Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = integrated cutter system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5893 KiB  
Article
Design and Validation of a Fixture Device for Machining Surfaces with Barrel End-Mill on a 3-Axis CNC Milling Machine
by Sandor Ravai-Nagy, Alina Bianca Pop and Aurel Mihail Titu
Appl. Sci. 2025, 15(13), 7379; https://doi.org/10.3390/app15137379 - 30 Jun 2025
Cited by 1 | Viewed by 339
Abstract
This paper presents the design and validation of a novel specialized fixture device for machining inclined planes with barrel cutters on 3-axis CNC machine tools. Barrel milling, also known as Parabolic Performance Cutting (PPC), is extensively used on 5-axis machines to enhance the [...] Read more.
This paper presents the design and validation of a novel specialized fixture device for machining inclined planes with barrel cutters on 3-axis CNC machine tools. Barrel milling, also known as Parabolic Performance Cutting (PPC), is extensively used on 5-axis machines to enhance the efficiency of machining complex surfaces. While significant research has focused on optimizing barrel milling for aspects such as surface roughness and cutting forces, implementing this technique on 3-axis machines poses a challenge due to limitations in tool orientation. To overcome this, an innovative adaptable device was designed, enabling precise workpiece orientation relative to the barrel cutter. To overcome this limitation, an adaptable device was designed that enables precise workpiece orientation relative to the barrel cutter. The device utilizes interchangeable locating elements for different cutter programming angles (such as 18°, 20°, and 42.5°), thereby ensuring correct workpiece positioning. Rigid workpiece clamping is provided by the device’s mechanism to maintain precise workpiece positioning during machining, and probing surfaces are integrated into the device to facilitate the definition of the coordinate system necessary for CNC machine programming. Device control was performed using a Hexagon RA-7312 3D measuring arm. Inspection results indicated minimal dimensional deviations (e.g., surface flatness between 0.002 mm and 0.012 mm) and high angular accuracy (e.g., angular non-closure of 0.006°). The designed device enables the effective and precise use of barrel cutters on 3-axis CNC machines, offering a previously unavailable practical and economical solution for cutting tool tests and cutting regime studies. Full article
Show Figures

Figure 1

18 pages, 8299 KiB  
Article
Design and Test of Vertical Axis Rotating Cutters for Cutting Corn Roots and Crown
by Xin Feng, Chenggong Xie, Jiarui Tong, Shunchang Guo, Bendi Qi, Yunpeng Gao, Lijun Wang and Qi Wang
Agriculture 2025, 15(7), 717; https://doi.org/10.3390/agriculture15070717 - 27 Mar 2025
Cited by 1 | Viewed by 454
Abstract
In this study, the bionic cutter and the multi-curve cutter were designed for cutting crowns and roots, respectively. Two types of cutters were integrated into the device. This integration aims to address the issues of the poor effect of cutting the root–crown, the [...] Read more.
In this study, the bionic cutter and the multi-curve cutter were designed for cutting crowns and roots, respectively. Two types of cutters were integrated into the device. This integration aims to address the issues of the poor effect of cutting the root–crown, the high disturbance rate of the soil, and the high power consumption of the device. The cutters for cutting crowns imitating the outline and action of a cat’s claw were designed based on reverse engineering technology. The multi-curve cutters for cutting roots were designed based on the distribution characteristics of roots in different soil layers. The discrete element method (DEM) was employed to simulate the process of cutting the root–crown. The accuracy of the DEM simulation result was verified by comparing it with the field test result. The result showed the device could cut the root–crown efficiently, which facilitated the decomposition of the root–crown into organic matter. While minimizing soil disturbance and power consumption, this design effectively maintained soil moisture retention, reduced erosion, and created favorable conditions for subsequent crop growth. The qualified rate of root–crown length, the rate of soil disturbance, and the power consumption of the device were significantly affected by the forward speed of the device and the rotational speed of the cutter shaft. The qualified rate of root–crown length, the rate of soil disturbance, and the power consumption of the device would be increased with the increase in the rotational speed of the cutter shaft. With the increase in the forward speed of the device, the rate of soil disturbance and the power consumption of the device were also increased, but the qualified rate of root–crown length was decreased. To minimize the rate of soil disturbance and the power consumption of the device while meeting the national standard for the qualified rate of root–crown length, the optimal operating conditions were that the forward speed of the device was 0.71 m·s−1 and the rotational speed of the cutter shaft was 380 r·min−1. At this time, the qualified rate of root–crown length was 90.54%, the rate of soil disturbance was 18.56%, and the power consumption of the device was 3.835 kW. This study provides technical support for designing the device for cutting the root–crown, and, more importantly, offers a sustainable root–crown management solution that addresses the key challenge in the modern conservation tillage system, effectively balancing root–crown cutting efficiency with soil health preservation. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 5537 KiB  
Article
Predictive Study on the Cutting Energy Efficiency of Dredgers Based on Specific Cutting Energy
by Junlang Yuan, Ke Yang, Taiwei Yang, Haoran Xu, Ting Xiong and Shidong Fan
J. Mar. Sci. Eng. 2025, 13(3), 598; https://doi.org/10.3390/jmse13030598 - 18 Mar 2025
Viewed by 581
Abstract
The suction-lifting system of cutter suction dredgers consumes a large amount of energy. Optimizing their performance is of great significance for enhancing the overall efficiency of dredgers. This study proposes the effective specific cutting energy, a new indicator suitable for evaluating the energy [...] Read more.
The suction-lifting system of cutter suction dredgers consumes a large amount of energy. Optimizing their performance is of great significance for enhancing the overall efficiency of dredgers. This study proposes the effective specific cutting energy, a new indicator suitable for evaluating the energy consumption of the cutting system of cutter suction dredgers. It reflects the cooperation state between the cutter system and the pump-pipe system and has important reference value for improving construction efficiency. The calculation method of the effective specific cutting energy is given, which is calculated by the cutter motor power, slurry concentration, and slurry flow rate. Based on the machine learning framework, a model framework for predicting the specific cutting energy according to the relevant parameters of the suction-lifting system is constructed. Real ship data from the cutter suction dredger “Changshi 12” are used for experiments. First, eigenvalue screening is carried out based on the dredging knowledge and mechanism, then outliers are removed, and finally data processing is performed using Spearman correlation coefficient and PCA dimensionality reduction techniques. Subsequently, five machine learning algorithms, such as RF and XGBoost, are used in combination with a grid search to find the optimal hyperparameters, and Lasso is used as the meta-learner to integrate the prediction results. The experimental results show that the Random Forest and Stacking models have high prediction accuracy for slurry concentration, cutter motor power, and slurry flow rate, verifying the feasibility of this method. Full article
(This article belongs to the Special Issue Intelligent Systems for Marine Transportation)
Show Figures

Figure 1

19 pages, 5011 KiB  
Article
Calculation Method for Settlement Deformation of Existing Tunnel Induced by Underpass Construction
by Lan Cao, Jie Zhang, Jia-Hua Xie, Yu-Liang Lin and Guo-Lin Yang
Appl. Sci. 2025, 15(5), 2430; https://doi.org/10.3390/app15052430 - 24 Feb 2025
Viewed by 684
Abstract
To explore the calculation method of settlement and deformation of existing tunnels induced by excavation, the energy method is adopted to analyze the work done by the existing tunnels with additional loads during excavation and the additional stresses caused by shield cutter thrust, [...] Read more.
To explore the calculation method of settlement and deformation of existing tunnels induced by excavation, the energy method is adopted to analyze the work done by the existing tunnels with additional loads during excavation and the additional stresses caused by shield cutter thrust, shield shell, etc. The study integrates Mindlin’s stress solution and three-dimensional Loganathan’s formula to determine the friction, grouting pressure, and stratum loss. The primary objective of this approach is to identify the settlement and deformation of the existing tunnel. It is envisaged that the deformation of tunnels can be resolved by minimizing the total potential energy of the system. Relying on a new construction project, part of the Macao Sewerage Pipeline, the reasonableness and accuracy of theoretical model are verified by comparing it with the results of on-site monitoring and numerical analysis. Meanwhile, parameter sensitivity analysis is carried out to determine the sensitivity factors, including tunnel depth, diameter, and ground loss rate, on the settlement of existing tunnel, and suggestions for optimization on project are provided. The findings demonstrate the efficacy of the theoretical method in predicting the settlement and deformation of existing tunnels. Furthermore, it is evident that it can mitigate the settlement of existing tunnels by increasing the depth of new tunnels. Additionally, expanding the diameter of excavation is also a significant factor. Conversely, an increase in excavation rate will lead to an enhancement in the loss of ground layer, thereby augmenting the settlement of existing tunnels. It is noteworthy that the diameter of excavation exerts the most substantial influence on the settlement, followed by the rate of loss of ground layer, and to a lesser extent, the depth of the buried tunnel. Full article
(This article belongs to the Special Issue Advanced Geomaterials and Reinforced Structures (Second Edition))
Show Figures

Figure 1

18 pages, 5982 KiB  
Article
Structural Design and Study of an Integrated Cutter System Based on Machine Operation
by Sijin Liu, Kaixuan Han, Huawei Wang, Hao Chen, Yuyang Ma and Junzhou Huo
Appl. Sci. 2024, 14(20), 9449; https://doi.org/10.3390/app14209449 - 16 Oct 2024
Viewed by 1037
Abstract
In the process of shield tunneling, the cutter will inevitably be worn and damaged and will need to be replaced frequently. The low efficiency and high safety risk of traditional manual cutter change have prompted robotic cutter change to become the mainstream trend [...] Read more.
In the process of shield tunneling, the cutter will inevitably be worn and damaged and will need to be replaced frequently. The low efficiency and high safety risk of traditional manual cutter change have prompted robotic cutter change to become the mainstream trend of current research. However, it is difficult to realize mechanical automation disassembly due to the existence of many fragmented parts and complex disassembly steps in the traditional cutter system. Therefore, this paper proposes an eccentric integrated cutter system, which greatly simplifies the disassembly process while retaining the excellent fastening structure of the traditional cutter system. The evaluation system of the cutter system was established through the analytic hierarchy process, and it was verified that the eccentric integrated cutter system has obvious superiority in realizing automated disassembly and assembly and, at the same time, that it has good structural strength. Finally, vibration experiments were carried out based on shield construction conditions. The experimental results show that after 14 h of continuous vibration, the residual preload ratio of the integrated cutter sample stabilized at more than 90%, which indicates good anti-loosening performance. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

23 pages, 24773 KiB  
Article
Design and Experiment of Ordinary Tea Profiling Harvesting Device Based on Light Detection and Ranging Perception
by Xiaolong Huan, Min Wu, Xianbing Bian, Jiangming Jia, Chenchen Kang, Chuanyu Wu, Runmao Zhao and Jianneng Chen
Agriculture 2024, 14(7), 1147; https://doi.org/10.3390/agriculture14071147 - 15 Jul 2024
Cited by 2 | Viewed by 1586
Abstract
Due to the complex shape of the tea tree canopy and the large undulation of a tea garden terrain, the quality of fresh tea leaves harvested by existing tea harvesting machines is poor. This study proposed a tea canopy surface profiling method based [...] Read more.
Due to the complex shape of the tea tree canopy and the large undulation of a tea garden terrain, the quality of fresh tea leaves harvested by existing tea harvesting machines is poor. This study proposed a tea canopy surface profiling method based on 2D LiDAR perception and investigated the extraction and fitting methods of canopy point clouds. Meanwhile, a tea profiling harvester prototype was developed and field tests were conducted. The tea profiling harvesting device adopted a scheme of sectional arrangement of multiple groups of profiling tea harvesting units, and each unit sensed the height information of its own bottom canopy area through 2D LiDAR. A cross-platform communication network was established, enabling point cloud fitting of tea plant surfaces and accurate estimation of cutter profiling height through the RANSAC algorithm. Additionally, a sensing control system with multiple execution units was developed using rapid control prototype technology. The results of field tests showed that the bud leaf integrity rate was 84.64%, the impurity rate was 5.94%, the missing collection rate was 0.30%, and the missing harvesting rate was 0.68%. Furthermore, 89.57% of the harvested tea could be processed into commercial tea, with 88.34% consisting of young tea shoots with one bud and three leaves or fewer. All of these results demonstrated that the proposed device effectively meets the technical standards for machine-harvested tea and the requirements of standard tea processing techniques. Moreover, compared to other commercial tea harvesters, the proposed tea profiling harvesting device demonstrated improved performance in harvesting fresh tea leaves. Full article
(This article belongs to the Special Issue Sensor-Based Precision Agriculture)
Show Figures

Figure 1

16 pages, 1316 KiB  
Article
Stability of Micro-Milling Tool Considering Tool Breakage
by Yuan-Yuan Ren, Bao-Guo Jia, Min Wan and Hui Tian
J. Manuf. Mater. Process. 2024, 8(3), 122; https://doi.org/10.3390/jmmp8030122 - 11 Jun 2024
Cited by 1 | Viewed by 1886
Abstract
Micro-milling, widely employed across various fields, faces significant challenges due to the small diameter and limited stiffness of its tools, making the process highly susceptible to cutting chatter and premature tool breakage. Ensuring stable and safe cutting processes necessitates the prediction of chatter [...] Read more.
Micro-milling, widely employed across various fields, faces significant challenges due to the small diameter and limited stiffness of its tools, making the process highly susceptible to cutting chatter and premature tool breakage. Ensuring stable and safe cutting processes necessitates the prediction of chatter by considering the tool breakage. Crucially, the modal parameters of the spindle–holder–tool system are important prerequisites for such stability prediction. In this paper, the frequency response functions (FRFs) of the micro-milling tool are calculated by direct FRFs of the micro-milling cutter and cross FRFs between a point on the shank and one on the tool tip. Additionally, by utilizing a cutting force model specific to micro-milling, the bending stress experienced by the tool is computed, and the tool breakage curve is subsequently determined based on the material’s permissible maximum allowable stress. The FRFs of the micro-milling tool, alongside the tool breakage curve, are then integrated to generate the final stability lobe diagrams (SLDs). The effectiveness and reliability of the proposed methodology are confirmed through a comprehensive series of numerical and experimental validations. Full article
(This article belongs to the Special Issue Dynamics and Machining Stability for Flexible Systems)
Show Figures

Figure 1

29 pages, 13210 KiB  
Article
Design of Digital Twin Cutting Experiment System for Shearer
by Bing Miao, Yunwang Li and Yinan Guo
Sensors 2024, 24(10), 3194; https://doi.org/10.3390/s24103194 - 17 May 2024
Cited by 1 | Viewed by 1483
Abstract
This study presents an advanced simulated shearer machine cutting experiment system enhanced with digital twin technology. Central to this system is a simulated shearer drum, designed based on similarity theory to accurately mirror the operational dynamics of actual mining cutters. The setup incorporates [...] Read more.
This study presents an advanced simulated shearer machine cutting experiment system enhanced with digital twin technology. Central to this system is a simulated shearer drum, designed based on similarity theory to accurately mirror the operational dynamics of actual mining cutters. The setup incorporates a modified machining center equipped with sophisticated sensors that monitor various parameters such as cutting states, forces, torque, vibration, temperature, and sound. These sensors are crucial for precisely simulating the shearer cutting actions. The integration of digital twin technology is pivotal, featuring a real-time data management layer, a dynamic simulation mechanism model layer, and an application service layer that facilitates virtual experiments and algorithm refinement. This multifaceted approach allows for in-depth analysis of simulated coal cutting, utilizing sensor data to comprehensively evaluate the shearer’s performance. The study also includes tests on simulated coal samples. The system effectively conducts experiments and captures cutting condition signals via the sensors. Through time domain analysis of these signals, gathered while cutting materials of varying strengths, it is determined that the cutting force signal characteristics are particularly distinct. By isolating the cutting force signal as a key feature, the system can effectively distinguish between different cutting modes. This capability provides a robust experimental basis for coal rock identification research, offering significant insights into the nuances of shearer operation. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 5748 KiB  
Article
A Novel In-Line Measurement and Analysis Method of Bubble Growth-Dependent Strain and Deformation Rates during Foaming
by Tobias Schaible and Christian Bonten
Polymers 2024, 16(2), 277; https://doi.org/10.3390/polym16020277 - 19 Jan 2024
Cited by 2 | Viewed by 1788
Abstract
Bubble growth processes are highly influenced by the elongational viscosity of the blowing agent-loaded polymer melt. Therefore, the elongational viscosity is an important parameter for the development of new polymers for foaming applications, as well as for the prediction of bubble growth processes. [...] Read more.
Bubble growth processes are highly influenced by the elongational viscosity of the blowing agent-loaded polymer melt. Therefore, the elongational viscosity is an important parameter for the development of new polymers for foaming applications, as well as for the prediction of bubble growth processes. Thus, knowledge of the initial expansion and deformation behavior in dependency on the polymer, the blowing agent concentration, and the process conditions is necessary. This study presents a novel method for the in-line observation and analysis of the initial expansion and deformation behavior within the bead foam extrusion process. For this purpose, nitrogen as the blowing agent was injected into the polymer melt (PS and PLA) during the extrusion process. The in-line observation system consists of a borescope equipped with a camera, which was integrated into the water box of an underwater pelletizer. The camera is controlled by a developed trigger by means of angular step signal analysis of a rotary encoder on the cutter shaft of the underwater pelletizer. Thus, images can be taken at any time during the foaming process depending on the cutter position to the die outlet. It is shown that the developed method provides reliable results and that the differences of the initial expansion and deformation behavior during bubble growth can be analyzed in-line in dependency on real foaming process conditions and the type of polymer used. Full article
Show Figures

Figure 1

16 pages, 8731 KiB  
Commentary
Collaborative Use of Sensor Networks and Cyberinfrastructure to Understand Complex Ecosystem Interactions in a Tropical Rainforest: Challenges and Lessons Learned
by Philip W. Rundel, Thomas C. Harmon, Angel S. Fernandez-Bou and Michael F. Allen
Sensors 2023, 23(22), 9081; https://doi.org/10.3390/s23229081 - 9 Nov 2023
Viewed by 1401
Abstract
Collaborations between ecosystem ecologists and engineers have led to impressive progress in developing complex models of biogeochemical fluxes in response to global climate change. Ecology and engineering iteratively inform and transform each other in these efforts. Nested data streams from local sources, adjacent [...] Read more.
Collaborations between ecosystem ecologists and engineers have led to impressive progress in developing complex models of biogeochemical fluxes in response to global climate change. Ecology and engineering iteratively inform and transform each other in these efforts. Nested data streams from local sources, adjacent networks, and remote sensing sources together magnify the capacity of ecosystem ecologists to observe systems in near real-time and address questions at temporal and spatial scales that were previously unobtainable. We describe our research experiences working in a Costa Rican rainforest ecosystem with the challenges presented by constant high humidity, 4300 mm of annual rainfall, flooding, small invertebrates entering the tiniest openings, stinging insects, and venomous snakes. Over the past two decades, we faced multiple challenges and learned from our mistakes to develop a broad program of ecosystem research at multiple levels of integration. This program involved integrated networks of diverse sensors on a series of canopy towers linked to multiple belowground soil sensor arrays that could transport sensor data streams from the forest directly to an off-site location via a fiber optic cable. In our commentary, we highlight three components of our work: (1) the eddy flux measurements using canopy towers; (2) the soil sensor arrays for measuring the spatial and temporal patterns of CO2 and O2 fluxes at the soil–atmosphere interface; and (3) focused investigations of the ecosystem impact of leaf-cutter ants as “ecosystem engineers” on carbon fluxes. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 6997 KiB  
Article
Design of 4UM-120D Electric Leafy Vegetable Harvester Cutter Height off the Ground Automatic Control System Based on Incremental PID
by Wenming Chen, Lianglong Hu, Gongpu Wang, Jianning Yuan, Guocheng Bao, Haiyang Shen, Wen Wu and Zicheng Yin
Agriculture 2023, 13(4), 905; https://doi.org/10.3390/agriculture13040905 - 20 Apr 2023
Cited by 12 | Viewed by 2754
Abstract
In this study, a 4UM-120D electric leafy vegetable harvester was employed as the research object. An automatic control system was created to maintain the cutter’s height above the ground within ±2% of the desired value. The intention was to reduce the operators’ work [...] Read more.
In this study, a 4UM-120D electric leafy vegetable harvester was employed as the research object. An automatic control system was created to maintain the cutter’s height above the ground within ±2% of the desired value. The intention was to reduce the operators’ work intensity while improving the leafy vegetable harvester’s working quality. The automatic control system for the cutter height from the ground was explained, along with its structure and operating philosophy. MATLAB was used to establish the two-phase hybrid stepper motor’s mathematical electrical equation and mechanical equation models. An analysis was carried out on the fundamentals and differences between position PID and incremental PID control algorithms. Utilizing incremental PID in combination, the control strategy for the harvester cutter height from the ground was built, and an automatic control system was produced under the corresponding control strategy. The stability, accuracy, and rapidity of the automatic control system of the cutter height from the ground under the incremental PID control strategy were analyzed by simulating different actual working conditions with MATLAB/Simulink and taking the steady-state transition time as the evaluation index. The test results show that when the deviation between the current value and the set value was greater than 2%—that is, when the harvester was in the condition of suddenly crossing the ditch or suddenly climbing the slope—the automatic control system based on the incremental PID control strategy had a good dynamic response performance and stability. This resulted in the automatic control function of the harvester cutter height off the ground being achieved. When the rotation angle PID control algorithm’s proportional coefficient is Kp = 4.665, the rotation speed PID control algorithm’s proportional coefficient is Kp = 5.65 and its integral coefficient is Ki = 3.86, and the current PID control algorithm’s proportional coefficient is Kp = 0.5455 and its integral coefficient is Ki = 30.4578. The harvester abruptly crossed a ditch while operating steadily, and the automatic control system’s steady-state transition time for the height of the cutter off the ground was 1.0811 s. The harvester abruptly climbed a slope while operating steadily, and the automatic control system’s steady-state transition time for the height of the cutter off the ground was 1.1185 s. Data from the field tests revealed a degree of reliability in the simulation test results. The study offered a strategy for raising the harvester quality for leafy vegetables while lowering the operator workload. Full article
Show Figures

Figure 1

20 pages, 8504 KiB  
Article
Design of a New TBM Integrated Cutter System Based on Analysis of Mechanical Properties and Dynamic Characteristics
by Fan Yang, Tian Lan, Junzhou Huo, Yiting Shi and Hao Chen
Appl. Sci. 2022, 12(23), 12332; https://doi.org/10.3390/app122312332 - 2 Dec 2022
Cited by 4 | Viewed by 2492
Abstract
During the rock-breaking process, severe vibration frequently leads to cutter system failures. The traditional cutter system is complicated in structure, and the cutter-changing operation is highly dependent on the manual operation, resulting in a low construction efficiency and a high risk. Thus, this [...] Read more.
During the rock-breaking process, severe vibration frequently leads to cutter system failures. The traditional cutter system is complicated in structure, and the cutter-changing operation is highly dependent on the manual operation, resulting in a low construction efficiency and a high risk. Thus, this paper designed an integrated cutter system with a simple structure, which lays a theoretical foundation for popularizing the cutter-changing robot. In the statics performance experiment, we built an integrated cutter system finite element model, calculated the stress value under a nominal load; manufactured the scaled cutter system based on the similarity principle, obtained the measured stress value through the load experiment; and verified the accuracy of this cutter system’s finite element model. In the dynamics experiment, we calculated the cutter system and each components dynamic response based on the concentrated mass method and the Newmark method, obtained the measured vertical vibration displacement through a scaled loading experiment and verified the correctness of the vertical dynamics model, and set the real disc cutter linear cutting load as the external excitation to verify the feasibility of the new cutter system design scheme. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

30 pages, 7489 KiB  
Article
Application of Digitalization in Real-Time Analysis of Drilling Dynamics Using Along-String Measurement (ASM) Data along Wired Pipes
by Mostafa Gomar and Behzad Elahifar
Energies 2022, 15(23), 8930; https://doi.org/10.3390/en15238930 - 25 Nov 2022
Cited by 5 | Viewed by 2981
Abstract
An automated drilling system requires a real-time evaluation of the drilling bit during drilling to optimize operation and determine when to stop drilling and switch bits. Furthermore, in the dynamic modeling of drill strings, it is necessary to take into account the interactions [...] Read more.
An automated drilling system requires a real-time evaluation of the drilling bit during drilling to optimize operation and determine when to stop drilling and switch bits. Furthermore, in the dynamic modeling of drill strings, it is necessary to take into account the interactions between drilling bits and rock. To address this challenge, a hybrid approach that combines physics-based models with data analytics has been developed to handle downhole drilling measurements in real time. First, experimental findings were used to formulate mathematical models of cutter–rock interaction in accordance with their geometrical characteristics, rock properties, and drilling parameters. Specifically, these models represent the normal and contact forces of polycrystalline diamond compact cutters (PDCs). Experimental data are analyzed utilizing deep learning, nonlinear regression, and genetic algorithms to fit nonlinear equations to data points. Following this, the recursive least square was implemented as a data analytic method to integrate real-time drilling data, drilling bit models, and mathematical models. Drilling data captured by the along-string measurement system (ASM) is implemented to estimate cutting and normal forces, torque, and specific energy at the bit. The unique aspect of this research is our approach in developing a detailed cutter–rock interaction model that takes all design and operation parameters into account. In addition, the applicability of the algorithm is demonstrated by real-time assessments of drilling dynamics, utilizing downhole digital data, that enable the prediction of drilling events and problems related to drilling bits. Full article
Show Figures

Figure 1

14 pages, 2677 KiB  
Article
Bionic Optimization Design and Experiment of Reciprocating Cutting System on Single-Row Tea Harvester
by Zhe Du, Denghui Li, Jiangtao Ji, Liyuan Zhang, Xinping Li and Huankun Wang
Agronomy 2022, 12(6), 1309; https://doi.org/10.3390/agronomy12061309 - 30 May 2022
Cited by 15 | Viewed by 2823
Abstract
The reciprocating cutting system is one of the key parts of a tea harvester; and its cutting performance directly determines the cutting power consumption and harvesting quality of the machine. Because the structural parameters of reciprocating cutting systems do not match the tea [...] Read more.
The reciprocating cutting system is one of the key parts of a tea harvester; and its cutting performance directly determines the cutting power consumption and harvesting quality of the machine. Because the structural parameters of reciprocating cutting systems do not match the tea cut; resulting in larger cutting resistance, it is necessary to optimize the structural parameters. The cricket mouth part has outstanding performance in tea tree fiber cutting; and the curved structural characteristics of the upper jaw of the cricket have been useful to improve the cutting efficiency of cutting system. Quantitative analysis of the structure of the upper jaw revealed that the arc-shaped structure of the incisor lobe would inspire new bionic blades and bionic cutters to solve the above problems. The cutting performance experiment of the cutting blade was designed for investigating the effects of inter-node number; tea variety and blade type (ordinary blade; bionic blade e and bionic blade f) on the cutting force and cutting power consumption. Experimental results of cutting performance have shown that the bionic blade could reduce cutting resistance and cutting power consumption. Tea varieties had little effect on cutting force and cutting power consumption. In addition, the orthogonal test was carried out to study the influence of cutter type with the cutting speed ratio and cutting angle on the integrity rate and missing rate of tea shoot. The field cutting experiment showed that the cutting angle was the most important for the integrity rate and missing rate of tea shoot; followed by the cutter speed ratio; and finally, the cutter type. The optimum combination of parameters was a cutting speed of 0.8 m/s; a forward speed of 1.0 m/s; a cutting angle of −3°, and using the bionic cutter e. With the optimal parameter combination, the integrity rate and missing rate of the tea shoot were 92.7% and 3.9%, which were increased by 13.2% and decreased by 6.4% compared to those under the condition of the 0° cutting angle and an ordinary cutter. As a result, the bionic cutter could obviously reduce cutting resistance; reduce cutting power consumption and improve the harvesting quality. These results would provide guidance for the design of the reciprocating cutting system of tea harvesters and other stalk cutting machinery. Full article
Show Figures

Figure 1

14 pages, 5275 KiB  
Article
Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision
by Wenming Wei, Jia Yin, Jun Zhang, Huijie Zhang and Zhuangzhuang Lu
Materials 2021, 14(19), 5690; https://doi.org/10.3390/ma14195690 - 30 Sep 2021
Cited by 17 | Viewed by 2350
Abstract
Tool wear and breakage detection technologies are of vital importance for the development of automatic machining systems and improvement in machining quality and efficiency. The monitoring of integral spiral end milling cutters, however, has rarely been investigated due to their complex structures. In [...] Read more.
Tool wear and breakage detection technologies are of vital importance for the development of automatic machining systems and improvement in machining quality and efficiency. The monitoring of integral spiral end milling cutters, however, has rarely been investigated due to their complex structures. In this paper, an image acquisition system and image processing methods are developed for the wear and breakage detection of milling cutters based on machine vision. The image acquisition system is composed of three light sources and two cameras mounted on a moving frame, which renders the system applicable in cutters of different dimensions and shapes. The images captured by the acquisition system are then preprocessed with denoising and contrast enhancing operations. The failure regions on the rake face, flank face and tool tip of the cutter are extracted with the Otsu thresholding method and the Markov Random Field image segmentation method afterwards. Eventually, the feasibility of the proposed image acquisition system and image processing methods is demonstrated through an experiment of titanium alloy machining. The proposed image acquisition system and image processing methods not only provide high quality detection of the integral spiral end milling cutter but can also be easily converted to detect other cutting systems with complex structures. Full article
Show Figures

Figure 1

Back to TopTop