CRISPR/Cas9-Driven Engineering of AcMNPV Using Dual gRNA for Optimized Recombinant Protein Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Insects
2.2. Parental Bacmid Bac-eGFP/HRPC and Parental Virus Ac-eGFP/HRPC Construction
2.3. Knockout in Bac-eGFP/HRPc
2.4. Effect of Genome Editing on Viral Replication
2.5. Sf9 Cell Culture and Infection
2.6. Larvae Infection
2.7. Analysis of eGFP Expression in sf9 Pellet and Larval Extract
2.8. Analysis of HRPc Activity in sf9 Cell Expression Supernatant and Larval Extract
3. Results
3.1. CRISPR-Mediated Knockout in Bac-eGFP/HRPc Using Dual sgRNA
3.2. Impact of Gene Edition by Cas9 Using Dual sgRNA on Baculovirus Infectivity and Replication in Cultured sf9 Cells
3.3. Impact of Gene Edition by cas9 Using Dual sgRNA on Recombinant Protein Production in Insect Cells
3.4. Impact of Genome Editing on Recombinant Protein Production in Insect Larvae
4. Discussion
4.1. Technical Considerations of Dual sgRNA-Cas9 Editing
4.2. Simultaneous Deletion of Ac15 and Ac16 Enhances Recombinant Protein Expression
4.3. Simultaneous Deletion of Ac129, Ac130, and Ac131 Enhances Recombinant Protein Expression
4.4. Divergent Expression Outcomes Following Ac136-Ac138 Fragment Deletion
4.5. Deletion of Ac148-Ac150 Fragment Reduces Protein Expression Despite Preserved Viral Replication
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AcMNPV | Autographa californica Nuclear Polyhedrosis Virus |
BEVS | Baculovirus Expression Vector System |
BV | Budded viruses |
DPI | Days post-infection |
DI50 | Infectious dose 50 |
DSB | DNA double-strand break |
eGFP | Enhanced green fluorescent protein |
FBS | Fetal bovine serum |
FU | Fluorescent unit |
GP64 | Glycoprotein 64 leader peptide |
HRPc | Horseradish peroxidase isoenzyme C |
HR5 | Homologous region 5 |
ND | Not detected |
NS | Non-significant |
ODV | Occlusion-derived viruses |
OB | Budded viruses |
ORF | Open reading frames |
PAM | Protospacer adjacent motif |
PIF | Per os infectivity factors |
PCR | Polymerase chain reaction |
R. nu | Rachiplusia nu |
S. frugiperda | Spodoptera frugiperda |
PFU | Plaque-forming units |
qPCR | Quantitative real-time PCR |
RNP | Ribonucleoprotein |
sgRNA | Single-guide RNA |
References
- Targovnik, A.M.; Simonin, J.A.; Mc Callum, G.J.; Smith, I.; Cuccovia Warlet, F.U.; Nugnes, M.V.; Miranda, M.V.; Belaich, M.N. Solutions against Emerging Infectious and Noninfectious Human Diseases through the Application of Baculovirus Technologies. Appl. Microbiol. Biotechnol. 2021, 105, 8195–8226. [Google Scholar] [CrossRef]
- Ikonomou, L.; Schneider, Y.J.; Agathos, S.N. Insect Cell Culture for Industrial Production of Recombinant Proteins. Appl. Microbiol. Biotechnol. 2003, 62, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Li, T.; Xue, W.; Zhang, S.; Cui, L.; Wang, H.; Zhang, Y.; Zhou, L.; Gu, Y.; Xia, N.; et al. Genetic Engineering of Baculovirus-Insect Cell System to Improve Protein Production. Front. Bioeng. Biotechnol. 2022, 10, 994743. [Google Scholar] [CrossRef] [PubMed]
- Felberbaum, R.S. The Baculovirus Expression Vector System: A Commercial Manufacturing Platform for Viral Vaccines and Gene Therapy Vectors. Biotechnol. J. 2015, 10, 702–714. [Google Scholar] [CrossRef]
- Airenne, K.J.; Hu, Y.C.; Kost, T.A.; Smith, R.H.; Kotin, R.M.; Ono, C.; Matsuura, Y.; Wang, S.; Ylä-Herttuala, S. Baculovirus: An Insect-Derived Vector for Diverse Gene Transfer Applications. Mol. Ther. 2013, 21, 739–749. [Google Scholar] [CrossRef]
- Sokolenko, S.; George, S.; Wagner, A.; Tuladhar, A.; Andrich, J.M.S.; Aucoin, M.G. Co-Expression vs. Co-Infection Using Baculovirus Expression Vectors in Insect Cell Culture: Benefits and Drawbacks. Biotechnol. Adv. 2012, 30, 766–781. [Google Scholar] [CrossRef]
- Martínez-Solís, M.; Herrero, S.; Targovnik, A.M. Engineering of the Baculovirus Expression System for Optimized Protein Production. Appl. Microbiol. Biotechnol. 2019, 103, 113–123. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Zhong, S.; Fei, Z.; Hashimoto, Y.; Xiang, J.Z.; Zhang, S.; Blissard, G.W. The Transcriptome of the Baculovirus Autographa Californica Multiple Nucleopolyhedrovirus in Trichoplusia Ni Cells. J. Virol. 2013, 87, 6391–6405. [Google Scholar] [CrossRef]
- Pazmiño-Ibarra, V.; Mengual-Martí, A.; Targovnik, A.M.; Herrero, S. Improvement of Baculovirus as Protein Expression Vector and as Biopesticide by CRISPR/Cas9 Editing. Biotechnol. Bioeng. 2019, 116, 2823–2833. [Google Scholar] [CrossRef]
- Cerrudo, C.S.; Motta, L.F.; Uriel, F.; Warlet, C.; Lassalle, F.M.; Simonin, J.A.; Nicol, M. Protein-Gene Orthology in Baculoviridae: An Exhaustive Analysis to Redefine the Ancestrally Common Coding Sequences. Viruses 2023, 15, 1091. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, T.; Lu, D.; Wang, J.; Xu, Z.; Zhang, Y.; Liu, Q. Genome-Wide Nonessential Gene Identification of Autographa Californica Multiple Nucleopolyhedrovirus. Gene 2023, 863, 147239. [Google Scholar] [CrossRef]
- Zhang, X.; He, A.; Zong, Y.; Tian, H.; Zhang, Z. Improvement of Protein Production in Baculovirus Expression Vector System by Removing a Total of 10 Kb of Nonessential Fragments from Autographa Californica Multiple Nucleopolyhedrovirus Genome. Front. Microbiol. 2023, 14, 1171500. [Google Scholar] [CrossRef]
- Shrestha, A.; Bao, K.; Chen, Y.-R.; Chen, W.; Wang, P.; Fei, Z.; Blissard, G.W. Global Analysis of Baculovirus Autographa Californica Multiple Nucleopolyhedrovirus Gene Expression in the Midgut of the Lepidopteran Host Trichoplusia Ni. J. Virol. 2018, 92, e01277-18. [Google Scholar] [CrossRef]
- Rohrmann, G. Baculovirus Molecular Biology, 4th ed.; National Center for Biotechnology Information: Bethesda, MD, USA, 2019. [Google Scholar]
- Targovnik, A.M.; Arregui, M.B.; Bracco, L.F.; Urtasun, N.; Baieli, M.F.; Segura, M.M.; Simonella, M.A.; Fogar, M.; Wolman, F.J.; Cascone, O.; et al. Insect Larvae: A New Platform to Produce Commercial Recombinant Proteins. Curr. Pharm. Biotechnol. 2016, 17, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Kajikawa, M.; Maenaka, K.; Park, E.Y. Silkworm Expression System as a Platform Technology in Life Science. Appl. Microbiol. Biotechnol. 2010, 85, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, Z. Advances in the Molecular Biology of Baculoviruses. Curr. Issues Mol. Biol. 2020, 34, 183–214. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Duan, X.; Hu, H.; Shang, Y.; Hu, Y.; Deng, F.; Wang, H. Systematic Analysis of 42 Autographa Californica Multiple Nucleopolyhedrovirus Genes Identifies An Additional Six Genes Involved in the Production of Infectious Budded Virus. Virol. Sin. 2021, 36, 762–773. [Google Scholar] [CrossRef]
- Wang, L.; Maranas, C.D. MinGenome: An in Silico Top-Down Approach for the Synthesis of Minimized Genomes. ACS Synth. Biol. 2018, 7, 462–473. [Google Scholar] [CrossRef]
- Hitchman, R.B.; Possee, R.D.; Crombie, A.T.; Chambers, A.; Ho, K.; Siaterli, E.; Lissina, O.; Sternard, H.; Novy, R.; Loomis, K.; et al. Genetic Modification of a Baculovirus Vector for Increased Expression in Insect Cells. Cell Biol. Toxicol. 2010, 26, 57–68. [Google Scholar] [CrossRef]
- Kaba, S.A.; Salcedo, A.M.; Wafula, P.O.; Vlak, J.M.; Van Oers, M.M. Development of a Chitinase and V-Cathepsin Negative Bacmid for Improved Integrity of Secreted Recombinant Proteins. J. Virol. Methods 2004, 122, 113–118. [Google Scholar] [CrossRef]
- Lin, C.; Li, H.; Hao, M.; Xiong, D.; Luo, Y.; Huang, C.; Yuan, Q.; Zhang, J.; Xia, N. Increasing the Efficiency of CRISPR/Cas9-Mediated Precise Genome Editing of HSV-1 Virus in Human Cells. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, X.; Li, J.; Zheng, Y.; Yin, J.; Wang, H.; Zhang, X.; Chen, H. Construction of a Shortened Autographa Californica Multiple Nucleopolyhedrovirus Genome as Protein Expression Vector. Arch. Virol. 2025, 170, 1–14. [Google Scholar] [CrossRef]
- Pelosse, M.; Crocker, H.; Gorda, B.; Lemaire, P.; Rauch, J.; Berger, I. MultiBac: From Protein Complex Structures to Synthetic Viral Nanosystems. BMC Biol. 2017, 15, 99. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-Step Inactivation of Chromosomal Genes in Escherichia Coli K-12 Using PCR Products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Li, K.C.; Chang, Y.H.; Hsu, M.N.; Lo, S.C.; Li, W.H.; Hu, Y.C. Baculovirus-Mediated MiR-214 Knockdown Shifts Osteoporotic ASCs Differentiation and Improves Osteoporotic Bone Defects Repair. Sci. Rep. 2017, 7, 16225. [Google Scholar] [CrossRef] [PubMed]
- Nugnes, M.V.; Targovnik, A.M.; Mengual-Martí, A.; Miranda, M.V.; Cerrudo, C.S.; Herrero, S.; Belaich, M.N. The Membrane-Anchoring Region of the Acmnpv P74 Protein Is Expendable or Interchangeable with Homologs from Other Species. Viruses 2021, 13, 2416. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Chen, X.; Wang, H.; Tao, M.; Hu, Z. Efficient Method to Generate Homologous Recombinant Baculovirus Genomes in E. Coli. Biotechniques 2002, 32, 783–788. [Google Scholar] [CrossRef]
- Targovnik, A.M.; Ferrari, A.; Mc Callum, G.J.; Arregui, M.B.; Smith, I.; Bracco, L.F.; Alfonso, V.; López, M.G.; Martínez-Solís, M.; Herrero, S.; et al. Highly Efficient Production of Rabies Virus Glycoprotein G Ectodomain in Sf9 Insect Cells. 3 Biotech 2019, 9, 385. [Google Scholar] [CrossRef]
- Poodts, J.; Smith, I.; Birenbaum, J.M.; Rodriguez, M.S.; Montero, L.; Wolman, F.J.; Marfía, J.I.; Valdez, S.N.; Alonso, L.G.; Targovnik, A.M.; et al. Improved Expression of SARS-CoV-2 Spike RBD Using the Insect Cell-Baculovirus System. Viruses 2022, 14, 2794. [Google Scholar] [CrossRef]
- Vaughn, J.L.; Goodwin, R.H.; Tompkins, G.J.; McCawley, P. The Establishment of Two Cell Lines from the Insect Spodoptera Frugiperda (Lepidoptera; Noctuidae). In Vitro 1977, 13, 213–217. [Google Scholar] [CrossRef]
- Graentzdoerffer, A. Titration of Non-Occluded Baculovirus Using a Cell Viability Assay. Biotechniques 2003, 34, 268–270. [Google Scholar] [CrossRef]
- Martínez-Solís, M.; Jakubowska, A.K.; Herrero, S. Expression of the Lef5 Gene from Spodoptera Exigua Multiple Nucleopolyhedrovirus Contributes to the Baculovirus Stability in Cell Culture. Appl. Microbiol. Biotechnol. 2017, 101, 7579–7588. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, D.R.; Miller, L.K.; Luckow, V.A. Baculovirus Expression Vector: A Laboratory Manual; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Giménez, C.S.; Castillo, M.G.; Simonin, J.A.; Núñez Pedrozo, C.N.; Pascuali, N.; Bauzá, M.d.R.; Locatelli, P.; López, A.E.; Belaich, M.N.; Mendiz, A.O.; et al. Effect of Intramuscular Baculovirus Encoding Mutant Hypoxia-Inducible Factor 1-Alpha on Neovasculogenesis and Ischemic Muscle Protection in Rabbits with Peripheral Arterial Disease. Cytotherapy 2020, 22, 563–572. [Google Scholar] [CrossRef]
- Tjissen, P. Practice and Theory of Enzyme Immunoassays; Burdon, R.H., van Knippenberg, P.H., Eds.; Elsevier: New York, NY, USA, 1985. [Google Scholar]
- Do, P.T.; Nguyen, C.X.; Bui, H.T.; Tran, L.T.N.; Stacey, G.; Gillman, J.D.; Zhang, Z.J.; Stacey, M.G. Demonstration of Highly Efficient Dual GRNA CRISPR/Cas9 Editing of the Homeologous GmFAD2-1A and GmFAD2-1B Genes to Yield a High Oleic, Low Linoleic and α-Linolenic Acid Phenotype in Soybean. BMC Plant Biol. 2019, 19, 311. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Wang, L.-S.; Pham, N.N.; Shen, C.-C.; Hsu, M.-N.; Nguyen, N.T.K.; Yen, C.-Y.; Lin, M.-W.; Hwu, J.-R.; Chang, Y.-H.; et al. Synthetic Biology Approach to Developing All-in-One Baculovirus Vector Using Mammalian Introns and MiRNA Binding Sites. J. Taiwan Inst. Chem. Eng. 2022, 131, 104175. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, H.; Xiao, H.; Deng, F.; Li, J.; Wang, M.; Hu, Z. Successful Rescue of Synthetic AcMNPV with a ~17 Kb Deletion in the C1 Region of the Genome. Viruses 2022, 14, 2780. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, M.; Xiao, G.; Wang, X.; Hou, D.; Pan, K.; Liu, S.; Li, J.; Wang, J.; Arif, B.M.; et al. Construction and Rescue of a Functional Synthetic Baculovirus. ACS Synth. Biol. 2017, 6, 1393–1402. [Google Scholar] [CrossRef]
- Garavaglia, M.J.; Miele, S.A.B.; Iserte, J.A.; Belaich, M.N.; Ghiringhelli, P.D. The Ac53, Ac78, Ac101, and Ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae. J. Virol. 2012, 86, 12069–12079. [Google Scholar] [CrossRef]
- Javed, M.A.; Biswas, S.; Willis, L.G.; Harris, S.; Pritchard, C.; van Oers, M.M.; Donly, B.C.; Erlandson, M.A.; Hegedus, D.D.; Theilmann, D.A. Autographa Californica Multiple Nucleopolyhedrovirus AC83 Is a Per Os Infectivity Factor (PIF) Protein Required for Occlusion-Derived Virus (ODV) and Budded Virus Nucleocapsid Assembly as Well as Assembly of the PIF Complex in ODV Envelopes. J. Virol. 2017, 91, e02115-16. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, J.; Deng, R.; Yu, X.; Wang, X. AcMNPV-MiR-3 Is a MiRNA Encoded by Autographa Californica Nucleopolyhedrovirus and Regulates the Viral Infection by Targeting Ac101. Virus Res. 2019, 267, 49–58. [Google Scholar] [CrossRef]
- Miele, S.A.B.; Garavaglia, M.J.; Belaich, M.N.; Ghiringhelli, P.D. Baculovirus: Molecular Insights on Their Diversity and Conservation. Int. J. Evol. Biol. 2011, 2011, 379424. [Google Scholar] [CrossRef]
- Oliveira, H.d.P.; dos Santos, E.R.; Harrison, R.L.; Ribeiro, B.M.; Ardisson-Araújo, D.M.P. Identification and Analysis of Putative TRNA Genes in Baculovirus Genomes. Virus Res. 2022, 322, 198949. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.; Cho, S.W.; Kim, J.; Kim, J.S. Highly Efficient RNA-Guided Genome Editing in Human Cells via Delivery of Purified Cas9 Ribonucleoproteins. Genome Res. 2014, 24, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Potter, J.; Kumar, S.; Zou, Y.; Quintanilla, R.; Sridharan, M.; Carte, J.; Chen, W.; Roark, N.; Ranganathan, S.; et al. Rapid and Highly Efficient Mammalian Cell Engineering via Cas9 Protein Transfection. J. Biotechnol. 2015, 208, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Solís, M.; Gómez-Sebastián, S.; Escribano, J.M.; Jakubowska, A.K.; Herrero, S. A Novel Baculovirus-Derived Promoter with High Activity in the Baculovirus Expression System. PeerJ 2016, 4, e2183. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, M.; Deng, F.; Wang, H.; Hu, Z. ORF85 of HearNPV Encodes the per Os Infectivity Factor 4 (PIF4) and Is Essential for the Formation of the PIF Complex. Virology 2012, 427, 217–223. [Google Scholar] [CrossRef]
- Burks, J.K.; Summers, M.D.; Braunagel, S.C. BV/ODV-E26: A Palmitoylated, Multifunctional Structural Protein of Autographa Californica Nucleopolyhedrovirus. Virology 2007, 361, 194–203. [Google Scholar] [CrossRef]
- Kokusho, R.; Katsuma, S. Loss of P24 from the Bombyx Mori Nucleopolyhedrovirus Genome Results in the Formation of Cuboidal Occlusion Bodies. Virology 2021, 559, 173–181. [Google Scholar] [CrossRef]
- Yang, M.; Huang, C.; Qian, D.; Li, L. Functional Characterization of Autographa Californica Multiple Nucleopolyhedrovirus Gp16 (Ac130). Virology 2014, 464–465, 341–352. [Google Scholar] [CrossRef]
- Simón, O.; Williams, T.; Caballero, P.; Possee, R.D. Effects of Acp26 on In Vitro and In Vivo Productivity, Pathogenesis and Virulence of Autographa Californica Multiple Nucleopolyhedrovirus. Virus Res. 2008, 136, 202–205. [Google Scholar] [CrossRef]
- Lee, S.Y.; Poloumienko, A.; Belfry, S.; Qu, X.; Chen, W.; MacAfee, N.; Morin, B.; Lucarotti, C.; Krause, M. A Common Pathway for P10 and Calyx Proteins in Progressive Stages of Polyhedron Envelope Assembly in AcMNPV-Infected Spodoptera Frugiperda Larvae. Arch. Virol. 1996, 141, 1247–1258. [Google Scholar] [CrossRef]
- Wang, L.; Salem, T.Z.; Campbell, D.J.; Turney, C.M.; Kumar, C.M.S.; Cheng, X.W. Characterization of a Virion Occlusion-Defective Autographa Californica Multiple Nucleopolyhedrovirus Mutant Lacking the P26, P10 and P74 Genes. J. Gen. Virol. 2009, 90, 1641–1648. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, N.; Zhang, T.; Wang, Z.; Li, J.; Wang, M.; Hu, Z.; Wang, X. AcMNPV P74 Is Cleaved at R325 and R334 by Proteinases of Both OB and BBMV to Expose a Potential Fusion Peptide for Oral Infection. J. Virol. 2024, 98, 1–14. [Google Scholar] [CrossRef]
- Faulkner, P.; Kuzio, J.; Williams, G.V.; Wilson, J.A. Analysis of P74, a PDV Envelope Protein of Autographa Californica Nucleopolyhedrovirus Required for Occlusion Body Infectivity in Vivo. J. Gen. Virol. 1997, 78, 3091–3100. [Google Scholar] [CrossRef]
- Lapointe, R.; Popham, H.J.R.; Straschil, U.; Goulding, D.; O’Reilly, D.R.; Olszewski, J.A. Characterization of Two Autographa Californica Nucleopolyhedrovirus Proteins, Ac145 and Ac150, Which Affect Oral Infectivity in a Host-Dependent Manner. J. Virol. 2004, 78, 6439–6448. [Google Scholar] [CrossRef]
Target ORF | sgRNA sequence 5′–3′ | Localization | Strand | GC (%) | Efficiency |
---|---|---|---|---|---|
Ac-15 (egt) | GTTTGGTCACTTGTACGATC | 444 | + | 45 | 0.52 |
Ac-16 (ODV-26) | GTTCACAGAACCGACCGGCA | 71 | - | 60 | 0.61 |
Ac-129 (p24) | GTCATCATTACCAATTCGGA | 73 | + | 40 | 0.64 |
Ac-131 (pp34) | AAATGTGCTCAACAACTGGT | 239 | - | 40 | 0.66 |
Ac-136 (p26) | AATAGAGCAAGTCGACAATG | 51 | + | 50 | 0.72 |
Ac-138 (p74) | AACTGGCTTTCAGCAAGCGC | 191 | - | 55 | 0.62 |
Ac148(ODV-E56) | CTTTTAACAAGCACTCCCGC | 79 | - | 50 | 0.62 |
Ac-150 | GACGATGACGAATCAGACGA | 91 | + | 50 | 0.68 |
Edited Virus | Host | Impact on eGFP Level Expression (Fold Change) Relative to Parental Virus | Impact on HRPc Level Expression (Fold Change) Relative to Parental Virus |
---|---|---|---|
Ac-eGFP/HRPc∆Ac15-Ac16 | Sf9 at MOI 0.5 | NS | NS |
Sf9 at MOI 5 | ↑2.84 ± 0.38 | ↑1.27 ± 0.02 | |
S. frugiperda | ↑1.84 ± 0.26 | ↑3.11 ± 0.63 | |
R. nu | ↑1.87 ± 0.30 | ↑1.54 ± 0.06 | |
Ac-eGFP/HRPc∆Ac129-Ac131 | Sf9 at MOI 0.5 | ↑2.30 ± 0.41 | ↑1.74 ± 0.09 |
Sf9 at MOI 5 | ↑2.5 ± 0.62 | ↑1.46 ± 0.07 | |
S. frugiperda | ↑2.3 ± 0.17 | ↑2.91 ± 0.63 | |
R. nu | ↑2.5 ± 0.28 | ↑1.51 ± 0.07 | |
Ac-eGFP/HRPc∆Ac136-Ac138 | Sf9 at MOI 0.5 | NS | NS |
Sf9 at MOI 5 | ↑1.40 ± 0.10 | ↑1.79 ± 0.01 | |
S. frugiperda | ↓0.41 ± 0.08 | ↓0.55 ± 0.15 | |
R. nu | ↓0.70 ± 0.12 | ↓0.46 ± 0.07 | |
Ac-eGFP/HRPc∆Ac148-Ac150 | Sf9 at MOI 0.5 | ND | ↓0.60 ± 0.07 |
Sf9 at MOI 5 | ↓0.29 ± 0.02 | ↓0.70 ± 0.10 | |
S. frugiperda | ↓0.52 ± 0.04 | ↓0.47 ± 0.15 | |
R. nu | ↓0.41 ± 0.11 | ↓0.45 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, R.; Poodts, J.; Birenbaum, J.M.; Rodriguez, M.S.; Smith, I.; Simonin, J.A.; Warlet, F.U.C.; Trabucchi, A.; Herrero, S.; Miranda, M.V.; et al. CRISPR/Cas9-Driven Engineering of AcMNPV Using Dual gRNA for Optimized Recombinant Protein Production. Viruses 2025, 17, 1041. https://doi.org/10.3390/v17081041
Valente R, Poodts J, Birenbaum JM, Rodriguez MS, Smith I, Simonin JA, Warlet FUC, Trabucchi A, Herrero S, Miranda MV, et al. CRISPR/Cas9-Driven Engineering of AcMNPV Using Dual gRNA for Optimized Recombinant Protein Production. Viruses. 2025; 17(8):1041. https://doi.org/10.3390/v17081041
Chicago/Turabian StyleValente, Rocco, Joaquín Poodts, Joaquín Manuel Birenbaum, María Sol Rodriguez, Ignacio Smith, Jorge Alejandro Simonin, Franco Uriel Cuccovia Warlet, Aldana Trabucchi, Salvador Herrero, María Victoria Miranda, and et al. 2025. "CRISPR/Cas9-Driven Engineering of AcMNPV Using Dual gRNA for Optimized Recombinant Protein Production" Viruses 17, no. 8: 1041. https://doi.org/10.3390/v17081041
APA StyleValente, R., Poodts, J., Birenbaum, J. M., Rodriguez, M. S., Smith, I., Simonin, J. A., Warlet, F. U. C., Trabucchi, A., Herrero, S., Miranda, M. V., Belaich, M. N., & Targovnik, A. M. (2025). CRISPR/Cas9-Driven Engineering of AcMNPV Using Dual gRNA for Optimized Recombinant Protein Production. Viruses, 17(8), 1041. https://doi.org/10.3390/v17081041