Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,445)

Search Parameters:
Keywords = insect larvae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 498 KiB  
Article
Virulence of Metarhizium robertsii Strains Isolated from Forest Ecosystems Against Wax Moths (Galleria mellonella, Achroia grisella) and Pine Processionary (Thaumetopoea pityocampa) Larvae
by Spiridon Mantzoukas, Vasileios Papantzikos, Chrysanthi Zarmakoupi, Panagiotis A. Eliopoulos, Ioannis Lagogiannis and George Patakioutas
Biology 2025, 14(8), 1009; https://doi.org/10.3390/biology14081009 - 6 Aug 2025
Abstract
Entomopathogenic fungi (EPF) are one of the most environmentally friendly ways to control a plethora of chewing insects such as T. pityocampa, G. mellonella, and A. grisella. Bioassay of EPF on these highly damaging pests is considered important in the [...] Read more.
Entomopathogenic fungi (EPF) are one of the most environmentally friendly ways to control a plethora of chewing insects such as T. pityocampa, G. mellonella, and A. grisella. Bioassay of EPF on these highly damaging pests is considered important in the face of climate change in order to research alternative solutions that are capable of limiting chemical control, the overuse of which increases insects’ resistance to chemical compounds. In this study, the insecticidal virulence of Metarhizium robertsii isolates, retrieved from forest ecosystems, was tested on second-instar larvae of T. pityocampa, G. mellonella, and A. grisella. Bioassays were carried out in the laboratory, where experimental larvae were sprayed with 2 mL of a six-conidial suspension from each isolate. Mortality was recorded for 144 h after exposure. Mean mortality, lethal concentrations, sporulation percentage, and sporulation time were estimated for each isolate. Metarhizium isolates resulted in the highest mortality (89.2% for G. mellonella and 90.2% for A. grisella). Based on the LC50 estimates determined by the concentration–mortality relationships for the tested fungal isolates, we demonstrated significant virulence on larvae of G. mellonella, A. grisella, and T. pityocampa. Our results indicate that entomopathogenic fungi have the potential to become a very useful tool in reducing chemical applications. Full article
Show Figures

Figure 1

23 pages, 1714 KiB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

8 pages, 405 KiB  
Brief Report
Characterization of DNA Viruses in Hindgut Contents of Protaetia brevitarsis Larvae
by Jean Geung Min, Namkyong Min, Binh T. Nguyen, Rochelle A. Flores and Dongjean Yim
Insects 2025, 16(8), 800; https://doi.org/10.3390/insects16080800 - 1 Aug 2025
Viewed by 219
Abstract
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in [...] Read more.
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in animal health and homeostasis. We previously conducted a comparative analysis of the gut microbiota of third-instar larvae of P. brevitarsis obtained from five different farms and found significant differences in the composition of the gut bacterial microbiota between farms. To better understand the gut microbiota, the composition of DNA viruses in the hindgut contents of P. brevitarsis larvae obtained from five farms was investigated using metagenomic sequencing in this study. The β-diversity was significantly different between metagenomic data obtained from the five farms (PERMANOVA, pseudo-F = 46.95, p = 0.002). Family-based taxonomic analysis indicated that the relative abundance of viruses in the gut overall metagenome varied significantly between farms, with viral reads comprising approximately 41.2%, 15.0%, 4.3%, 4.0%, and 1.6% of metagenomic sequences from the farms Tohamsan gumbengi farm (TO), Secomnalagum gumbengi (IS), Gumbengi brothers (BR), Kyungpook farm (KB), and Jhbio (JH), respectively. More than 98% of the DNA viruses in the hindgut were bacteriophages, mainly belonging to the Siphoviridae family. At the species level, Phage Min1, infecting the genus Microbacterium, was detected in all farms, and it was the most abundant bacteriophage in intestinal microbiota, with a prevalence of 0.9% to 29.09%. The detected eukaryotic DNA viruses accounted for 0.01% to 0.06% of the intestinal microbiota and showed little or no relationship with insect viruses. Therefore, they most likely originated from contaminated feed or soil. These results suggest that the condition of substrates used as feed is more important than genetic factors in shaping the intestinal viral microbiota of P. brevitarsis larvae. These results can be used as reference data for understanding the hindgut microbiota of P. brevitarsis larvae and, more generally, the gut virome of insects. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

25 pages, 6843 KiB  
Article
Design and Experimental Investigation of Pneumatic Drum-Sieve-Type Separator for Transforming Mixtures of Protaetia Brevitarsis Larvae
by Yuxin Yang, Changhe Niu, Xin Shi, Jianhua Xie, Yongxin Jiang and Deying Ma
AgriEngineering 2025, 7(8), 244; https://doi.org/10.3390/agriengineering7080244 - 1 Aug 2025
Viewed by 180
Abstract
In response to the need for separation and utilization of residual film mixtures after transformation of protaetia brevitarsis larvae, a pneumatic drum-sieve-type separator for transforming mixtures of protaetia brevitarsis larvae was designed. First, the suspension velocity of each component was determined by the [...] Read more.
In response to the need for separation and utilization of residual film mixtures after transformation of protaetia brevitarsis larvae, a pneumatic drum-sieve-type separator for transforming mixtures of protaetia brevitarsis larvae was designed. First, the suspension velocity of each component was determined by the suspension speed test. Secondly, the separation process of residual film, larvae, and insect sand was formulated on the basis of biological activities, shape differences, and aerodynamic response characteristics. Eventually, the main structural parameters and working parameters of the machine were determined. In order to optimize the separation effect, a single-factor experiment and a quadratic regression response surface experiment containing three factors and three levels were carried out, and the corresponding regression model was established. The experimental results showed that the effects of the air speed at the inlet, inclination angle of the sieve cylinder, and rotational speed of the sieve cylinder on the impurity rate of the residual film decreased in that order, and that the effects of the rotational speed of the sieve cylinder, inclination angle of the sieve cylinder, and air speed at the inlet on the inactivation rate of the larvae decreased in that order. Through parameter optimization, a better combination of working parameters was obtained: the rotational speed of the sieve cylinder was 24 r/min, the inclination angle of the sieve cylinder was −0.43°, and the air speed at the inlet was 5.32 m/s. The average values of residual film impurity rate and larval inactivation rate obtained from the material sieving test under these parameters were 8.74% and 3.18%, with the relative errors of the theoretically optimized values being less than 5%. The results of the study can provide a reference for the resource utilization of residual film and impurity mixtures and the development of equipment for the living body separation of protaetia brevitarsis. Full article
Show Figures

Figure 1

12 pages, 1010 KiB  
Article
Effects of Yeast on the Growth and Development of Drosophila melanogaster and Pardosa pseudoannulata (Araneae: Lycsidae) Through the Food Chain
by Yaqi Peng, Rui Liu, Wei Li, Yao Zhao and Yu Peng
Insects 2025, 16(8), 795; https://doi.org/10.3390/insects16080795 - 31 Jul 2025
Viewed by 186
Abstract
Pardosa pseudoannulata plays an important role in the biological control of insect pests. The inclusion of yeast in the culture medium is very important for the growth, development, and reproduction of Drosophila melanogaster, but there have been few studies on the influence [...] Read more.
Pardosa pseudoannulata plays an important role in the biological control of insect pests. The inclusion of yeast in the culture medium is very important for the growth, development, and reproduction of Drosophila melanogaster, but there have been few studies on the influence of nutrients in the culture medium on spider development. In order to explore the effects of different yeast treatments on the growth and development of D. melanogaster and as a predator, P.  pseudoannulata, three treatments (no yeast, active yeast added, and inactivated yeast added) were adopted to modify the conventional D. melanogaster culture medium. The addition of yeast to the medium shortened the development time from larva to pupation in D. melanogaster. The emergence and larval developmental times of D. melanogaster reared with activated yeast were shorter than those of the group without yeast addition, which promoted D. melanogaster emergence and increased body weight. The addition of yeast to the medium increased the fat, protein, and glucose content in D. melanogaster. The addition of activated yeast shortened the developmental time of P.  pseudoannulata at the second instar stage but had no effect on other instars. Different yeast treat-ments in the medium had no effect on the body length or body weight of P.  pseudoannulata. Adding yeast to D. melanogaster culture medium can increase the total fat content in P.  pseudoannulata, but it has no effect on glucose and total protein in P.  pseudoannulata. Our study shows the importance of yeast to the growth and development of fruit flies. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

20 pages, 1889 KiB  
Article
Suppression of Spotted Wing Drosophila, Drosophila suzukii (Matsumura), in Raspberry Using the Sterile Insect Technique
by Sebastian Hemer, Zeus Mateos-Fierro, Benjamin Brough, Greg Deakin, Robert Moar, Jessica P. Carvalho, Sophie Randall, Adrian Harris, Jimmy Klick, Michael P. Seagraves, Glen Slade, Michelle T. Fountain and Rafael A. Homem
Insects 2025, 16(8), 791; https://doi.org/10.3390/insects16080791 - 31 Jul 2025
Viewed by 253
Abstract
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated [...] Read more.
Drosophila suzukii is an invasive pest of many fruit crops worldwide. Employing the Sterile Insect Technique (SIT) could mitigate D. suzukii population growth and crop damage. This study evaluated the efficacy of SIT on commercial fruit, by (1) validating the quality of irradiated sterile males (male mating competitiveness, courtship, and flight performance) in the laboratory, and (2) assessing population suppression and fruit damage reduction in commercial raspberry fields. Treatment with SIT was compared to the grower’s standard chemical insecticide program throughout the season. The principal metrics of efficacy were trap counts of wild adult female D. suzukii in crops and larvae per fruit during harvesting. These metrics together with monitoring of border areas allowed targeting of high-pressure areas with higher releases of sterile males, to maximise efficacy for a given release number. The sterile male D. suzukii were as competitive as their fertile non-irradiated counterparts in laboratory mating competitiveness and flight performance studies while fertility egg-to-pupae recovery was reduced by 99%. In commercial raspberry crops, season-long releases of sterile males significantly suppressed the wild D. suzukii population, compared to the grower standard control strategy; with up to 89% reduction in wild female D. suzukii and 80% decrease in numbers of larvae per harvested fruit. Additionally, relative fruit waste (i.e., percentage of harvested fruits rejected for sale) at harvest was reduced for early, mid and late harvest crops, by up to 58% compared to the grower standard control. SIT has the potential to provide an effective and sustainable strategy for managing D. suzukii in raspberries, increasing marketable yield by reducing adult populations, fruit damage and waste fruit. SIT could therefore serve as a valuable tool for integrated pest management practices in berry production systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 513 KiB  
Article
Impact of Dietary Inputs on Carbapenem Resistance Gene Dynamics and Microbial Safety During Bioconversion of Agri-Food Waste and Anaerobic Digestate by Hermetia illucens Larvae
by Andrea Marcelli, Alessio Ilari, Vesna Milanović, Ester Foppa Pedretti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Giorgia Rampanti, Andrea Osimani, Cristiana Garofalo and Lucia Aquilanti
Genes 2025, 16(8), 907; https://doi.org/10.3390/genes16080907 - 29 Jul 2025
Viewed by 192
Abstract
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of [...] Read more.
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of these genes and opportunistic pathogens, raises important safety concerns. This study aimed to assess the influence of different agri-food-based diets on Enterobacteriaceae loads and the CRG occurrence during the bioconversion process. Methods: Four experimental diets were formulated from agri-food residues and anaerobic digestate: Diet 1 (peas and chickpea waste), Diet 2 (peas and wheat waste), Diet 3 (onion and wheat waste), and Diet 4 (wheat waste and digestate). Enterobacteriaceae were quantified by viable counts, while five CRGs (blaKPC, blaNDM, blaOXA-48, blaVIM, and blaGES) were detected and quantified using quantitative PCRs (qPCRs). Analyses were performed on individual substrates, formulated diets, larvae (before and after bioconversion), and frass. Results: Plant-based diets sustained moderate Enterobacteriaceae loads. In contrast, the digestate-based diet led to a significant increase in Enterobacteriaceae in both the frass and mature larvae. CRGs were detected only in legume-based diets: blaVIM and blaGES were found in both mature larvae and frass, while blaOXA-48 and blaKPC were found exclusively in either larvae or frass. No CRGs were detected in onion- or digestate-based diets nor in young larvae or diet inputs. Conclusions: The findings suggest that the diet composition may influence the proliferation of Enterobacteriaceae and the persistence of CRGs. Careful substrate selection and process monitoring are essential to minimize antimicrobial resistance risks in insect-based bioconversion systems. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2391 KiB  
Article
Host-Seeking and Acceptance Behaviour of Plodia interpunctella (Lepidoptera: Pyralidae) Larvae in Response to Volatile Compounds Emitted by Amaranth
by Mariana Cruz-Díaz, Humberto Reyes-Prado, Víctor R. Castrejón-Gómez and Paola Rossy García-Sosa
Agriculture 2025, 15(15), 1637; https://doi.org/10.3390/agriculture15151637 - 29 Jul 2025
Viewed by 250
Abstract
In this study, the seeking behaviour and food acceptance of larvae of Plodia interpunctella Hübner (Lepidoptera: Pyralidae) were analysed under laboratory conditions. Larval orientation and feeding preferences were assessed using a selection arena for neonate larvae and a four-way olfactometer for third-instar larvae. [...] Read more.
In this study, the seeking behaviour and food acceptance of larvae of Plodia interpunctella Hübner (Lepidoptera: Pyralidae) were analysed under laboratory conditions. Larval orientation and feeding preferences were assessed using a selection arena for neonate larvae and a four-way olfactometer for third-instar larvae. Stimulants included amaranth bars with additives (honey and chocolate) and natural amaranth (toasted grain only). The results showed that amaranth volatiles influence the orientation and feeding behaviour of this polyphagous insect. A marked preference for sugar-rich foods was observed, with amaranth with honey and amaranth with chocolate being the food sources most frequently chosen by the neonate larvae. These individuals exhibited a gregarious feeding behaviour and did not engage in cannibalism. The third-instar larvae also showed a preference for sweet food but were more attracted to the amaranth–additive combination. In the four-way olfactometer bioassays, chocolate was the most frequently chosen stimulus, while cellophane did not differ significantly from air. An analysis of volatile compounds by gas chromatography mass spectrometry (GC-MS) revealed that amaranth with chocolate releases more volatile compounds (16) compared with honey (12) and natural amaranth (6), suggesting that these volatiles could possibly influence the larvae’s choice of food source. Full article
Show Figures

Figure 1

12 pages, 418 KiB  
Article
Biocontrol Potential of a New Beauveria varroae Strain Isolated from an Urban Ecosystem Against Two Species of Noctuidae Pests
by Spiridon Mantzoukas, Vasileios Papantzikos, Ioannis Lagogiannis, Panagiotis A. Eliopoulos and George Patakioutas
Crops 2025, 5(4), 49; https://doi.org/10.3390/crops5040049 - 29 Jul 2025
Viewed by 184
Abstract
Entomopathogenic fungi are among the most promising non-chemical alternatives for the control of many serious phytophagous insect pests, such as moth species. The present research investigates the use of the little-studied entomopathogenic fungus Beauveria varroae as a biocontrol agent against the notorious pests [...] Read more.
Entomopathogenic fungi are among the most promising non-chemical alternatives for the control of many serious phytophagous insect pests, such as moth species. The present research investigates the use of the little-studied entomopathogenic fungus Beauveria varroae as a biocontrol agent against the notorious pests Helicoverpa armigera and Sesamia nonagrioides in laboratory conditions. Conidial suspensions of B. varroae were prepared at 103-104-105-106-107-108 conidia/mL to assess their insecticidal potential. In this study, we used 100 3rd-instar larvae for each concentration. During the lab bioassays, almost complete mortality of 35–96.6% was recorded for H. armigera larvae and 40–96.6% for S. nonagrioides larvae 10 days after exposure. The lethal effect of the entomopathogen was related to both dose and exposure time of the entomopathogen, with higher concentrations resulting in increased mortality. The survival effect of S. nonagrioides and H. armigera larvae was dependent on the hazard effect of the used dose and the exposure time. These findings indicate that B. varroae has potential as a biocontrol agent. Further research will elucidate this new isolate and optimize application methods in field conditions. Full article
Show Figures

Figure 1

20 pages, 1274 KiB  
Article
Detection and Quantification of House Crickets (Acheta domesticus) in the Gut of Yellow Mealworm (Tenebrio molitor) Larvae Fed Diets Containing Cricket Flour: A Comparison of qPCR and ddPCR Sensitivity
by Pavel Vejl, Agáta Čermáková, Martina Melounová, Daniela Čílová, Kamila Zdeňková, Eliška Čermáková and Jakub Vašek
Insects 2025, 16(8), 776; https://doi.org/10.3390/insects16080776 - 28 Jul 2025
Viewed by 314
Abstract
Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow [...] Read more.
Due to their nutritional value and sustainability, edible insect-based foods are gaining popularity in Europe. Their use is regulated by EU legislation, which defines authorised species and sets labelling requirements. Molecular tools are being developed to authenticate such products. In this study, yellow mealworm (Tenebrio molitor) larvae authorised for human consumption were fed wheat flour-based diets containing varying proportions of house cricket (Acheta domesticus) flour for 21 days. This was followed by a 48 h starvation period to assess the persistence of insect DNA in the digestive tract. Two novel, species-specific, single-copy markers were designed: ampd gene for the Acheta domesticus and MyD88 gene for the Tenebrio molitor. These were applied using qPCR and ddPCR. Both methods successfully detected cricket DNA in the guts of starved larvae. Linear regression analysis revealed a strong, statistically significant correlation between the proportion of Acheta domesticus flour in the diet and the normalised relative quantity of DNA. ddPCR proved to be more sensitive than qPCR, particularly in the detection of low DNA levels. These results suggest that the presence of DNA from undeclared insect species in edible insects may be indicative of their diet rather than contamination or adulteration. This highlights the importance of contextual interpretation in food authenticity testing. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

29 pages, 953 KiB  
Review
Comprehensive Review of Alternative Proteins in Pet Food: Research Publications, Patents, and Product Trends in Plant, Aquatic, Insect, and Cell-Based Sources
by Phatthranit Klinmalai, Pitiya Kamonpatana, Arisara Thongpech, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai, Shyam S. Sablani and Nathdanai Harnkarnsujarit
Foods 2025, 14(15), 2640; https://doi.org/10.3390/foods14152640 - 28 Jul 2025
Viewed by 454
Abstract
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, [...] Read more.
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, including plant-based, aquatic, insect-derived, and cell-based sources. Their nutritional composition, functional properties, and potential benefits for pet health were assessed. Plant-based proteins, such as soy, pea, and lentils, provide essential amino acids and functional properties suitable for meat analogues. Microalgae and seaweed offer rich sources of omega-3 fatty acids, antioxidants, and bioactive compounds. Insect-based proteins such as black-soldier-fly larvae and mealworms are highly digestible and rich in essential nutrients, with additional benefits for gut health. Emerging cell-based proteins present a novel, lab-grown alternative with promising sustainability and nutritional advantages. While these protein sources offer significant benefits, challenges related to digestibility, palatability, regulatory approval, and consumer acceptance must be addressed. The emphasis of the present research is on current developments for industry uses and future potential. The analysis sheds light on the contributions of alternative protein sources to the promotion of sustainable and nutrient meals for pets. Full article
Show Figures

Figure 1

25 pages, 6190 KiB  
Article
CRISPR/Cas9-Driven Engineering of AcMNPV Using Dual gRNA for Optimized Recombinant Protein Production
by Rocco Valente, Joaquín Poodts, Joaquín Manuel Birenbaum, María Sol Rodriguez, Ignacio Smith, Jorge Alejandro Simonin, Franco Uriel Cuccovia Warlet, Aldana Trabucchi, Salvador Herrero, María Victoria Miranda, Mariano Nicolás Belaich and Alexandra Marisa Targovnik
Viruses 2025, 17(8), 1041; https://doi.org/10.3390/v17081041 - 25 Jul 2025
Viewed by 401
Abstract
The CRISPR/Cas9 system is a powerful genome-editing tool that is applied in baculovirus engineering. In this study, we present the first report of the AcMNPV genome deletions for bioproduction purposes, using a dual single-guide RNA (sgRNA) CRISPR/Cas9 approach. We used this method to [...] Read more.
The CRISPR/Cas9 system is a powerful genome-editing tool that is applied in baculovirus engineering. In this study, we present the first report of the AcMNPV genome deletions for bioproduction purposes, using a dual single-guide RNA (sgRNA) CRISPR/Cas9 approach. We used this method to remove nonessential genes for the budded virus and boost recombinant protein yields when applied as BEVS. We show that the co-delivery of two distinct ribonucleoprotein (RNP) complexes, each assembled with a sgRNA and Cas9, into Sf9 insect cells efficiently generated deletions of fragments containing tandem genes in the genome. To evaluate the potential of this method, we assessed the expression of two model proteins, eGFP and HRPc, in insect cells and larvae. The gene deletions had diverse effects on protein expression: some significantly enhanced it while others reduced production. These results indicate that, although the targeted genes are nonessential, their removal can differentially affect recombinant protein yields depending on the host. Notably, HRPC expression increased up to 3.1-fold in Spodoptera frugiperda larvae. These findings validate an effective strategy for developing minimized baculovirus genomes and demonstrate that dual-guide CRISPR/Cas9 editing is a rapid and precise tool for baculovirus genome engineering. Full article
Show Figures

Graphical abstract

25 pages, 11927 KiB  
Article
Hydroxylated vs. Carboxylated Nanotubes: Differential Impacts on Fall Armyworm Development, Reproduction, and Population Dynamics
by Zhao Wang, Syed Husne Mobarak, Fa-Xu Lu, Jing Ai, Xie-Yuan Bai, Lei Wu, Shao-Zhao Qin and Chao-Xing Hu
Insects 2025, 16(8), 748; https://doi.org/10.3390/insects16080748 - 22 Jul 2025
Viewed by 365
Abstract
Carbon nanotubes are promising in agriculture for improving crop resilience and delivering agrochemicals. However, their effects on insect pests, especially chewing pests such as the fall armyworm (Spodoptera frugiperda), remain underexplored. In this study, we investigated how two types of functionalized [...] Read more.
Carbon nanotubes are promising in agriculture for improving crop resilience and delivering agrochemicals. However, their effects on insect pests, especially chewing pests such as the fall armyworm (Spodoptera frugiperda), remain underexplored. In this study, we investigated how two types of functionalized multi-walled carbon nanotubes—hydroxylated (MWCNTs-OH) and carboxylated (MWCNTs-COOH), both obtained from Jiangsu Xianfeng Nano (Nanjing, China)—affect the pest’s development and reproduction. Using an age-stage two-sex life table approach, we fed larvae diets containing 0.04, 0.4, or 4 mg/g of these nanomaterials. Both types of MWCNTs exhibited concentration-dependent inhibitory effects. At the highest dose (4 mg/g), larval development was significantly prolonged, adult pre-oviposition periods increased, and fecundity (egg production) sharply declined, especially with MWCNTs-OH. Population growth parameters were also suppressed: net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) were reduced at 4 mg/g, particularly with MWCNTs-OH, while mean generation time (T) was extended with MWCNTs-COOH. Overall, MWCNTs-OH demonstrated a greater inhibitory impact compared to MWCNTs-COOH. These findings suggest that functionalized MWCNTs could serve as potential novel pest control agents against S. frugiperda by impeding its development and reproduction. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

15 pages, 4791 KiB  
Article
Diversity and Metabolic Potential of Gut Bacteria in Dorcus hopei (Coleoptera: Lucanidae): Influence of Fungus and Rotten Wood Diets
by Pan Wang, Xiaoyan Bin, Xingjia Xiang and Xia Wan
Microorganisms 2025, 13(7), 1692; https://doi.org/10.3390/microorganisms13071692 - 18 Jul 2025
Viewed by 361
Abstract
Stag beetles are saproxylic insects, essential for decomposing rotten wood and maintaining the carbon cycle. Their gut bacteria contribute significantly to nutrient digestion and energy acquisition, making them crucial for understanding host-microbe interactions. Despite the fungivorous behavior of stag beetle larvae, research on [...] Read more.
Stag beetles are saproxylic insects, essential for decomposing rotten wood and maintaining the carbon cycle. Their gut bacteria contribute significantly to nutrient digestion and energy acquisition, making them crucial for understanding host-microbe interactions. Despite the fungivorous behavior of stag beetle larvae, research on how diet influences gut bacterial diversity remains scarce. Therefore, this study was conducted to compare the diversity and metabolic functions of gut bacteria in Dorcus hopei larvae fed on fungus (Pleurotus geesteranus) and rotten wood diets using high-throughput sequencing technology. Significant differences (p < 0.05) were observed in gut bacterial community composition between two diets, highlighting diet as a key factor shaping bacterial diversity. Additionally, gut bacterial communities varied across larval developmental stages (p < 0.05), indicating the influence of host age. Dominant bacterial phyla included Firmicutes, Bacteroidetes, and Proteobacteria. Bacteroidetes were more abundant in rotten-wood-fed larvae (7.61%) than fungus-fed larvae (0.15%), while Proteobacteria were more abundant in fungus-fed larvae. Functional analysis revealed that rotten-wood-fed larvae were primarily related to carbohydrate and amino acid metabolism, whereas fungus-fed larvae exhibited enhanced membrane transport function. This study enhances the understanding of gut bacterial diversity and functions in stag beetles, providing a theoretical foundation for their conservation and sustainable utilization. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

15 pages, 1498 KiB  
Article
Host-Affected Body Coloration Dynamics in Perina nuda Larvae: A Quantitative Analysis of Color Variations and Endogenous Plant Influences
by Songkai Liao, Xinjie Mao, Yuan Liu, Guihua Luo, Jiajin Wang, Haoyu Lin, Ming Tang and Hui Chen
Insects 2025, 16(7), 728; https://doi.org/10.3390/insects16070728 - 17 Jul 2025
Viewed by 384
Abstract
Insects’ body coloration may be indirectly influenced by their host plants. Perina nuda (Lepidoptera: Lymantriidae), commonly known as the Banyan Tussock Moth and a serious pest of banyan trees (Ficus spp.) in southern China, exhibits light body coloration during its first- to [...] Read more.
Insects’ body coloration may be indirectly influenced by their host plants. Perina nuda (Lepidoptera: Lymantriidae), commonly known as the Banyan Tussock Moth and a serious pest of banyan trees (Ficus spp.) in southern China, exhibits light body coloration during its first- to third-instar stages, with its coloration progressively darkening as it matures, but little is known of the relationship between larval body coloration and host plants. To address this gap, we examined the R (red), G (green), B (blue), and L (lightness) values of the head, dorsal thorax and abdomen, stripe, dorsal mid-line, and tail of larvae fed on different hosts and host endogenous substance by using quantitative image analysis and chemical determination. Our results revealed that larval body coloration exhibited conserved ontogenetic patterns but varied significantly with host species, developmental age, and anatomical region. Redundancy analysis identified chlorophyll-b as the dominant driver, strongly associating with dorsal thorax–abdomen pigmentation. Flavonoids exhibited subthreshold significance, correlating with darker dorsal mid-line coloration, while nutrients (sugars, proteins) showed negligible effects. Linear regression revealed weak but significant links between leaf and larval body coloration in specific body regions. These findings demonstrate that host plant endogenous substances play a critical role in shaping larval body coloration. This study provides a foundation for understanding the ecological and biochemical mechanisms underlying insect pigmentation, with implications for adaptive evolution and pest management strategies. Full article
(This article belongs to the Special Issue Ecological Adaptation of Insect Pests)
Show Figures

Figure 1

Back to TopTop