Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = intelligent alerting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2515 KiB  
Article
Solar Agro Savior: Smart Agricultural Monitoring Using Drones and Deep Learning Techniques
by Manu Mundappat Ramachandran, Bisni Fahad Mon, Mohammad Hayajneh, Najah Abu Ali and Elarbi Badidi
Agriculture 2025, 15(15), 1656; https://doi.org/10.3390/agriculture15151656 - 1 Aug 2025
Viewed by 233
Abstract
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the [...] Read more.
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the plants’ health and optimization in water utilization, which enhances plant yield productivity. A significant feature of the system is the efficient monitoring system in a larger region through drones’ high-resolution cameras, which enables real-time, efficient response and alerting for environmental fluctuations to the authorities. The machine learning algorithm, particularly recurrent neural networks, which is a pioneer with agriculture and pest control, is incorporated for intelligent monitoring systems. The proposed system incorporates a specialized form of a recurrent neural network, Long Short-Term Memory (LSTM), which effectively addresses the vanishing gradient problem. It also utilizes an attention-based mechanism that enables the model to assign meaningful weights to the most important parts of the data sequence. This algorithm not only enhances water utilization efficiency but also boosts plant yield and strengthens pest control mechanisms. This system also provides sustainability through the re-utilization of water and the elimination of electric energy through solar panel systems for powering the inbuilt irrigation system. A comparative analysis of variant algorithms in the agriculture sector with a machine learning approach was also illustrated, and the proposed system yielded 99% yield accuracy, a 97.8% precision value, 98.4% recall, and a 98.4% F1 score value. By encompassing solar irrigation and artificial intelligence-driven analysis, the proposed algorithm, Solar Argo Savior, established a sustainable framework in the latest agricultural sectors and promoted sustainability to protect our environment and community. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 270
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

26 pages, 2261 KiB  
Article
Real-Time Fall Monitoring for Seniors via YOLO and Voice Interaction
by Eugenia Tîrziu, Ana-Mihaela Vasilevschi, Adriana Alexandru and Eleonora Tudora
Future Internet 2025, 17(8), 324; https://doi.org/10.3390/fi17080324 - 23 Jul 2025
Viewed by 226
Abstract
In the context of global demographic aging, falls among the elderly remain a major public health concern, often leading to injury, hospitalization, and loss of autonomy. This study proposes a real-time fall detection system that combines a modern computer vision model, YOLOv11 with [...] Read more.
In the context of global demographic aging, falls among the elderly remain a major public health concern, often leading to injury, hospitalization, and loss of autonomy. This study proposes a real-time fall detection system that combines a modern computer vision model, YOLOv11 with integrated pose estimation, and an Artificial Intelligence (AI)-based voice assistant designed to reduce false alarms and improve intervention efficiency and reliability. The system continuously monitors human posture via video input, detects fall events based on body dynamics and keypoint analysis, and initiates a voice-based interaction to assess the user’s condition. Depending on the user’s verbal response or the absence thereof, the system determines whether to trigger an emergency alert to caregivers or family members. All processing, including speech recognition and response generation, is performed locally to preserve user privacy and ensure low-latency performance. The approach is designed to support independent living for older adults. Evaluation of 200 simulated video sequences acquired by the development team demonstrated high precision and recall, along with a decrease in false positives when incorporating voice-based confirmation. In addition, the system was also evaluated on an external dataset to assess its robustness. Our results highlight the system’s reliability and scalability for real-world in-home elderly monitoring applications. Full article
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Viewed by 571
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

25 pages, 2870 KiB  
Article
Performance Evaluation and QoS Optimization of Routing Protocols in Vehicular Communication Networks Under Delay-Sensitive Conditions
by Alaa Kamal Yousif Dafhalla, Hiba Mohanad Isam, Amira Elsir Tayfour Ahmed, Ikhlas Saad Ahmed, Lutfieh S. Alhomed, Amel Mohamed essaket Zahou, Fawzia Awad Elhassan Ali, Duria Mohammed Ibrahim Zayan, Mohamed Elshaikh Elobaid and Tijjani Adam
Computers 2025, 14(7), 285; https://doi.org/10.3390/computers14070285 - 17 Jul 2025
Viewed by 301
Abstract
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic [...] Read more.
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic topology of vehicular environments. While some efforts have explored routing protocol optimization, few have systematically compared multiple optimization approaches tailored to distinct traffic and delay conditions. This study addresses this gap by evaluating and enhancing two widely used routing protocols, QOS-AODV and GPSR, through their improved versions, CM-QOS-AODV and CM-GPSR. Two distinct optimization models are proposed: the Traffic-Oriented Model (TOM), designed to handle variable and high-traffic conditions, and the Delay-Efficient Model (DEM), focused on reducing latency for time-critical scenarios. Performance was evaluated using key QoS metrics: throughput (rate of successful data delivery), packet delivery ratio (PDR) (percentage of successfully delivered packets), and end-to-end delay (latency between sender and receiver). Simulation results reveal that TOM-optimized protocols achieve up to 10% higher PDR, maintain throughput above 0.40 Mbps, and reduce delay to as low as 0.01 s, making them suitable for applications such as collision avoidance and emergency alerts. DEM-based variants offer balanced, moderate improvements, making them better suited for general-purpose VCN applications. These findings underscore the importance of traffic- and delay-aware protocol design in developing robust, QoS-compliant vehicular communication systems. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

9 pages, 654 KiB  
Proceeding Paper
Machine Learning-Powered Agents for Optimized Product Management in Performance Max Campaigns
by Veselka Petrova-Dimitrova
Eng. Proc. 2025, 100(1), 36; https://doi.org/10.3390/engproc2025100036 - 11 Jul 2025
Viewed by 209
Abstract
Digital advertising is evolving rapidly with the integration of machine learning algorithms, increasingly used for real-time decisions and campaign optimization. This article presents the use of intelligent agents to enhance the effectiveness of Performance Max campaigns. Since campaign-level settings alone are insufficient for [...] Read more.
Digital advertising is evolving rapidly with the integration of machine learning algorithms, increasingly used for real-time decisions and campaign optimization. This article presents the use of intelligent agents to enhance the effectiveness of Performance Max campaigns. Since campaign-level settings alone are insufficient for detailed product-level optimization, two machine learning-based agents were developed: one to detect anomalies in product performance, and another to reallocate products between campaigns based on performance. The first agent analyzes products’ daily metrics and triggers alerts for unusual deviations. The second agent autonomously moves products between campaigns based on their performance to maximize the results, as well as improve the performance in terms of visibility and return on investment of the moved products. Full article
Show Figures

Figure 1

22 pages, 2583 KiB  
Article
Helmet Detection in Underground Coal Mines via Dynamic Background Perception with Limited Valid Samples
by Guangfu Wang, Dazhi Sun, Hao Li, Jian Cheng, Pengpeng Yan and Heping Li
Mach. Learn. Knowl. Extr. 2025, 7(3), 64; https://doi.org/10.3390/make7030064 - 9 Jul 2025
Viewed by 372
Abstract
The underground coal mine environment is complex and dynamic, making the application of visual algorithms for object detection a crucial component of underground safety management as well as a key factor in ensuring the safe operation of workers. We look at this in [...] Read more.
The underground coal mine environment is complex and dynamic, making the application of visual algorithms for object detection a crucial component of underground safety management as well as a key factor in ensuring the safe operation of workers. We look at this in the context of helmet-wearing detection in underground mines, where over 25% of the targets are small objects. To address challenges such as the lack of effective samples for unworn helmets, significant background interference, and the difficulty of detecting small helmet targets, this paper proposes a novel underground helmet-wearing detection algorithm that combines dynamic background awareness with a limited number of valid samples to improve accuracy for underground workers. The algorithm begins by analyzing the distribution of visual surveillance data and spatial biases in underground environments. By using data augmentation techniques, it then effectively expands the number of training samples by introducing positive and negative samples for helmet-wearing detection from ordinary scenes. Thereafter, based on YOLOv10, the algorithm incorporates a background awareness module with region masks to reduce the adverse effects of complex underground backgrounds on helmet-wearing detection. Specifically, it adds a convolution and attention fusion module in the detection head to enhance the model’s perception of small helmet-wearing objects by enlarging the detection receptive field. By analyzing the aspect ratio distribution of helmet wearing data, the algorithm improves the aspect ratio constraints in the loss function, further enhancing detection accuracy. Consequently, it achieves precise detection of helmet-wearing in underground coal mines. Experimental results demonstrate that the proposed algorithm can detect small helmet-wearing objects in complex underground scenes, with a 14% reduction in background false detection rates, and thereby achieving accuracy, recall, and average precision rates of 94.4%, 89%, and 95.4%, respectively. Compared to other mainstream object detection algorithms, the proposed algorithm shows improvements in detection accuracy of 6.7%, 5.1%, and 11.8% over YOLOv9, YOLOv10, and RT-DETR, respectively. The algorithm proposed in this paper can be applied to real-time helmet-wearing detection in underground coal mine scenes, providing safety alerts for standardized worker operations and enhancing the level of underground security intelligence. Full article
Show Figures

Graphical abstract

32 pages, 1126 KiB  
Review
Exploring the Role of Artificial Intelligence in Smart Healthcare: A Capability and Function-Oriented Review
by Syed Raza Abbas, Huiseung Seol, Zeeshan Abbas and Seung Won Lee
Healthcare 2025, 13(14), 1642; https://doi.org/10.3390/healthcare13141642 - 8 Jul 2025
Viewed by 1242
Abstract
Artificial Intelligence (AI) is transforming smart healthcare by enhancing diagnostic precision, automating clinical workflows, and enabling personalized treatment strategies. This review explores the current landscape of AI in healthcare from two key perspectives: capability types (e.g., Narrow AI and AGI) and functional architectures [...] Read more.
Artificial Intelligence (AI) is transforming smart healthcare by enhancing diagnostic precision, automating clinical workflows, and enabling personalized treatment strategies. This review explores the current landscape of AI in healthcare from two key perspectives: capability types (e.g., Narrow AI and AGI) and functional architectures (e.g., Limited Memory and Theory of Mind). Based on capabilities, most AI systems today are categorized as Narrow AI, performing specific tasks such as medical image analysis and risk prediction with high accuracy. More advanced forms like General Artificial Intelligence (AGI) and Superintelligent AI remain theoretical but hold transformative potential. From a functional standpoint, Limited Memory AI dominates clinical applications by learning from historical patient data to inform decision-making. Reactive systems are used in rule-based alerts, while Theory of Mind (ToM) and Self-Aware AI remain conceptual stages for future development. This dual perspective provides a comprehensive framework to assess the maturity, impact, and future direction of AI in healthcare. It also highlights the need for ethical design, transparency, and regulation as AI systems grow more complex and autonomous, by incorporating cross-domain AI insights. Moreover, we evaluate the viability of developing AGI in regionally specific legal and regulatory frameworks, using South Korea as a case study to emphasize the limitations imposed by infrastructural preparedness and medical data governance regulations. Full article
(This article belongs to the Special Issue The Role of AI in Predictive and Prescriptive Healthcare)
Show Figures

Figure 1

18 pages, 3039 KiB  
Article
Security Symmetry in Embedded Systems: Using Microsoft Defender for IoT to Detect Firmware Downgrade Attacks
by Marian Hristov, Maria Nenova and Viktoria Dimitrova
Symmetry 2025, 17(7), 1061; https://doi.org/10.3390/sym17071061 - 4 Jul 2025
Viewed by 367
Abstract
Nowadays, the world witnesses cyber attacks daily, and these threats are becoming exponentially sophisticated due to advances in Artificial Intelligence (AI). This progress allows adversaries to accelerate malware development and streamline the exploitation process. The motives vary, and so do the consequences. Unlike [...] Read more.
Nowadays, the world witnesses cyber attacks daily, and these threats are becoming exponentially sophisticated due to advances in Artificial Intelligence (AI). This progress allows adversaries to accelerate malware development and streamline the exploitation process. The motives vary, and so do the consequences. Unlike Information Technology (IT) breaches, Operational Technology (OT)—such as manufacturing plants, electric grids, or water and wastewater facilities—compromises can have life-threatening or environmentally hazardous consequences. For that reason, this article explores a potential cyber attack against an OT environment—firmware downgrade—and proposes a solution for detection and response by implementing Microsoft Defender for IoT (D4IoT), one of the leading products on the market for OT monitoring. To detect the malicious firmware downgrade activity, D4IoT was implemented in a pre-commissioning (non-production) environment. The solution passively monitored the network, identified the deviation, and generated alerts for response actions. Testing showed that D4IoT effectively detected the firmware downgrade attempts based on a protocol analysis and asset behavior profiling. These findings demonstrate that D4IoT provides valuable detection capabilities against an intentional firmware downgrade designed to exploit known vulnerabilities in the older, less secure version, thereby strengthening the cybersecurity posture of OT environments. The explored attack scenario leverages the symmetry between genuine and malicious firmware flows, where the downgrade mimics the upgrade process, aiming to create challenges in detection. The proposed solution discerns adversarial actions from legitimate firmware changes by breaking this functional symmetry through behavioral profiling. Full article
Show Figures

Figure 1

51 pages, 5828 KiB  
Review
A Comprehensive Review of Advanced Sensor Technologies for Fire Detection with a Focus on Gasistor-Based Sensors
by Mohsin Ali, Ibtisam Ahmad, Ik Geun, Syed Ameer Hamza, Umar Ijaz, Yuseong Jang, Jahoon Koo, Young-Gab Kim and Hee-Dong Kim
Chemosensors 2025, 13(7), 230; https://doi.org/10.3390/chemosensors13070230 - 23 Jun 2025
Viewed by 1468
Abstract
Early fire detection plays a crucial role in minimizing harm to human life, buildings, and the environment. Traditional fire detection systems struggle with detection in dynamic or complex situations due to slow response and false alarms. Conventional systems are based on smoke, heat, [...] Read more.
Early fire detection plays a crucial role in minimizing harm to human life, buildings, and the environment. Traditional fire detection systems struggle with detection in dynamic or complex situations due to slow response and false alarms. Conventional systems are based on smoke, heat, and gas sensors, which often trigger alarms when a fire is in full swing. In order to overcome this, a promising approach is the development of memristor-based gas sensors, known as gasistors, which offer a lightweight design, fast response/recovery, and efficient miniaturization. Recent studies on gasistor-based sensors have demonstrated ultrafast response times as low as 1–2 s, with detection limits reaching sub-ppm levels for gases such as CO, NH3, and NO2. Enhanced designs incorporating memristive switching and 2D materials have achieved a sensitivity exceeding 90% and stable operation across a wide temperature range (room temperature to 250 °C). This review highlights key factors in early fire detection, focusing on advanced sensors and their integration with IoT for faster, and more reliable alerts. Here, we introduce gasistor technology, which shows high sensitivity to fire-related gases and operates through conduction filament (CF) mechanisms, enabling its low power consumption, compact size, and rapid recovery. When integrated with machine learning and artificial intelligence, this technology offers a promising direction for future advancements in next-generation early fire detection systems. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

30 pages, 3165 KiB  
Article
Exploring the Role of Artificial Intelligence in Detecting Advanced Persistent Threats
by Pedro Ramos Brandao
Computers 2025, 14(7), 245; https://doi.org/10.3390/computers14070245 - 23 Jun 2025
Viewed by 374
Abstract
The rapid evolution of cyber threats, particularly Advanced Persistent Threats (APTs), poses significant challenges to the security of information systems. This paper explores the pivotal role of Artificial Intelligence (AI) in enhancing the detection and mitigation of APTs. By leveraging machine learning algorithms [...] Read more.
The rapid evolution of cyber threats, particularly Advanced Persistent Threats (APTs), poses significant challenges to the security of information systems. This paper explores the pivotal role of Artificial Intelligence (AI) in enhancing the detection and mitigation of APTs. By leveraging machine learning algorithms and data analytics, AI systems can identify patterns and anomalies that are indicative of sophisticated cyber-attacks. This study examines various AI-driven methodologies, including anomaly detection, predictive analytics, and automated response systems, highlighting their effectiveness in real-time threat detection and response. Furthermore, we discuss the integration of AI into existing cybersecurity frameworks, emphasizing the importance of collaboration between human analysts and AI systems in combating APTs. The findings suggest that the adoption of AI technologies not only improves the accuracy and speed of threat detection but also enables organizations to proactively defend against evolving cyber threats, probably achieving a 75% reduction in alert volume. Full article
(This article belongs to the Section ICT Infrastructures for Cybersecurity)
Show Figures

Figure 1

18 pages, 1568 KiB  
Article
Improving Multi-Class Classification for Recognition of the Prioritized Classes Using the Analytic Hierarchy Process
by Algimantas Venčkauskas, Jevgenijus Toldinas and Nerijus Morkevičius
Appl. Sci. 2025, 15(13), 7071; https://doi.org/10.3390/app15137071 - 23 Jun 2025
Viewed by 395
Abstract
Machine learning (ML) algorithms are widely used in various fields, including cyber threat intelligence (CTI), financial technology (Fintech), and intrusion detection systems (IDSs). They automate security alert data analysis, enhancing attack detection, incident response, and threat mitigation. Fintech is particularly vulnerable to cyber-attacks [...] Read more.
Machine learning (ML) algorithms are widely used in various fields, including cyber threat intelligence (CTI), financial technology (Fintech), and intrusion detection systems (IDSs). They automate security alert data analysis, enhancing attack detection, incident response, and threat mitigation. Fintech is particularly vulnerable to cyber-attacks and cyber espionage due to its data-centric nature. Because of this, it is essential to give priority to the classification of cyber-attacks to accomplish the most crucial attack detection. Improving ML models for superior prioritized recognition requires a comprehensive strategy that includes data preprocessing, enhancement, algorithm refinement, and customized assessment. To improve cyber-attack detection in the Fintech, CTI, and IDS sectors, it is necessary to develop an ML model that better recognizes the prioritized classes, thereby enhancing security against important types of threats. This research introduces adaptive incremental learning, which enables ML models to keep learning new information by looking at changing data from a data stream, improving their ability to accurately identify types of cyber-attacks with high priority. The Analytical Hierarchy Process (AHP) is suggested to help make the best decision by evaluating model performance based on prioritized classes using real multi-class datasets instead of artificially improved ones. The findings demonstrate that the ML model improved its ability to identify prioritized classes of cyber-attacks utilizing the ToN_IoT network dataset. The recall value for the “injection” class rose from 59.5% to 61.8%, the recall for the “password” class increased from 86.7% to 88.6%, and the recall for the “ransomware” class improved from 0% to 23.6%. Full article
Show Figures

Figure 1

22 pages, 2799 KiB  
Article
A Fuzzy Logic-Based eHealth Mobile App for Activity Detection and Behavioral Analysis in Remote Monitoring of Elderly People: A Pilot Study
by Abdussalam Salama, Reza Saatchi, Maryam Bagheri, Karim Shebani, Yasir Javed, Raksha Balaraman and Kavya Adhikari
Symmetry 2025, 17(7), 988; https://doi.org/10.3390/sym17070988 - 23 Jun 2025
Viewed by 396
Abstract
The challenges and increasing number of elderly individuals requiring remote monitoring at home highlight the need for technological innovations. This study devised an eHealth mobile application designed to detect abnormal movement behavior and alert caregivers when a lack of movement is detected for [...] Read more.
The challenges and increasing number of elderly individuals requiring remote monitoring at home highlight the need for technological innovations. This study devised an eHealth mobile application designed to detect abnormal movement behavior and alert caregivers when a lack of movement is detected for an abnormal period. By utilizing the built-in accelerometer of a conventional mobile phone, an application was developed to accurately record movement patterns and identify active and idle states. Fuzzy logic, an artificial intelligence (AI)-inspired paradigm particularly effective for real-time reasoning under uncertainty, was integrated to analyze activity data and generate timely alerts, ensuring rapid response in emergencies. The approach reduced development costs while leveraging the widespread familiarity with mobile phones, facilitating easy adoption. The approach involved collecting real-time accelerometry data, analyzing movement patterns using fuzzy logic-based inferencing, and implementing a rule-based decision system to classify user activity and detect inactivity. This pilot study primarily validated the devised fuzzy logic method and the functional prototype of the mobile application, demonstrating its potential to leverage universal smartphone accelerometers for accessible remote monitoring. Using fuzzy logic, temporal and behavioral symmetry in movement patterns were adapted to detect asymmetric anomalies, e.g., abnormal inactivity or falls. The study is particularly relevant considering lonely individuals found deceased in their homes long after dying. By providing real-time monitoring and proactive alerts, this eHealth solution offers a scalable, cost-effective approach to improving elderly care, enhancing safety, and reducing the risk of unnoticed deaths through fuzzy logic. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Fuzzy Control)
Show Figures

Figure 1

34 pages, 7582 KiB  
Article
Proposed SmartBarrel System for Monitoring and Assessment of Wine Fermentation Processes Using IoT Nose and Tongue Devices
by Sotirios Kontogiannis, Meropi Tsoumani, George Kokkonis, Christos Pikridas and Yorgos Kotseridis
Sensors 2025, 25(13), 3877; https://doi.org/10.3390/s25133877 - 21 Jun 2025
Viewed by 1332
Abstract
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These [...] Read more.
This paper introduces SmartBarrel, an innovative IoT-based sensory system that monitors and forecasts wine fermentation processes. At the core of SmartBarrel are two compact, attachable devices—the probing nose (E-nose) and the probing tongue (E-tongue), which mount directly onto stainless steel wine tanks. These devices periodically measure key fermentation parameters: the nose monitors gas emissions, while the tongue captures acidity, residual sugar, and color changes. Both utilize low-cost, low-power sensors validated through small-scale fermentation experiments. Beyond the sensory hardware, SmartBarrel includes a robust cloud infrastructure built on open-source Industry 4.0 tools. The system leverages the ThingsBoard platform, supported by a NoSQL Cassandra database, to provide real-time data storage, visualization, and mobile application access. The system also supports adaptive breakpoint alerts and real-time adjustment to the nonlinear dynamics of wine fermentation. The authors developed a novel deep learning model called V-LSTM (Variable-length Long Short-Term Memory) to introduce intelligence to enable predictive analytics. This auto-calibrating architecture supports variable layer depths and cell configurations, enabling accurate forecasting of fermentation metrics. Moreover, the system includes two fuzzy logic modules: a device-level fuzzy controller to estimate alcohol content based on sensor data and a fuzzy encoder that synthetically generates fermentation profiles using a limited set of experimental curves. SmartBarrel experimental results validate the SmartBarrel’s ability to monitor fermentation parameters. Additionally, the implemented models show that the V-LSTM model outperforms existing neural network classifiers and regression models, reducing RMSE loss by at least 45%. Furthermore, the fuzzy alcohol predictor achieved a coefficient of determination (R2) of 0.87, enabling reliable alcohol content estimation without direct alcohol sensing. Full article
(This article belongs to the Special Issue Applications of Sensors Based on Embedded Systems)
Show Figures

Figure 1

15 pages, 5002 KiB  
Article
Leveraging Machine Learning for Optimal Pilgrim Crowd Management
by Roaa Alzahrani and Nahlah Algethami
Electronics 2025, 14(13), 2507; https://doi.org/10.3390/electronics14132507 - 20 Jun 2025
Viewed by 415
Abstract
The Hajj pilgrimage involves high crowd density within limited time and space, making traditional crowd control methods insufficient for real-time alerts or predictive safety measures. This research proposes a machine learning-based system to enhance crowd management by detecting abnormal behavior and forecasting future [...] Read more.
The Hajj pilgrimage involves high crowd density within limited time and space, making traditional crowd control methods insufficient for real-time alerts or predictive safety measures. This research proposes a machine learning-based system to enhance crowd management by detecting abnormal behavior and forecasting future conditions. The study utilizes the Hajjv2 dataset, which consists of annotated video frames capturing various crowd behaviors across multiple Hajj locations. After data preprocessing and feature extraction, including crowd density, speed, direction, and object area, two models are employed: the Isolation Forest algorithm for anomaly detection and a Long Short-Term Memory (LSTM) neural network for forecasting crowd behavior. The system integrates the results of both models to issue real-time alerts based on predefined thresholds. Evaluation results indicate that the Isolation Forest model achieved an average accuracy of 91% across all test sets, effectively identifying abnormal movement patterns. The LSTM model produced reliable predictions of average crowd speed with a low Mean Squared Error (MSE) of 0.000439. Together, these models form a robust alert mechanism that enables early identification of risks. In summary, this study presents an intelligent, scalable solution for enhancing crowd safety during the Hajj. It illustrates the practical value of machine learning in enabling proactive and informed crowd management strategies. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop