0 to Industry 5.0. This review offers a strategic roadmap for future research and industrial adoption, emphasizing human-centric design, ethical frameworks, and circular-economy principles to address global manufacturing challenges. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop