Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = inorganic–organic hybrid polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2384 KB  
Article
Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy
by Vasyl G. Kravets, Vasyl Petruk, Serhii Kvaterniuk and Roman Petruk
Optics 2026, 7(1), 8; https://doi.org/10.3390/opt7010008 - 15 Jan 2026
Abstract
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, [...] Read more.
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, extracted from noble fir leaves (evergreen) and blue hydrangea flowers mixed with poly-methyl methacrylate (PMMA) as light emitters. We experimentally demonstrate the effective conversion of blue light emitted by an inorganic laser/photodiode into longer-wavelength red and green tunable photoluminescence due to the excitation of natural dye–PMMA nanostructures. UV-visible absorption and photoluminescence spectroscopy, ellipsometry, and Fourier transform infrared methods, together with optical microscopy, were performed for confirming and characterizing the properties of light-emitting diodes based on natural dyes. We highlighted the optical and physical properties of two different natural dyes and demonstrated how such characteristics can be exploited to make efficient LED devices. A strong pure red emission with a narrow full-width at half maximum (FWHM) of 23 nm in the noble fir dye–PMMA layer and a green emission with a FWHM of 45 nm in blue hydrangea dye–PMMA layer were observed. It was revealed that adding monolayer MoS2 to the nanostructures can significantly enhance the photoluminescence of the natural dye due to a strong correlation between the emission bands of the inorganic–organic emitters and back mirror reflection of the excitation blue light from the monolayer. Based on the investigation of two natural dyes, we demonstrated viable pathways for scalable manufacturing of efficient hybrid OLEDs consisting of assembly of natural-dye polymers through low-cost, purely ecological, and convenient processes. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

22 pages, 1029 KB  
Review
Thermo-Oxidative Decomposition and Ageing of Polymer/POSS Hybrids and Nanocomposites—Failure Predictions and Lifetime Design for Circular End-of-Life Planning
by Tomasz M. Majka, Artur Bukowczan, Radosław Piech and Krzysztof Pielichowski
Materials 2026, 19(1), 95; https://doi.org/10.3390/ma19010095 - 26 Dec 2025
Viewed by 422
Abstract
In recent years, hybrid polymer/POSS (Polyhedral Oligomeric Silsesquioxane) systems have attracted particular attention, combining the advantages of organic and inorganic components. This paper reports on the thermal and thermo-oxidative degradation and weathering processes of these materials, as well as their impact on mechanical, [...] Read more.
In recent years, hybrid polymer/POSS (Polyhedral Oligomeric Silsesquioxane) systems have attracted particular attention, combining the advantages of organic and inorganic components. This paper reports on the thermal and thermo-oxidative degradation and weathering processes of these materials, as well as their impact on mechanical, chemical, and morphological properties. The paper discusses the physical and chemical changes occurring during degradation, the mechanisms of autoxidation, and the influence of environmental factors such as UV radiation, temperature, and humidity. Particular attention is paid to the role of POSS nanoparticles in polymer stabilization—their barrier function, free radical scavenging, and oxygen diffusion limitation. Methods for analyzing ageing processes are presented, including thermogravimetry coupled with infra-red spectroscopy (TG-FTIR), mechanical property testing, and yellowness index assessment. Material durability prediction models and their importance in designing composite lifespans in the context of the circular economy are also discussed. It is demonstrated that the appropriate type and concentration of POSS (typically 2–6 wt.%) can significantly improve polymer composites’ resistance to heat, radiation, and oxidizing agents, extending their service life and enabling more sustainable lifecycle management of products. Full article
Show Figures

Figure 1

25 pages, 6536 KB  
Article
Light-Induced Interfacial Charge Transport of In2O3/Reduced Graphene Oxide/Non-Conjugated Polymers in a Wide Range of the Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(12), 1448; https://doi.org/10.3390/coatings15121448 - 8 Dec 2025
Viewed by 319
Abstract
To increase the use of the near-infrared (NIR) light from In2O3, a nanocomposite of In2O3/reduced graphene oxide was synthesised. To improve adhesion to the substrates, a small amount of PVA (polyvinyl alcohol) was added to [...] Read more.
To increase the use of the near-infrared (NIR) light from In2O3, a nanocomposite of In2O3/reduced graphene oxide was synthesised. To improve adhesion to the substrates, a small amount of PVA (polyvinyl alcohol) was added to the nanocomposite. Results showed that adding an appropriate amount of PVA to the nanocomposite remarkably enhanced the ability to extract photogenerated carriers due to interface optimisation based on the grain boundary filling with PVA and charge tunnelling effects. The nanocomposites exhibited photoconductive switching responses from the visible light region to the near-infrared range. Meanwhile, the organic/inorganic hybrid coating on silk fibres exhibited mutual conversion of positive and negative photoconductivity, as well as electrical switching responses to applied strain. Furthermore, it was found that a photoelectric signal could still be determined with zero bias after the In2O3/reduced graphene oxide nanocomposite had been stored for over four years. This reflects that the nanocomposites have an internal electric field that promotes the transfer of photogenerated carriers and prevents the recombination of photogenerated electrons and holes. Similar results were also obtained by adding an appropriate amount of other non-conjugated polymers, such as dendrimers. Physical mechanisms are discussed. This study provides reference values for the development of multifunctional organic/inorganic hybrids integrating non-conjugated polymer components to enhance specific properties. Full article
Show Figures

Figure 1

38 pages, 1493 KB  
Review
From Mineral Salts to Smart Hybrids: Coagulation–Flocculation at the Nexus of Water, Energy, and Resources—A Critical Review
by Faiçal El Ouadrhiri, Ebraheem Abdu Musad Saleh and Amal Lahkimi
Processes 2025, 13(11), 3405; https://doi.org/10.3390/pr13113405 - 23 Oct 2025
Viewed by 2570
Abstract
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting [...] Read more.
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting the transition from classical aluminum and iron salts to high-performance polymeric, biosourced, and hybrid coagulants, and examines their comparative efficiency across multiple performance indicators—turbidity removal (>95%), COD/BOD reduction (up to 90%), and heavy metal abatement (>90%). Emphasis is placed on recent innovations, including magnetic composites, bio–mineral hybrids, and functionalized nanostructures, which integrate multiple mechanisms—charge neutralization, sweep flocculation, polymer bridging, and targeted adsorption—within a single formulation. Beyond performance, the review highlights persistent scientific gaps: incomplete understanding of molecular-scale interactions between coagulants and emerging contaminants such as microplastics, per- and polyfluoroalkyl substances (PFAS), and engineered nanoparticles; limited real-time analysis of flocculation kinetics and floc structural evolution; and the absence of predictive, mechanistically grounded models linking influent chemistry, coagulant properties, and operational parameters. Addressing these knowledge gaps is essential for transitioning from empirical dosing strategies to fully optimized, data-driven control. The integration of advanced coagulation into modular treatment trains, coupled with IoT-enabled sensors, zeta potential monitoring, and AI-based control algorithms, offers the potential to create “Coagulation 4.0” systems—adaptive, efficient, and embedded within circular economy frameworks. In this paradigm, treatment objectives extend beyond regulatory compliance to include resource recovery from coagulation sludge (nutrients, rare metals, construction materials) and substantial reductions in chemical and energy footprints. By uniting advances in material science, process engineering, and real-time control, coagulation–flocculation can retain its central role in water treatment while redefining its contribution to sustainability. In the systems envisioned here, every floc becomes both a vehicle for contaminant removal and a functional carrier in the broader water–energy–resource nexus. Full article
Show Figures

Figure 1

35 pages, 12813 KB  
Review
Polymer Composite Materials for Water Purification: Removal of Organic, Inorganic, and Biological Contaminants
by Carlos Rafael Silva de Oliveira, Jéssica Mulinari, Éllen Francine Rodrigues, Carolina E. Demaman Oro, Rodrigo Schlindwein, Rachel Faverzani Magnago, Luciano da Silva, Adriano da Silva and Afonso Henrique da Silva Júnior
Eng 2025, 6(11), 284; https://doi.org/10.3390/eng6110284 - 23 Oct 2025
Cited by 1 | Viewed by 1530
Abstract
The persistent contamination of water bodies by organic compounds, heavy metals, and pathogenic microorganisms represents a critical environmental and public health concern worldwide. In this context, polymer composite materials have emerged as promising multifunctional platforms for advanced water purification. These materials combine the [...] Read more.
The persistent contamination of water bodies by organic compounds, heavy metals, and pathogenic microorganisms represents a critical environmental and public health concern worldwide. In this context, polymer composite materials have emerged as promising multifunctional platforms for advanced water purification. These materials combine the structural versatility of natural and synthetic polymers with the enhanced physicochemical functionalities of inorganic fillers, such as metal oxides and clay minerals. This review comprehensively analyzes recent developments in polymer composites designed to remove organic, inorganic, and biological pollutants from water systems. Emphasis is placed on key removal mechanisms, adsorption, ion exchange, photocatalysis, and antimicrobial action, alongside relevant synthesis strategies and material properties that influence performance, such as surface area, porosity, functional group availability, and mechanical stability. Representative studies are examined to illustrate contaminant-specific composite designs and removal efficiencies. Despite significant advancements, challenges remain regarding scalability, material regeneration, and the environmental safety of nanostructured components. Future perspectives highlight the potential of bio-based and stimuli-responsive polymers, hybrid systems, and AI-assisted material design in promoting sustainable, efficient, and targeted water purification technologies. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

20 pages, 4782 KB  
Article
Porous Organosilica Films: Is It Possible to Enhance Hydrophobicity While Maintaining Elastic Stiffness?
by Alexey S. Vishnevskiy, Dmitry A. Vorotyntsev, Dmitry S. Seregin, Konstantin A. Vorotilov and Alexander S. Sigov
Polymers 2025, 17(17), 2433; https://doi.org/10.3390/polym17172433 - 8 Sep 2025
Viewed by 743
Abstract
Organosilica films, composed of a silicon oxide network with terminal methyl groups, are widely utilized in various applications, including microelectronics. Many of these applications require high hydrophobicity and good mechanical properties, which pose a significant challenge because the Si–CH3 groups disrupt the [...] Read more.
Organosilica films, composed of a silicon oxide network with terminal methyl groups, are widely utilized in various applications, including microelectronics. Many of these applications require high hydrophobicity and good mechanical properties, which pose a significant challenge because the Si–CH3 groups disrupt the Si–O–Si network. This issue becomes particularly pronounced in porous films. Here, we investigate whether material properties can be tuned by simply altering the spatial arrangement of methyl groups. To achieve this, we prepared copolymer films with one or two methyl groups bonded to a silicon atom, while maintaining a constant total amount of methyl groups. The films were deposited using a sol–gel technique combined with template self-assembly. The precursor content was varied to compare films with different proportions of Si–CH3 and Si(–CH3)2. Film characterization included FTIR, ellipsometric porosimetry, AFM, and WCA measurements and dielectric constant evaluations. Our findings indicate that precursors containing dimethyl groups enhance the connectivity of the Si–O–Si network, resulting in a higher Young’s modulus and smaller pore size compared to films with an equivalent amount of methyl groups. However, the lower thermal stability of dimethyl bonds limits the thermal budget of these films. Thus, the spatial arrangement of organic groups within the polymer structure can be employed to tune material properties. These results expand the understanding of organic–inorganic hybrid materials and offer novel approaches for their applications. Full article
(This article belongs to the Special Issue Silicon-Based Polymers: From Synthesis to Applications)
Show Figures

Graphical abstract

17 pages, 4029 KB  
Article
Sol–Gel Synthesized Silica/Sodium Alginate Hybrids: Comprehensive Physico-Chemical and Biological Characterization
by Antonio D’Angelo, Cecilia Mortalò, Lara Comune, Giuseppina Raffaini, Marika Fiorentino and Michelina Catauro
Molecules 2025, 30(17), 3481; https://doi.org/10.3390/molecules30173481 - 25 Aug 2025
Cited by 1 | Viewed by 1729
Abstract
The development of biomaterials with tailored properties is indispensable for biomedical applications. In this study, amorphous silica/sodium alginate (SiO2/SA) hybrids were synthesized via the sol–gel method by incorporating 2, 5, and 8% sodium alginate into the silica matrix. The hybrids were [...] Read more.
The development of biomaterials with tailored properties is indispensable for biomedical applications. In this study, amorphous silica/sodium alginate (SiO2/SA) hybrids were synthesized via the sol–gel method by incorporating 2, 5, and 8% sodium alginate into the silica matrix. The hybrids were characterized to evaluate their structural, surface, thermal, moisture-responsive, and biological properties. FTIR and XRD analyses confirmed the formation of organic–inorganic networks and amorphous structures. BET measurements revealed a specific surface area of 325 m2/g for SiO2/SA2%, decreasing with higher SA content to 104.3 m2/g for SiO2/SA8%; the moisture sorption capacity followed a similar trend. Thermal analysis indicated improved stabilization of the polymer within the silica matrix. Cytotoxicity tests on HaCaT (human keratinocyte) cells line revealed moderate toxicity for the SiO2/SA2% hybrid (~40% cell viability inhibition (CVI)), while increasing the SA content reduced cytotoxicity, with a CVI of 33% for SiO2/SA5% and ~15% for SiO2/SA8%, all within non-toxic ranges according to ISO standards. The SiO2/SA5% hybrid demonstrated the best balance between functional properties and biocompatibility. These preliminary results suggest that further optimization with intermediate SA concentrations (e.g., 6–7%) could further reduce cytotoxicity while maintaining desirable properties, supporting the potential of silica/sodium alginate hybrids in future biomedical applications. Full article
Show Figures

Graphical abstract

20 pages, 4457 KB  
Article
The Mechanical Reinforcing Mechanism and Self-Healing Properties of Biomimetic Hybrid Cement Composites via In-Situ Polymerization
by Wenhui Bao, Jian Zhao, Bumin Guo, Shuan Li, Jinwei Shen, Mengyuan Liu, Jingmin Han, Susu Xing, Miaomiao Hu and Jintang Guo
Materials 2025, 18(16), 3763; https://doi.org/10.3390/ma18163763 - 11 Aug 2025
Cited by 2 | Viewed by 812
Abstract
Addressing the inherent brittleness of cement to mitigate infrastructure failures stemming from cracking is imperative. To accomplish both early crack resistance and subsequent self-healing capabilities, a biomimetic microstructure composed of a sodium polyacrylate (CSPA) network interwoven with hydration products was developed. The calcium-enriched [...] Read more.
Addressing the inherent brittleness of cement to mitigate infrastructure failures stemming from cracking is imperative. To accomplish both early crack resistance and subsequent self-healing capabilities, a biomimetic microstructure composed of a sodium polyacrylate (CSPA) network interwoven with hydration products was developed. The calcium-enriched polymer network formed via in situ polymerization of sodium acrylate (ANa) can enhance the mechanical properties of cement and achieve efficient self-healing of cracks. The porous structure of sodium polyacrylate (PANa) formed in pore solution at room temperature to simulate cement hydration conditions was observed by scanning electron microscopy (SEM). Feature peaks found by Fourier transform infrared (FTIR) spectroscopy as well as confocal Raman microscopy (CRM) suggested that ANa was polymerized successfully. Notably, CSPA samples demonstrated a remarkable 104% increase in flexural strength, attributed to the efficient transmission and dissipation of external forces along the polymer network embedded within the cement matrix. Additionally, after a 28-day hydration, CSPA specimens exhibited enhanced compressive strength compared to blank cement samples. This enhancement stems from the formation of a uniform polymer network, which effectively decreased the porosity and densified the microstructure of cement. Moreover, this organic–inorganic hybrid structure contributes to efficient crack healing, as the calcium-rich polymer network binds calcium ions and promotes the generation of healing products. The healing products consist of calcium hydroxide (CH), CaCO3 (aragonite), C-S-H (calcium–silicate–hydrate), and PANa. Full article
Show Figures

Figure 1

29 pages, 42730 KB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Cited by 2 | Viewed by 1382
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

24 pages, 1714 KB  
Review
Engineering and Exploiting Immobilized Peptide Organocatalysts for Modern Synthesis
by Marco Francescato, Hang Liao and Luca Gentilucci
Molecules 2025, 30(12), 2517; https://doi.org/10.3390/molecules30122517 - 9 Jun 2025
Viewed by 1717
Abstract
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions [...] Read more.
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions have been described. However, peptide synthesis typically implicates the use of toxic reagents and generates wastes; therefore, peptide recycling is expected to significantly improve the overall sustainability of the process. Easy recovery and recycling of peptide catalysts can be expediently attained by covalent binding, inclusion, or adsorption. In addition, immobilization can significantly accelerate the screening of new peptide catalysts. For these reasons, diverse supports have been tested, including natural or synthetic polymers, porous polymeric networks, inorganic porous materials, organic-inorganic hybrid materials, and finally metal–organic frame-works. Full article
(This article belongs to the Special Issue Organocatalysis: Past, Present, and Future Perspectives)
Show Figures

Figure 1

41 pages, 1254 KB  
Review
Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
by Amra Bratovčić and Vesna Tomašić
Processes 2025, 13(6), 1813; https://doi.org/10.3390/pr13061813 - 7 Jun 2025
Cited by 5 | Viewed by 3719
Abstract
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or [...] Read more.
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen, as a versatile energy carrier, can be generated through photocatalysis under sunlight or via electrolysis powered by solar or wind energy. However, the advancement of photocatalysis is hindered by the limited availability of effective visible light-responsive semiconductors and the challenges of charge separation and transport. To address these issues, researchers are focusing on the development of novel nanostructured semiconductors and composite materials that can enhance photocatalytic performance. In this paper, we provide an overview of the advanced photocatalytic materials prepared so far that can be activated by sunlight, and their efficiency in H2 production. One of the key strategies in this research area concerns improving the separation and transfer of electron–hole pairs generated by light, which can significantly boost H2 production. Advanced hybrid materials, such as organic–inorganic hybrid composites consisting of a combination of polymers with metal oxide photocatalysts, and the creation of heterojunctions, are seen as effective methods to improve charge separation and interfacial interactions. The development of Schottky heterojunctions, Z-type heterojunctions, p–n heterojunctions from nanostructures, and the incorporation of nonmetallic atoms have proven to reduce photocorrosion and enhance photocatalytic efficiency. Despite these advancements, designing efficient semiconductor-based heterojunctions at the atomic scale remains a significant challenge for the realization of large-scale photocatalytic H2 production. In this review, state-of-the-art advancements in photocatalytic hydrogen production are presented and discussed in detail, with a focus on photocatalytic nanostructures, heterojunctions and hybrid composites. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

43 pages, 1026 KB  
Review
Most Important Biomedical and Pharmaceutical Applications of Silicones
by Jerzy J. Chruściel
Materials 2025, 18(11), 2561; https://doi.org/10.3390/ma18112561 - 30 May 2025
Cited by 5 | Viewed by 3524
Abstract
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical [...] Read more.
Many kinds of silicones are a wide family of hybrid inorganic–organic polymers which have valuable physical and chemical properties and find plenty of practical applications, not only industrial, but also numerous medical and pharmaceutical ones, mainly due to their good thermal and chemical stability, hydrophobicity, low surface tension, biocompatibility, and bio-durability. The important biomedical applications of silicones include drains, shunts, and catheters, used for medical treatment and short-term implants; inserts and implants to replace various body parts; treatment, assembly, and coating of various medical devices; breast and aesthetic implants; specialty contact lenses; and components of cosmetics, drugs, and drug delivery systems. The most important achievements concerning the biomedical and pharmaceutical applications of silicones, their copolymers and blends, and also silanes and low-molecular-weight siloxanes have been summarized and updated. The main physiological properties of organosilicon compounds and silicones, and the methods of antimicrobial protection of silicone implants, have also been described and discussed. The toxicity of silicones, the negative effects of breast implants, and the environmental effects of silicone-containing personal care and cosmetic products have been reported and analyzed. Important examples of the 3D printing of silicone elastomers for biomedical applications have been presented as well. Full article
Show Figures

Figure 1

16 pages, 5706 KB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Cited by 1 | Viewed by 912
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

19 pages, 7054 KB  
Article
Synthesis and Performance Evaluation of Anti-Washout Admixtures for Underwater Non-Dispersive Concrete Based on Nanosilica
by Jian Wang, Kaijian Huang, Hongyan Chu and Jianhui Li
Materials 2025, 18(11), 2541; https://doi.org/10.3390/ma18112541 - 28 May 2025
Viewed by 1421
Abstract
Anti-washout admixtures (AWAs) are a unique component of underwater non-dispersive concrete (UNDC), which gives the concrete the ability to remain undispersed in water. On some special occasions, freshly mixed underwater non-dispersive concrete is exposed to the erosion of moving water, and conventional acrylamide-based [...] Read more.
Anti-washout admixtures (AWAs) are a unique component of underwater non-dispersive concrete (UNDC), which gives the concrete the ability to remain undispersed in water. On some special occasions, freshly mixed underwater non-dispersive concrete is exposed to the erosion of moving water, and conventional acrylamide-based AWAs are only suitable for static water or the water flow rate is small. In this study, the inorganic component nanosilica (NS) is modified, treated, and copolymerized with the organic components acrylamide (AM) and acrylic acid (AA) to form an inorganic–organic hybrid polymer with a hyperbranched structure, which changes the linear structure of the original polyacrylamide molecule, and we optimize the synthesis process. The polymers are characterized at the microscopic level and their compatibility with polycarboxylic acid water-reducing agents (SP) is investigated. In addition, the polymers are compared and evaluated with commonly used PAM in terms of their working performance. The experimental results indicated that under specific process conditions, polymers endow cement mortar with good resistance to water erosion. At the same time, the polymers’ three-dimensional network structure is prominent, with good compatibility with SP and better anti-dispersity. The microstructure of the cement paste with added polymers is dense and flat, but its flowability and setting time are slightly worse. This study provides a new development direction for the development of AWAs under a dynamic water environment, which has specific engineering significance. Full article
Show Figures

Figure 1

18 pages, 4156 KB  
Article
Influence of P(V3D3-co-TFE) Copolymer Coverage on Hydrogen Detection Performance of a TiO2 Sensor at Different Relative Humidity for Industrial and Biomedical Applications
by Mihai Brinza, Lynn Schwäke, Lukas Zimoch, Thomas Strunskus, Thierry Pauporté, Bruno Viana, Tayebeh Ameri, Rainer Adelung, Franz Faupel, Stefan Schröder and Oleg Lupan
Chemosensors 2025, 13(4), 150; https://doi.org/10.3390/chemosensors13040150 - 19 Apr 2025
Cited by 5 | Viewed by 1432
Abstract
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively [...] Read more.
The detection of hydrogen gas is crucial for both industrial fields, as a green energy carrier, and biomedical applications, where it is a biomarker for diagnosis. TiO2 nanomaterials are stable and sensitive to hydrogen gas, but their gas response can be negatively affected by external factors such as humidity. Therefore, a strategy is required to mitigate these influences. The utilization of organic–inorganic hybrid gas sensors, specifically metal oxide gas sensors coated with ultra-thin copolymer films, is a relatively novel approach in this field. In this study, we examined the performance and long-term stability of novel TiO2-based sensors that were coated with poly(trivinyltrimethylcyclotrisiloxane-co-tetrafluoroethylene) (P(V3D3-co-TFE)) co-polymers. The P(V3D3-co-TFE)/TiO2 hybrid sensors exhibit high reliability even for more than 427 days. They exhibit excellent hydrogen selectivity, particularly in environments with high humidity. An optimum operating temperature of 300 °C to 350 °C was determined. The highest recorded response to H2 was approximately 153% during the initial set of measurements at a relative humidity of 10%. The developed organic–inorganic hybrid structures open wide opportunities for gas sensor tuning and customization, paving the way for innovative applications in industry and biomedical fields, such as exhaled breath analysis, etc. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

Back to TopTop