Polymer Composite Materials for Water Purification: Removal of Organic, Inorganic, and Biological Contaminants
Abstract
1. Introduction
2. Polymer Composite Materials: Fundamentals
2.1. Definition and Composition
2.1.1. Matrix: Natural and Synthetic Polymers
2.1.2. Reinforcement: Clays, Metal Oxides, Carbon-Based Nanomaterials, and Fibers
2.2. Fabrication Techniques
2.2.1. Conventional Methods
- •
- Pultrusion: Combines pulling and extrusion, in which fibers impregnated with resin are drawn through heated molds that define the final geometry (circular, rectangular, or structural profiles). This process enables high productivity and manufacturing constant cross-section parts with good mechanical strength.
- •
- Filament winding: Employs rotating mandrels for controlled deposition of resin-impregnated fibers in helical, circumferential, or polar patterns. It is particularly suited for hollow and cylindrical components, such as tanks and pipelines.
- •
- Hand lay-up: An open-mold technique where fibers and resin are manually placed into molds, generally with release agents and minimal pressure. It is simple, cost-effective, strongly dependent on operator skill, and offers limited dimensional control.
- •
- RTM: Involves injecting resin into closed molds containing pre-placed fiber reinforcements. It enables high production rates, good surface finish, and the fabrication of complex geometries, although it requires high tooling costs and strict process control.
- •
- Vacuum bagging: An enhanced version of hand lay-up, in which composite laminates are sealed in vacuum bags, ensuring compaction and improved interlaminar adhesion. When combined with autoclave curing, it produces high-performance structural components.
- •
- Compression molding: Is widely employed for thermoset and thermoplastic matrices using semi-cured compounds (BMC, SMC) or molten thermoplastics subjected to pressure and sometimes heat. It is commonly applied in the automotive industry due to its high productivity, dimensional accuracy, and short cycle times.
- •
- Injection molding: A well-established process in the plastics industry that allows the incorporation of short fibers or particles into polymer matrices. It enables rapid production of complex shapes, requiring reduced reinforcement dimensions and careful control to minimize residual stress.
2.2.2. Advanced Technologies
- •
- Surface coating: Consists of depositing thin films on polymer matrices or non-polymeric substrates to improve corrosion resistance, tribological behavior, or biocompatibility. Techniques include plasma spraying, magnetron sputtering, electrochemical deposition, and sol–gel processing. Each approach offers specific advantages regarding thickness control, adhesion, and uniformity, although limitations such as high cost or susceptibility to cracking during drying may arise.
- •
- Additive manufacturing (3D/4D printing): Allows the layer-by-layer fabrication of complex composites by integrating CAD, lasers, and numerical control. While 3D printing is already consolidated, 4D and 5D variants add functionalities such as responsiveness to external stimuli and enhanced geometric freedom. This technique enables customization, rapid prototyping, and topological optimization, although it still faces material limitations and relatively low production speed.
- •
- Magnetic pulse powder compaction: Employs pulsed electromagnetic fields to consolidate polymeric or hybrid powders into dense structures. The process is fast, cost-effective, and suitable for simple parts, with applications in packaging, medical devices, and electronic components. However, it is limited by low energy efficiency and restrictions on part geometry.
2.3. Characterization and Physicochemical Properties
3. Removal of Organic Contaminants
3.1. Types of Contaminants
3.2. Removal Mechanisms
3.3. Reported Application Studies
4. Removal of Inorganic Contaminants
4.1. Types of Contaminants
4.2. Removal Mechanisms of Inorganic Pollutants
4.3. Reported Application Studies
5. Removal of Biological Contaminants
6. Advantages and Limitations
7. Future Trends and Research Perspectives
8. Conclusions
- •
- Scalability and standardization, aiming to develop cost-effective synthesis routes and establish unified methodologies for performance and environmental assessment.
- •
- Long-term stability and safety, evaluating the durability of polymer–filler interfaces under realistic conditions and the potential release of secondary pollutants.
- •
- Sustainable design, integrating renewable fillers, bio-based polymers, and green synthesis strategies to minimize ecological impact.
- •
- Multifunctional systems, coupling adsorption, sensing, and catalytic degradation within single platforms to enhance versatility.
- •
- AI-assisted and data-driven approaches, using machine learning, molecular modeling, and digital screening to accelerate the discovery and optimization of advanced composites.
- •
- Interdisciplinary collaboration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kubiak, A.; Stachowiak, M.; Cegłowski, M. Unveiling the Latest Developments in Molecularly Imprinted Photocatalysts: A State-of-the-Art Review. Polymers 2023, 15, 4152. [Google Scholar] [CrossRef]
- Pellenz, L.; de Oliveira, C.R.S.; da Silva Júnior, A.H.; da Silva, L.J.S.; da Silva, L.; Ulson de Souza, A.A.; de Souza, S.M.; de, A.G.U.; Borba, F.H.; da Silva, A. A Comprehensive Guide for Characterization of Adsorbent Materials. Sep. Purif. Technol. 2023, 305, 122435. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Lara, C.R.; Gómez Castaño, J.A.; Cifuentes, G.R. Evaluation of Turbidity and Color Removal in Water Treatment: A Comparative Study between Opuntia Ficus-Indica Fruit Peel Mucilage and FeCl3. Polymers 2023, 15, 217. [Google Scholar] [CrossRef]
- da Silva Júnior, A.H.; Mulinari, J.; de Oliveira, P.V.; de Oliveira, C.R.S.; Reichert Júnior, F.W. Impacts of Metallic Nanoparticles Application on the Agricultural Soils Microbiota. J. Hazard. Mater. Adv. 2022, 7, 100103. [Google Scholar] [CrossRef]
- Zhakina, A.K.; Muldakhmetov, Z.; Zhivotova, T.S.; Rakhimova, B.B.; Vassilets, Y.P.; Arnt, O.V.; Alzhankyzy, A.; Zhakin, A.M. Synthesis of a Polymer Composite Based on a Modified Aminohumic Acid Tuned to a Sorbed Copper Ion. Polymers 2023, 15, 1346. [Google Scholar] [CrossRef]
- da Silva Júnior, A.H.; de Oliveira, C.R.S.; Leal, T.W.; Mapossa, A.B.; Fiates, J.; Ulson de Souza, A.A.; Ulson de Souza, S.M.d.A.G.; da Silva, A. Organochlorine Pesticides Remediation Techniques: Technological Perspective and Opportunities. J. Hazard. Mater. Lett. 2024, 5, 100098. [Google Scholar] [CrossRef]
- da Silva Júnior, A.; de Oliveira, C.; Wolff Leal, T.; Pellenz, L.; de Souza, S.; de Souza, A.; Mapossa, A.; Tewo, R.; Rutto, H.; da Silva, L.; et al. Reviewing Perovskite Oxide-Based Materials for the Effective Treatment of Antibiotic-Polluted Environments: Challenges, Trends, and New Insights. Surfaces 2024, 7, 54–78. [Google Scholar] [CrossRef]
- da Silva Júnior, A.H.; de Oliveira, C.R.S.; Pellenz, L.; Moraes, P.A.D.; Marques, W.P.; Mazur, L.P.; Costa, T.G.; Horn Jr, A.; Guelli Ulson de Souza, S.M.d.A.; de Souza, A.A.U.; et al. Perovskite-Type Strontium Ferrite-Based Catalyst: Characterization and Antibiotic Degradation Approach. Process Saf. Environ. Prot. 2024, 187, 1403–1421. [Google Scholar] [CrossRef]
- da Silva Júnior, A.H.; de Oliveira, C.R.S.; Moraes, P.A.D.; Pellenz, L.; Guelli Ulson de Souza, S.M.d.A.; de Souza, A.A.U.; da Silva, L.; da Silva, A. Perovskite-Type Catalyst for Tetracycline Abatement under Dark Ambient over a Wide PH Range. J. Sol-Gel Sci. Technol. 2024, 110, 1–13. [Google Scholar] [CrossRef]
- de Medeiros Lima, S.V.; da Silva Júnior, A.H.; Quadri, M.B.; da Silva, A. Exploring a Perovskite-Type Catalyst for Diclofenac Photodegradation: A Comparative Investigation with TiO2. Water Air Soil Pollut. 2024, 235, 700. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Y.; Liu, T.; Chu, B. Cost-Effective Polymer-Based Membranes for Drinking Water Purification. Giant 2022, 10, 100099. [Google Scholar] [CrossRef]
- Malyar, Y.N.; Borovkova, V.S.; Kazachenko, A.S.; Fetisova, O.Y.; Skripnikov, A.M.; Sychev, V.V.; Taran, O.P. Preparation and Characterization of Di- and Tricarboxylic Acids-Modified Arabinogalactan Plasticized Composite Films. Polymers 2023, 15, 1999. [Google Scholar] [CrossRef]
- Saravanan, A.; Thamarai, P.; Kumar, P.S.; Rangasamy, G. Recent Advances in Polymer Composite, Extraction, and Their Application for Wastewater Treatment: A Review. Chemosphere 2022, 308, 136368. [Google Scholar] [CrossRef]
- Simelane, N.P.; Asante, J.K.O.; Ndibewu, P.P.; Mramba, A.S.; Sibali, L.L. Biopolymer Composites for Removal of Toxic Organic Compounds in Pharmaceutical Effluents—A Review. Carbohydr. Polym. Technol. Appl. 2022, 4, 100239. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; Gaona, S.; Ramón, J.; Valarezo, E. Porous Geopolymer/ZnTiO3/TiO2 Composite for Adsorption and Photocatalytic Degradation of Methylene Blue Dye. Polymers 2023, 15, 2697. [Google Scholar] [CrossRef] [PubMed]
- Neblea, I.E.; Chiriac, A.L.; Zaharia, A.; Sarbu, A.; Teodorescu, M.; Miron, A.; Paruch, L.; Paruch, A.M.; Olaru, A.G.; Iordache, T.V. Introducing Semi-Interpenetrating Networks of Chitosan and Ammonium-Quaternary Polymers for the Effective Removal of Waterborne Pathogens from Wastewaters. Polymers 2023, 15, 1091. [Google Scholar] [CrossRef] [PubMed]
- Mapossa, A.B.; da Silva Júnior, A.H.; de Oliveira, C.R.S.; Mhike, W. Thermal, Morphological and Mechanical Properties of Multifunctional Composites Based on Biodegradable Polymers/Bentonite Clay: A Review. Polymers 2023, 15, 3443. [Google Scholar] [CrossRef] [PubMed]
- Aguilera Flores, M.M.; Valdivia Cabral, G.I.; Medellín Castillo, N.A.; Ávila Vázquez, V.; Sánchez Mata, O.; García Torres, J. Study on the Effectiveness of Two Biopolymer Coagulants on Turbidity and Chemical Oxygen Demand Removal in Urban Wastewater. Polymers 2022, 15, 37. [Google Scholar] [CrossRef]
- Podaru, I.A.; Stănescu, P.O.; Ginghină, R.; Stoleriu, Ş.; Trică, B.; Şomoghi, R.; Teodorescu, M. Poly(N-Vinylpyrrolidone)–Laponite XLG Nanocomposite Hydrogels: Characterization, Properties and Comparison with Divinyl Monomer-Crosslinked Hydrogels. Polymers 2022, 14, 4216. [Google Scholar] [CrossRef]
- Ortega, D.E.; Cortés-Arriagada, D.; Araya-Hermosilla, R. Computational Insights on the Chemical Reactivity of Functionalized and Crosslinked Polyketones to Cu2+ Ion for Wastewater Treatment. Polymers 2023, 15, 3157. [Google Scholar] [CrossRef]
- Lebedeva, O.V.; Sipkina, E.I. Polymer Composites and Their Properties. Proc. Univ. Appl. Chem. Biotechnol. 2022, 12, 192–207. [Google Scholar] [CrossRef]
- Wu, C.; Xu, F.; Wang, H.; Liu, H.; Yan, F.; Ma, C. Manufacturing Technologies of Polymer Composites—A Review. Polymers 2023, 15, 712. [Google Scholar] [CrossRef]
- Chohan, J.S.; Boparai, K.S.; Singh, R.; Hashmi, M.S. Manufacturing Techniques and Applications of Polymer Matrix Composites: A Brief Review. Adv. Mater. Process. Technol. 2022, 8, 884–894. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Ali, N.H.; Shihab, S.K.; Mohamed, M.T. Mechanical and Physical Characteristics of Hybrid Particles/Fibers-Polymer Composites: A Review. Mater. Today Proc. 2022, 62, 178–183. [Google Scholar] [CrossRef]
- Karim, M.R.A.; Tahir, D.; Haq, E.U.; Hussain, A.; Malik, M.S. Natural Fibres as Promising Environmental-Friendly Reinforcements for Polymer Composites. Polym. Polym. Compos. 2021, 29, 277–300. [Google Scholar] [CrossRef]
- Waghmare, S.; Shelare, S.; Aglawe, K.; Khope, P. A Mini Review on Fibre Reinforced Polymer Composites. Mater. Today Proc. 2022, 54, 682–689. [Google Scholar] [CrossRef]
- Bou Abdallah, G.; Ivanova, I.; Assih, J.; Diagana, C.; Dontchev, D. Composite Materials Based on Natural Fibres Applied for Structural Reinforcement. IOP Conf. Ser. Earth Environ. Sci. 2022, 960, 012007. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Saba, N.; Ramengmawii; Nasir, M.; Sultan, M.T.H. Processing of Hybrid Polymer Composites—A Review. In Hybrid Polymer Composite Materials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–22. ISBN 9780081007907. [Google Scholar]
- Al-Khazraji, M.S.; Bakhy, S.H.; Jweeg, M.J. Composite Sandwich Structures: Review of Manufacturing Techniques. J. Eng. Des. Technol. 2024, 22, 1616–1636. [Google Scholar] [CrossRef]
- Kashfipour, M.A.; Mehra, N.; Zhu, J. A Review on the Role of Interface in Mechanical, Thermal, and Electrical Properties of Polymer Composites. Adv. Compos. Hybrid Mater. 2018, 1, 415–439. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chen, Y.-J.; Chen, Y. Acid-Functionalized Porous Polymer as an Adsorbent for the Highly Efficient Removal of Ammonia Nitrogen from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2026, 178, 106390. [Google Scholar] [CrossRef]
- Negrete-Bolagay, D.; Zamora-Ledezma, C.; Chuya-Sumba, C.; De Sousa, F.B.; Whitehead, D.; Alexis, F.; Guerrero, V.H. Persistent Organic Pollutants: The Trade-off between Potential Risks and Sustainable Remediation Methods. J. Environ. Manag. 2021, 300, 113737. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ding, S.; Song, W.; Wang, X.; Ding, J.; Lu, J. The Degradation of Dissolved Organic Matter in Black and Odorous Water by Humic Substance-Mediated Fe(II)/Fe(III) Cycle under Redox Fluctuation. J. Environ. Manag. 2022, 321, 115942. [Google Scholar] [CrossRef]
- Devlin, M.; Brodie, J. Nutrients and Eutrophication. Geogr. Environ. 2023, 75–100. [Google Scholar] [CrossRef]
- Meléndez-Plata, G.; Mastrogiacomo, J.R.A.; Castellanos, M.L.; Romero, J.P.; Hincapié, V.; Lizcano, H.; Acero, J.D.; Villegas-Torres, M.F.; Gómez, J.M.; Cruz, J.C.; et al. Malodorous Gases in Aquatic Environments: A Comprehensive Review from Microbial Origin to Detection and Removal Techniques. Processes 2025, 13, 1077. [Google Scholar] [CrossRef]
- Toledo, M.; Muñoz, R. Odour Prevention Strategies in Wastewater Treatment and Composting Plants: A Review. J. Environ. Manag. 2025, 375, 124402. [Google Scholar] [CrossRef] [PubMed]
- Valta, K.; Kosanovic, T.; Malamis, D.; Moustakas, K.; Loizidou, M. Overview of Water Usage and Wastewater Management in the Food and Beverage Industry. Desalin. Water Treat. 2015, 53, 3335–3347. [Google Scholar] [CrossRef]
- Kumar, L.; Chugh, M.; Kumar, S.; Kumar, K.; Sharma, J.; Bharadvaja, N. Remediation of Petrorefinery Wastewater Contaminants: A Review on Physicochemical and Bioremediation Strategies. Process Saf. Environ. Prot. 2022, 159, 362–375. [Google Scholar] [CrossRef]
- Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems. Environ. Sci. Technol. 2017, 51, 7304–7317. [Google Scholar] [CrossRef]
- Shrivastava, V.; Ali, I.; Marjub, M.M.; Rene, E.R.; Soto, A.M.F. Wastewater in the Food Industry: Treatment Technologies and Reuse Potential. Chemosphere 2022, 293, 133553. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Islam, M.M.; Aidid, A.R.; Mohshin, J.N.; Mondal, H.; Ganguli, S.; Chakraborty, A.K. A Critical Review on Textile Dye-Containing Wastewater: Ecotoxicity, Health Risks, and Remediation Strategies for Environmental Safety. Clean. Chem. Eng. 2025, 11, 100165. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Ghimire, N.; Wang, S. Biological Treatment of Petrochemical Wastewater. In Petroleum Chemicals—Recent Insight; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-83880-402-2. [Google Scholar]
- Tian, X.; Song, Y.; Shen, Z.; Zhou, Y.; Wang, K.; Jin, X.; Han, Z.; Liu, T. A Comprehensive Review on Toxic Petrochemical Wastewater Pretreatment and Advanced Treatment. J. Clean. Prod. 2020, 245, 118692. [Google Scholar] [CrossRef]
- Liang, X.; Xu, Y.; Yin, L.; Wang, R.; Li, P.; Wang, J.; Liu, K. Sustainable Utilization of Pulp and Paper Wastewater. Water 2023, 15, 4135. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Chandra, R. Environmental Pollutants of Paper Industry Wastewater and Their Toxic Effects on Human Health and Ecosystem. Bioresour. Technol. Rep. 2022, 20, 101250. [Google Scholar] [CrossRef]
- Šabić Runjavec, M.; Vuković Domanovac, M.; Meštrović, E. Removal of Organic Pollutants from Real Pharmaceutical Industrial Wastewater with Environmentally Friendly Processes. Chem. Pap. 2022, 76, 1423–1431. [Google Scholar] [CrossRef]
- Samal, K.; Mahapatra, S.; Hibzur Ali, M. Pharmaceutical Wastewater as Emerging Contaminants (EC): Treatment Technologies, Impact on Environment and Human Health. Energy Nexus 2022, 6, 100076. [Google Scholar] [CrossRef]
- Yabalak, E. Treatment of Agrochemical Wastewater by Thermally Activated Persulfate Oxidation Method: Evaluation of Energy and Reagent Consumption. J. Environ. Chem. Eng. 2021, 9, 105201. [Google Scholar] [CrossRef]
- Baumert, B.O.; Goodrich, J.A.; Hu, X.; Walker, D.I.; Alderete, T.L.; Chen, Z.; Valvi, D.; Rock, S.; Berhane, K.; Gilliland, F.D.; et al. Plasma Concentrations of Lipophilic Persistent Organic Pollutants and Glucose Homeostasis in Youth Populations. Environ. Res. 2022, 212, 113296. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.; Li, D.; Breivik, K.; Abbasi, G.; Li, Y.-F. What Do We Know about the Production and Release of Persistent Organic Pollutants in the Global Environment? Environ. Sci. Adv. 2023, 2, 55–68. [Google Scholar] [CrossRef]
- Ashraf, M.A. Persistent Organic Pollutants (POPs): A Global Issue, a Global Challenge. Environ. Sci. Pollut. Res. 2017, 24, 4223–4227. [Google Scholar] [CrossRef]
- Kato, S.; Kansha, Y. Comprehensive Review of Industrial Wastewater Treatment Techniques. Environ. Sci. Pollut. Res. 2024, 31, 51064–51097. [Google Scholar] [CrossRef]
- Lucas, M.S.; Teixeira, A.R.; Jorge, N.; Peres, J.A. Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review. Water 2025, 17, 1934. [Google Scholar] [CrossRef]
- Chandran, P.; Suresh, S.; Balasubramain, B.; Gangwar, J.; Raj, A.S.; Aarathy, U.L.; Meyyazhagan, A.; Pappuswamy, M.; Sebastian, J.K. Biological Treatment Solutions Using Bioreactors for Environmental Contaminants from Industrial Waste Water. J. Umm Al-Qura Univ. Appl. Sci. 2023, 11, 185–207. [Google Scholar] [CrossRef]
- Cesaro, A.; Naddeo, V.; Belgiorno, V. Wastewater Treatment by Combination of Advanced Oxidation Processes and Conventional Biological Systems. J. Bioremediat. Biodegrad. 2013, 4, 208. [Google Scholar] [CrossRef]
- Choubert, J.M.; Martin Ruel, S.; Esperanza, M.; Budzinski, H.; Miège, C.; Lagarrigue, C.; Coquery, M. Limiting the Emissions of Micro-Pollutants: What Efficiency Can We Expect from Wastewater Treatment Plants? Water Sci. Technol. 2011, 63, 57–65. [Google Scholar] [CrossRef]
- Margot, J.; Kienle, C.; Magnet, A.; Weil, M.; Rossi, L.; de Alencastro, L.F.; Abegglen, C.; Thonney, D.; Chèvre, N.; Schärer, M.; et al. Treatment of Micropollutants in Municipal Wastewater: Ozone or Powdered Activated Carbon? Sci. Total Environ. 2013, 461–462, 480–498. [Google Scholar] [CrossRef] [PubMed]
- Martin Ruel, S.; Esperanza, M.; Choubert, J.-M.; Valor, I.; Budzinski, H.; Coquery, M. On-Site Evaluation of the Efficiency of Conventional and Advanced Secondary Processes for the Removal of 60 Organic Micropollutants. Water Sci. Technol. 2010, 62, 2970–2978. [Google Scholar] [CrossRef]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a Full-Scale Wastewater Treatment Plant Upgraded with Ozonation and Biological Post-Treatments: Abatement of Micropollutants, Formation of Transformation Products and Oxidation by-Products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef]
- Hollender, J.; Zimmermann, S.G.; Koepke, S.; Krauss, M.; McArdell, C.S.; Ort, C.; Singer, H.; von Gunten, U.; Siegrist, H. Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration. Environ. Sci. Technol. 2009, 43, 7862–7869. [Google Scholar] [CrossRef]
- Boehler, M.; Zwickenpflug, B.; Hollender, J.; Ternes, T.; Joss, A.; Siegrist, H. Removal of Micropollutants in Municipal Wastewater Treatment Plants by Powder-Activated Carbon. Water Sci. Technol. 2012, 66, 2115–2121. [Google Scholar] [CrossRef]
- Siegrist, H.; Joss, A. Review on the Fate of Organic Micropollutants in Wastewater Treatment and Water Reuse with Membranes. Water Sci. Technol. 2012, 66, 1369–1376. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Baresel, C.; Salem, M.; Roberts, R.; Malovanyy, A.; Lemström, H.; Esfahani, B. Approaching Breakthrough: Resource-Efficient Micropollutant Removal with MBR-GAC Configuration. Appl. Sci. 2024, 14, 7759. [Google Scholar] [CrossRef]
- Baresel, C.; Harding, M.; Fång, J. Ultrafiltration/Granulated Active Carbon-Biofilter: Efficient Removal of a Broad Range of Micropollutants. Appl. Sci. 2019, 9, 710. [Google Scholar] [CrossRef]
- Naseem, K. Polymer-Based Composites for Wastewater Treatment. In Sodium Alginate-Based Nanomaterials for Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 137–159. ISBN 9780128235515. [Google Scholar]
- Sodha, V.; Patel, J.; Jha, S.; Parmar, M.; Gaur, R.; Shahabuddin, S. Polymer-Based Hybrid Composites for Wastewater Treatment. In Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials; Springer: Cham, Switzerland, 2023; pp. 349–389. ISBN 978-3-031-39481-2. [Google Scholar]
- Bhatt, P.; Joshi, S.; Urper Bayram, G.M.; Khati, P.; Simsek, H. Developments and Application of Chitosan-Based Adsorbents for Wastewater Treatments. Environ. Res. 2023, 226, 115530. [Google Scholar] [CrossRef]
- Khan, F.; Zahid, M.; Hanif, M.A.; Tabasum, A.; Mushtaq, F.; Noreen, S.; Mansha, A. Photocatalytic Polymeric Composites for Wastewater Treatment. In Aquananotechnology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 467–490. ISBN 9780128211410. [Google Scholar]
- Cheng, L.; Zhou, Z.; Li, L.; Xiao, P.; Ma, Y.; Liu, F.; Li, J. PVDF/MOFs Mixed Matrix Ultrafiltration Membrane for Efficient Water Treatment. Front. Chem. 2022, 10, 985750, Corrected in Front. Chem. 2022, 10, 1067578. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Cevik, E.; Mustafa, A.; Qahtan, T.F.; Zeeshan, M.; Bozkurt, A. Emerging Developments in Polymeric Nanocomposite Membrane-Based Filtration for Water Purification: A Concise Overview of Toxic Metal Removal. Chem. Eng. J. 2024, 481, 148760. [Google Scholar] [CrossRef]
- Wang, J.; Sgarzi, M.; Němečková, Z.; Henych, J.; Licciardello, N.; Cuniberti, G. Reusable and Antibacterial Polymer-Based Nanocomposites for the Adsorption of Dyes and the Visible-Light-Driven Photocatalytic Degradation of Antibiotics. Glob. Chall. 2022, 6, 2200076. [Google Scholar] [CrossRef]
- Naumova, L.; Minakova, T.; Gorlenko, N.; Kurzina, I.; Vasenina, I. Oxidative Destruction of Organic Pollutants on the Polypropylene Fiber Modified by Nanodispersed Iron. Environments 2018, 5, 82. [Google Scholar] [CrossRef]
- Liang, L.; Ji, L.; Ma, Z.; Ren, Y.; Zhou, S.; Long, X.; Cao, C. Application of Photo-Fenton-Membrane Technology in Wastewater Treatment: A Review. Membranes 2023, 13, 369. [Google Scholar] [CrossRef] [PubMed]
- Uebele, S.; Goetz, T.; Ulbricht, M.; Schiestel, T. Mixed-Matrix Membrane Adsorbers for the Simultaneous Removal of Different Pharmaceutical Micropollutants from Water. ACS Appl. Polym. Mater. 2022, 4, 1705–1716. [Google Scholar] [CrossRef]
- Marx, J.; Back, J.; Hoiss, L.; Hofer, M.; Pham, T.; Spruck, M. Chemical Regeneration of Mixed-Matrix Membranes for Micropollutant Removal from Wastewater. Chem. Ing. Tech. 2023, 95, 1416–1427. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Liang, Z.; Zhang, Z.; Xie, J.; Gui, X.; Hou, B.; Mo, D.; Lu, L.; Yao, H. Hydrophobic Modified PET Ion Track-Etched Membrane for Oil/Water Separation. J. Water Process Eng. 2023, 54, 103997. [Google Scholar] [CrossRef]
- Zhao, J.; Han, P.; Quan, Q.; Shan, Y.; Zhang, T.; Wang, J.; Xiao, C. A Convenient Oil-Water Separator from Polybutylmethacrylate/Graphene-Deposited Polyethylene Terephthalate Nonwoven Fabricated by a Facile Coating Method. Prog. Org. Coat. 2018, 115, 181–187. [Google Scholar] [CrossRef]
- Wang, W.; Lin, J.; Cheng, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.-S. Dual Super-Amphiphilic Modified Cellulose Acetate Nanofiber Membranes with Highly Efficient Oil/Water Separation and Excellent Antifouling Properties. J. Hazard. Mater. 2020, 385, 121582. [Google Scholar] [CrossRef]
- Guo, Z.; Li, F.; Wu, X.; Liang, Z.; Junaid, M.; Xie, J.; Lu, L.; Duan, J.; Liu, J.; Yao, H. Efficient Ion Sieving and Ion Transport Properties in Sub-Nanoporous Polyetherimide Membranes. Desalination 2024, 573, 117192. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Hou, D.; Bai, Y.; Liu, H. Fabrication and Performance of PET Mesh Enhanced Cellulose Acetate Membranes for Forward Osmosis. J. Environ. Sci. 2016, 45, 7–17. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, B.; Fu, Z.; Li, J.; Yu, M.; Li, L.; Li, J. Poly (Vinyl Alcohol) Modification of Poly(Vinylidene Fluoride) Microfiltration Membranes for Oil/Water Emulsion Separation via an Unconventional Radiation Method. J. Memb. Sci. 2021, 619, 118792. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Wang, B.; Feng, Y.; Han, W.; Liu, C.; Shen, C. Superhydrophobic Cellulose Acetate/Multiwalled Carbon Nanotube Monolith with Fiber Cluster Network for Selective Oil/Water Separation. Carbohydr. Polym. 2021, 259, 117750. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, X.; Wu, Q.; Zhen, H.; Wang, S.; Dong, H.; Wang, J.; Li, Y. Enhance Organic Pollutants Removal of Wastewater by a PVDF/PDA-TiO2 Composite Membrane with Photocatalytic Property. J. Environ. Chem. Eng. 2023, 11, 110389. [Google Scholar] [CrossRef]
- Yang, X.; Ma, J.; Ling, J.; Li, N.; Wang, D.; Yue, F.; Xu, S. Cellulose Acetate-Based SiO2/TiO2 Hybrid Microsphere Composite Aerogel Films for Water-in-Oil Emulsion Separation. Appl. Surf. Sci. 2018, 435, 609–616. [Google Scholar] [CrossRef]
- Liu, N.; Lin, X.; Zhang, W.; Cao, Y.; Chen, Y.; Feng, L.; Wei, Y. A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation. Sci. Rep. 2015, 5, 9688. [Google Scholar] [CrossRef]
- Tran, D.-T.; Mendret, J.; Méricq, J.-P.; Faur, C.; Brosillon, S. Performance of PVDF-TiO2 Membranes during Photo-Filtration in the Presence of Inorganic and Organic Components. Membranes 2022, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, M.; Sondhi, S.; Kaur, K.; Sharma, D.; Sharma, S.; Utreja, D. Removal of Inorganic Pollutants from Wastewater: Innovative Technologies and Toxicity Assessment. Sustainability 2023, 15, 16376. [Google Scholar] [CrossRef]
- Popiolski, A.S.; Demaman Oro, C.E.; Steffens, J.; Bizzi, C.A.; Santos, D.; Alessio, K.O.; Flores, É.M.M.; Duarte, F.A.; Dallago, R.M. Microwave-Assisted Extraction of Cr from Residual Tanned Leather: A Promising Alternative for Waste Treatment from Tannery Industry. J. Environ. Chem. Eng. 2022, 10, 6–11. [Google Scholar] [CrossRef]
- Popiolski, A.S.; Dallago, R.M.; Steffens, J.; Mignoni, M.L.; Venquiaruto, L.D.; Santos, D.; Duarte, F.A. Ultrasound-Assisted Extraction of Cr from Residual Tannery Leather: Feasibility of Ethylenediaminetetraacetic Acid as the Extraction Solution. ACS Omega 2018, 3, 16074–16080. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of Co-Contaminated Soil with Heavy Metals and Pesticides: Influence Factors, Mechanisms and Evaluation Methods. Chem. Eng. J. 2020, 398, 125657. [Google Scholar] [CrossRef]
- Oyewo, O.A.; Elemike, E.E.; Onwudiwe, D.C.; Onyango, M.S. Metal Oxide-Cellulose Nanocomposites for the Removal of Toxic Metals and Dyes from Wastewater. Int. J. Biol. Macromol. 2020, 164, 2477–2496. [Google Scholar] [CrossRef] [PubMed]
- El Saidy, N.R.; El-Habashi, N.; Saied, M.M.; Abdel-Razek, M.A.S.; Mohamed, R.A.; Abozeid, A.M.; El-Midany, S.A.; Abouelenien, F.A. Wastewater Remediation of Heavy Metals and Pesticides Using Rice Straw and/or Zeolite as Bioadsorbents and Assessment of Treated Wastewater Reuse in the Culture of Nile Tilapia (Oreochromis Niloticus). Environ. Monit. Assess. 2020, 192, 779. [Google Scholar] [CrossRef]
- Buaisha, M.; Balku, S.; Yaman, Š.Ö. Heavy Metal Removal Investigation in Conventional Activated Sludge Systems. Civ. Eng. J. 2020, 6, 470–477. [Google Scholar] [CrossRef]
- Ma, Y.; Egodawatta, P.; Mcgree, J.; Liu, A.; Goonetilleke, A. Science of the Total Environment Human Health Risk Assessment of Heavy Metals in Urban Stormwater. Sci. Total Environ. 2016, 557–558, 764–772. [Google Scholar] [CrossRef]
- Hou, R.; Zhang, J.; Fu, Q.; Li, T.; Gao, S.; Wang, R.; Zhao, S.; Zhu, B. The Boom Era of Emerging Contaminants: A Review of Remediating Agricultural Soils by Biochar. Sci. Total Environ. 2024, 931, 172899. [Google Scholar] [CrossRef]
- Eom, H.; Kang, W.; Kim, S.; Chon, K.; Lee, Y.G.; Oh, S.E. Improved Toxicity Analysis of Heavy Metal-Contaminated Water via a Novel Fermentative Bacteria-Based Test Kit. Chemosphere 2020, 258, 127412. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Sorouraddin, S.M.; Farajzadeh, M.A.; Okhravi, T. Development of Dispersive Liquid-Liquid Microextraction Based on Deep Eutectic Solvent Using as Complexing Agent and Extraction Solvent: Application for Extraction of Heavy Metals. Sep. Sci. Technol. 2020, 55, 2955–2966. [Google Scholar] [CrossRef]
- Akindele, E.O.; Omisakin, O.D.; Oni, O.A.; Aliu, O.O.; Omoniyi, G.E.; Akinpelu, O.T. Heavy Metal Toxicity in the Water Column and Benthic Sediments of a Degraded Tropical Stream. Ecotoxicol. Environ. Saf. 2020, 190, 110153. [Google Scholar] [CrossRef] [PubMed]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Ghernaout, D.; Al-ghonamy, A.I.; Boucherit, A.; Ghernaout, B.; Naceur, M.W.; Messaoudene, N.A.; Aichouni, M.; Mahjoubi, A.A.; Elboughdiri, N.A. Brownian Motion and Coagulation Process. Am. J. Environ. Prot. 2015, 4, 1–15. [Google Scholar] [CrossRef]
- Yan, L.; Yin, H.; Zhang, S.; Leng, F.; Nan, W.; Li, H. Biosorption of Inorganic and Organic Arsenic from Aqueous Solution by Acidithiobacillus Ferrooxidans BY-3. J. Hazard. Mater. 2010, 178, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.R.; Lazaridis, N.K.; Matis, K.A. Study of Flotation Conditions for Cadmium(II) Removal from Aqueous Solutions. Process Saf. Environ. Prot. 2015, 94, 203–211. [Google Scholar] [CrossRef]
- Bortoluzzi, A.C.; Demaman Oro, C.E.; dos Santos, M.S.N.; Mignoni, M.L.; Dallago, R.M.; Steffens, J.; Tres, M.V. Combination of Chemical Coagulation and Membrane-Based Separation for Dairy Wastewater Treatment. J. Food Sci. Technol. 2023, 60, 84–91. [Google Scholar] [CrossRef]
- Mulinari, J.; Rigo, D.; Demaman Oro, C.E.; de Meneses, A.C.; Zin, G.; Eleutério, R.V.; Tres, M.V.; Dallago, R.M. Multienzyme Immobilization on PVDF Membrane via One-Step Mussel-Inspired Method: Enhancing Fouling Resistance and Self-Cleaning Efficiency. Membranes 2024, 14, 208. [Google Scholar] [CrossRef]
- Oro, C.E.D.; Dos Santos, M.S.N.; Dallago, R.M.; Tres, M.V. Membrane Applications in the Dairy Industry. Biointerface Res. Appl. Chem. 2021, 12, 5012–5020. [Google Scholar] [CrossRef]
- Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.H.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste Biomass Adsorbents for Copper Removal from Industrial Wastewater—A Review. J. Hazard. Mater. 2013, 263, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.C.; Lee, I.H.; Chern, J.M. Heavy Metal Extraction from PCB Wastewater Treatment Sludge by Sulfuric Acid. J. Hazard. Mater. 2010, 177, 881–886. [Google Scholar] [CrossRef]
- Mores, R.; Cunha Junior, A.; Antes, F.G.; Di Luccio, M.; Oro, C.E.D.; Tres, M.V.; Steffens, C.; Steffens, J.; Kunz, A.; Dallago, R.M. Electrochemical Precipitation of Struvite from Wastewater: A Sustainable Approach for Nitrogen Recovery. Separations 2025, 12, 108. [Google Scholar] [CrossRef]
- Caovilla, M.; Oro, C.E.D.; Mores, R.; Venquiaruto, L.D.; Mignoni, M.L.; Di Luccio, M.; Treichel, H.; Dallago, R.M.; Tres, M.V. Exploring Chicken Feathers as a Cost-Effective Adsorbent for Aqueous Dye Removal. Separations 2025, 12, 39. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Sequestering Heavy Metals from Wastewater Using Cow Dung. Water Resour. Ind. 2016, 13, 7–13. [Google Scholar] [CrossRef]
- Maal-bared, R. Operational Impacts of Heavy Metals on Activated Sludge Systems: The Need for Improved Monitoring. Environ. Monit. Assess 2020, 192, 560. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Shukla, P. Microalgal Multiomics-Based Approaches in Bioremediation of Hazardous Contaminants. Environ. Res. 2024, 247, 118135. [Google Scholar] [CrossRef]
- Meyer, L.; Guyot, S.; Chalot, M.; Capelli, N. The Potential of Microorganisms as Biomonitoring and Bioremediation Tools for Mercury-Contaminated Soils. Ecotoxicol. Environ. Saf. 2023, 262, 115185. [Google Scholar] [CrossRef]
- Sahu, D.; Pervez, S.; Karbhal, I.; Tamrakar, A.; Mishra, A.; Verma, S.R.; Deb, M.K.; Ghosh, K.K.; Pervez, Y.F.; Shrivas, K.; et al. Applications of Different Adsorbent Materials for the Removal of Organic and Inorganic Contaminants from Water and Wastewater—A Review. Desalin. Water Treat. 2024, 317, 100253. [Google Scholar] [CrossRef]
- Sundararaman, S.; Annam Renita, A.; Prabu, D.; Aravind Kumar, J.; Anish, M.; Jayaprabakar, J.; Thandaiah Prabu, R.; Sathish, T.; Baigenzhenov, O. Elucidation of Synthesis Routes and Adsorptive Mechanisms in Removal of Water Contaminants by MOF-Derived Carbon Materials. Mater. Sci. Eng. B 2025, 315, 118093. [Google Scholar] [CrossRef]
- Liu, K.-G.; Bigdeli, F.; Sharifzadeh, Z.; Gholizadeh, S.; Morsali, A. Role of Metal-Organic Framework Composites in Removal of Inorganic Toxic Contaminants. J. Clean. Prod. 2023, 404, 136709. [Google Scholar] [CrossRef]
- Deb, A.K.; Hassan, M.; Biswas, B.; Naidu, R.; Xi, Y.; Rahman, M.M. Functionalization of Halloysite Nanotubes as Remediation Agents for Organic and Inorganic Contaminants: Insights into Synthesis Routes, Removal Techniques, and Eco-Friendly Perspectives. Sci. Total Environ. 2025, 989, 179771. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, S.; Zhu, X.; Chen, B.; Rao, Z.; Wu, N.; Idris, A.M. Machine Learning-Aided Biochar Design for the Adsorptive Removal of Emerging Inorganic Pollutants in Water. Sep. Purif. Technol. 2025, 362, 131421. [Google Scholar] [CrossRef]
- Bashir, M.; Batool, M.; Arif, N.; Tayyab, M.; Zeng, Y.-J.; Nadeem Zafar, M. Strontium-Based Nanomaterials for the Removal of Organic/Inorganic Contaminants from Water: A Review. Coord. Chem. Rev. 2023, 492, 215286. [Google Scholar] [CrossRef]
- Pandey, K.; Poddar, D.; Yoo, H.-M. Zerovalent Iron Encapsulated Shellac Polymer Composite Particles for Alkaline Wastewater Treatment and Oil–Water Separation. J. Ind. Eng. Chem. 2025, 148, 380–390. [Google Scholar] [CrossRef]
- Elkahlout, Z.I.; AlMomani, F.; Furlan, R. Treatment of Produced Water Using Modifying Magnetic Nanoparticles/Polymer Composite: Enhanced Treatment Efficiency. J. Water Process Eng. 2024, 68, 106489. [Google Scholar] [CrossRef]
- Yousefi, T.; Torab-Mostaedi, M.; Moosavian, M.A.; Mobtaker, H.G. Potential Application of a Nanocomposite:HCNFe@polymer for Effective Removal of Cs (I) from Nuclear Waste. Prog. Nucl. Energy 2015, 85, 631–639. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Rijith, S.; Tharun, A.R. Adsorptive Removal of Thorium(IV) from Aqueous Solutions Using Poly(Methacrylic Acid)-Grafted Chitosan/Bentonite Composite Matrix: Process Design and Equilibrium Studies. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 368, 13–22. [Google Scholar] [CrossRef]
- Han, Q.; Du, M.; Guan, Y.; Luo, G.; Zhang, Z.; Li, T.; Ji, Y. Removal of Simulated Radioactive Cerium (III) Based on Innovative Magnetic Trioctylamine-Polystyrene Composite Microspheres. Chem. Phys. Lett. 2020, 741, 137092. [Google Scholar] [CrossRef]
- Nguegang, B.; Ambushe, A.A. Insight into the Chemical and Biochemical Mechanisms Governing Inorganic Contaminants Removal by Selective Precipitation and Neutralization in Acid Mine Drainage Treatment Using MgO: A Comparative Study. J. Water Process Eng. 2024, 59, 104924. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Niazi, Z.; Heidari, K.; Afarinandeh, A.; Samadi Kazemi, M.; Haghighat, G.A.; Vasseghian, Y.; Rezania, S.; Barghi, A. Nickel and Iron-Based Metal-Organic Frameworks for Removal of Organic and Inorganic Model Contaminants. Environ. Res. 2022, 212, 113164. [Google Scholar] [CrossRef]
- Kundu, S.; Naskar, M.K. Carbon-Layered Double Hydroxide Nanocomposite for Efficient Removal of Inorganic and Organic Based Water Contaminants—Unravelling the Adsorption Mechanism. Mater. Adv. 2021, 2, 3600–3612. [Google Scholar] [CrossRef]
- Esquivel, S.E.; Aranda, F.L.; Vellojin, J.P.; Pérez-Zurita, D.; Montoya-Rodriguez, D.; Villegas-Escobar, N.; Meléndrez, M.; Sánchez, J.; Palacio, D.A. Combining Experimental and Molecular Computational Approaches for Enhanced Removal of Organic and Inorganic Pollutants via Diafiltration Using Chitosan with Permanent Cationic Charges. Int. J. Biol. Macromol. 2025, 320, 145738. [Google Scholar] [CrossRef]
- Salih, S.S.; Shihab, M.A.; Kadhom, M.; Albayati, N.; Ghosh, T.K. Simultaneous Removal of Organic and Inorganic Pollutants onto Chitosan-Coated Pumice Adsorbent. Water Sci. Eng. 2025, in press. [Google Scholar] [CrossRef]
- Grabowski, J.; Tokarz, A.; Nowak, D. Application of Multilayer Bed for Removal of Organic and Inorganic Compounds from Aqueous Solutions. J. Water Process Eng. 2022, 50, 103243. [Google Scholar] [CrossRef]
- Shah, A.; Arjunan, A.; Baroutaji, A.; Zakharova, J. A Review of Physicochemical and Biological Contaminants in Drinking Water and Their Impacts on Human Health. Water Sci. Eng. 2023, 16, 333–344. [Google Scholar] [CrossRef]
- Leonard, L.T.; Vanzin, G.F.; Garayburu-Caruso, V.A.; Lau, S.S.; Beutler, C.A.; Newman, A.W.; Mitch, W.A.; Stegen, J.C.; Williams, K.H.; Sharp, J.O. Disinfection Byproducts Formed during Drinking Water Treatment Reveal an Export Control Point for Dissolved Organic Matter in a Subalpine Headwater Stream. Water Res. X 2022, 15, 100144. [Google Scholar] [CrossRef]
- Zheng, X.; Ni, C.; Xiao, W.; Liang, Y.; Li, Y. Ionic Liquid Grafted Polyethersulfone Nanofibrous Membrane as Recyclable Adsorbent with Simultaneous Dye, Heavy Metal Removal and Antibacterial Property. Chem. Eng. J. 2022, 428, 132111. [Google Scholar] [CrossRef]
- Ma, H.; Hsiao, B.S.; Chu, B. Functionalized Electrospun Nanofibrous Microfiltration Membranes for Removal of Bacteria and Viruses. J. Memb. Sci. 2014, 452, 446–452. [Google Scholar] [CrossRef]
- Bashir, N.; Afzaal, M.; Khan, A.L.; Nawaz, R.; Irfan, A.; Almaary, K.S.; Dabiellil, F.; Bourhia, M.; Ahmed, Z. Green-Synthesized Silver Nanoparticle-Enhanced Nanofiltration Mixed Matrix Membranes for High-Performance Water Purification. Sci. Rep. 2025, 15, 1001. [Google Scholar] [CrossRef]
- García-Ávila, F.; Zambrano-Jaramillo, A.; Velecela-Garay, C.; Coronel-Sánchez, K.; Valdiviezo-Gonzales, L. Effectiveness of Membrane Technologies in Removing Emerging Contaminants from Wastewater: Reverse Osmosis and Nanofiltration. Water Cycle 2025, 6, 357–373. [Google Scholar] [CrossRef]
- Maharubin, S.; Zhou, Y.; Tan, G.Z. Integration of Silver Nanoparticles and Microcurrent for Water Filtration. Sep. Purif. Technol. 2019, 212, 57–64. [Google Scholar] [CrossRef]
- Zhu, J.; Hou, J.; Zhang, Y.; Tian, M.; He, T.; Liu, J.; Chen, V. Polymeric Antimicrobial Membranes Enabled by Nanomaterials for Water Treatment. J. Memb. Sci. 2018, 550, 173–197. [Google Scholar] [CrossRef]
- Dilxat, D.; Xie, D.; Wang, J.; Habibul, N.; Zhang, H.-C.; Sheng, G.-P.; Wang, Y. Molecular Design of Ultrafiltration Membranes with Antibacterial Properties for the Inactivation of Antibiotic-Resistant Bacteria. J. Memb. Sci. 2024, 690, 122131. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Li, B.; Hsiao, B.S.; Chu, B. Electrospun Nanofibrous Membranes for High Flux Microfiltration. J. Memb. Sci. 2012, 392–393, 167–174. [Google Scholar] [CrossRef]
- John, J.F.; Jagannathan, M.; Rajendran, A.R.; Mohanapriya, P.; Natarajan, T.S.; Dhinasekaran, D. Sustainable Multilayer Biomass Carbon and Polymer Hybrid Column as Potential Antibacterial Water Filter. Chemosphere 2022, 286, 131691. [Google Scholar] [CrossRef]
- Ghodake, G.; Shinde, S.; Saratale, G.D.; Kadam, A.; Saratale, R.G.; Kim, D.-Y. Water Purification Filter Prepared by Layer-by-Layer Assembly of Paper Filter and Polypropylene-Polyethylene Woven Fabrics Decorated with Silver Nanoparticles. Fibers Polym. 2020, 21, 751–761. [Google Scholar] [CrossRef]
- Undabeytia, T.; Posada, R.; Nir, S.; Galindo, I.; Laiz, L.; Saiz-Jimenez, C.; Morillo, E. Removal of Waterborne Microorganisms by Filtration Using Clay–Polymer Complexes. J. Hazard. Mater. 2014, 279, 190–196. [Google Scholar] [CrossRef]
- Goswami, S.; Dutta, D.; Pandey, S.; Chattopadhyay, P.; Lalhmunsiama; Dubey, R.; Tiwari, D. Novel Fibrous Ag(NP) Decorated Clay-Polymer Composite: Implications in Water Purification Contaminated with Predominant Micro-Pollutants and Bacteria. J. Environ. Manag. 2024, 359, 121063. [Google Scholar] [CrossRef] [PubMed]
- Damodar, R.A.; You, S.-J.; Chou, H.-H. Study the Self Cleaning, Antibacterial and Photocatalytic Properties of TiO2 Entrapped PVDF Membranes. J. Hazard. Mater. 2009, 172, 1321–1328. [Google Scholar] [CrossRef]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J.J. Polysulfone Ultrafiltration Membranes Impregnated with Silver Nanoparticles Show Improved Biofouling Resistance and Virus Removal. Water Res. 2009, 43, 715–723. [Google Scholar] [CrossRef]
- Raval, H.D.; Gohel, S.; Magiya, U. Chitosan-Zinc Oxide Supramolecular Assembly over Polysulfone Ultrafiltration Membrane for Antifungal Membrane Surface Formation. Inorg. Chem. Commun. 2025, 177, 114351. [Google Scholar] [CrossRef]
- Ji, Z.; Liang, M.; Wang, C.; Ma, M.; Tian, J.; Su, Y.; Chang, H.; Li, M. High-Efficiency Broad-Spectrum Antibacterial Activity of Chitosan/Zinc Ion/Polyoxometalate Composite Films for Water Treatment. Langmuir 2024, 40, 26997–27009. [Google Scholar] [CrossRef] [PubMed]
- Benali, F.; Boukoussa, B.; Issam, I.; Mokhtar, A.; Iqbal, J.; Hachemaoui, M.; Habeche, F.; Cherifi, Z.; Hacini, S.; Patole, S.P.; et al. Assessment of AgNPs@Cu@Alginate Composite for Efficient Water Treatment: Effect of the Content of Cu(II) Crosslinking Agent. J. Polym. Environ. 2023, 31, 4170–4183. [Google Scholar] [CrossRef]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer Composite Materials: A Comprehensive Review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Bukvić, M.; Milojević, S.; Gajević, S.; Đorđević, M.; Stojanović, B. Production Technologies and Application of Polymer Composites in Engineering: A Review. Polymers 2025, 17, 2187. [Google Scholar] [CrossRef]
- Komisarz, K.; Majka, T.M.; Pielichowski, K. Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials. Materials 2022, 16, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Abeykoon, C.; Karim, N. Investigation into the Effects of Fillers in Polymer Processing. Int. J. Light. Mater. Manuf. 2021, 4, 370–382. [Google Scholar] [CrossRef]
- Moutik, B.; Summerscales, J.; Graham-Jones, J.; Pemberton, R. Quality Assessment of Life Cycle Inventory Data for Fibre-Reinforced Polymer Composite Materials. Sustain. Prod. Consum. 2024, 49, 474–491. [Google Scholar] [CrossRef]
- Gulbalkan, H.C.; Haslak, Z.P.; Altintas, C.; Uzun, A.; Keskin, S. Assessing CH4/N2 Separation Potential of MOFs, COFs, IL/MOF, MOF/Polymer, and COF/Polymer Composites. Chem. Eng. J. 2022, 428, 131239. [Google Scholar] [CrossRef]
- Kotobuki, M.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021, 26, 3331. [Google Scholar] [CrossRef]
- Joseph, B.; Krishnan, S.; Kavil, S.V.; Pai, A.R.; James, J.; Kalarikkal, N.; Thomas, S. Green Chemistry Approach for Fabrication of Polymer Composites. Sustain. Chem. 2021, 2, 254–270. [Google Scholar] [CrossRef]
- Sajan, S.; Philip Selvaraj, D. A Review on Polymer Matrix Composite Materials and Their Applications. Mater. Today Proc. 2021, 47, 5493–5498. [Google Scholar] [CrossRef]
- Tao, Y.; Hadigheh, S.A.; Wei, Y. Recycling of Glass Fibre Reinforced Polymer (GFRP) Composite Wastes in Concrete: A Critical Review and Cost Benefit Analysis. Structures 2023, 53, 1540–1556. [Google Scholar] [CrossRef]
- Schubel, P.J. Cost Modelling in Polymer Composite Applications: Case Study—Analysis of Existing and Automated Manufacturing Processes for a Large Wind Turbine Blade. Compos. Part B Eng. 2012, 43, 953–960. [Google Scholar] [CrossRef]
- Farahbakhsh, J.; Vatanpour, V.; Khoshnam, M.; Zargar, M. Recent Advancements in the Application of New Monomers and Membrane Modification Techniques for the Fabrication of Thin Film Composite Membranes: A Review. React. Funct. Polym. 2021, 166, 105015. [Google Scholar] [CrossRef]
- Huang, X.; Panahi-Sarmad, M.; Dong, K.; Li, R.; Chen, T.; Xiao, X. Tracing Evolutions in Electro-Activated Shape Memory Polymer Composites with 4D Printing Strategies: A Systematic Review. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106444. [Google Scholar] [CrossRef]
- Hassan, M.; Mohanty, A.K.; Wang, T.; Dhakal, H.N.; Misra, M. Current Status and Future Outlook of 4D Printing of Polymers and Composites-A Prospective. Compos. Part C Open Access 2025, 17, 100602. [Google Scholar] [CrossRef]







| Wastewater Source | Organic Contaminants | Reference |
|---|---|---|
| Domestic wastewater (sewage) |
| [40] |
| Food and beverage industry |
| [38,41] |
| Textile and dyeing industry |
| [42,43,44] |
| Petrochemical industry |
| [45,46] |
| Pulp and paper industry |
| [47,48] |
| Pharmaceutical and chemical industry |
| [49,50] |
| Agrochemical industry |
| [51] |
| Material/System | Method | Performance | Reference |
|---|---|---|---|
| PET ion track-etched membrane (propyl-grafted) | Chemical grafting with propyltrichlorosilane | Water contact angle 140.8°, separation efficiency 99.87%, flux 12,158 L/m2·h | [80] |
| PET nonwoven coated with PBMA and graphene | Facile coating method (casting) | ≥95% separation efficiency, stable up to 8 cycles | [81] |
| Electrospun cellulose acetate nanofibers (deacetylated) | Electrospinning and deacetylation | Flux up to 38,000 L/m2·h, efficiency 99.97%, excellent antifouling | [82] |
| Polyetherimide membranes with sub-nano channels | Track-UV irradiation | K+/Mg2+ selectivity 8900, K+ flux 0.49 mol/h·m2, K+/Li+ selectivity 6 | [83] |
| Cellulose acetate with PET mesh reinforcement | Phase inversion + PET mesh embedding | FO flux 3.47 L/m2·h, PRO flux 4.74 L/m2·h, salt rejection > 95% | [84] |
| PVDF membranes modified with PVA under γ-ray | Radiation-induced grafting | Oil rejection 99.5%, flux 690 L/m2·h·bar, flux recovery 98% | [85] |
| Cellulose acetate with carboxylated MWCNTs | Phase separation (TINIPS) with CNTs | Superhydrophobic (155°), adsorption 7.39–19.84 g/g, stable pH 1–14, −20–160 °C | [86] |
| Material | Target Inorganic Contaminants | Reference |
|---|---|---|
| MgO (neutralization and selective precipitation) | Ni, Al, Fe, Zn, Cu, Mn, SO42−, and TDS | [130] |
| Fe-MOF and Ni-MOF | Fluoride (F−) | [131] |
| C-LDH/carbon nanocomposites | As(V), F−, and Fe(II)/Fe(III) | [132] |
| Quaternary ammonium-modified chitosan | As(V) and Cr(VI) | [133] |
| Chitosan/pumice composite | Pb(II) and Cd(II) | [134] |
| Permeable reactive barrier (activated carbon/zeolite/nano iron) | Pb, Zn, Cu, Ni, Cr, Co, and cyanides | [135] |
| Polyaniline-based nanocomposite incorporating cobalt hexacyanoferrate | Cs+ | [127] |
| Poly(methacrylic acid)-grafted chitosan/bentonite composite | Th4+ | [128] |
| Adsorbent based on trioctylamine-modified polystyrene microspheres incorporating Fe3O4 nanoparticles | Ce3+ | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, C.R.S.; Mulinari, J.; Rodrigues, É.F.; Oro, C.E.D.; Schlindwein, R.; Magnago, R.F.; da Silva, L.; da Silva, A.; da Silva Júnior, A.H. Polymer Composite Materials for Water Purification: Removal of Organic, Inorganic, and Biological Contaminants. Eng 2025, 6, 284. https://doi.org/10.3390/eng6110284
de Oliveira CRS, Mulinari J, Rodrigues ÉF, Oro CED, Schlindwein R, Magnago RF, da Silva L, da Silva A, da Silva Júnior AH. Polymer Composite Materials for Water Purification: Removal of Organic, Inorganic, and Biological Contaminants. Eng. 2025; 6(11):284. https://doi.org/10.3390/eng6110284
Chicago/Turabian Stylede Oliveira, Carlos Rafael Silva, Jéssica Mulinari, Éllen Francine Rodrigues, Carolina E. Demaman Oro, Rodrigo Schlindwein, Rachel Faverzani Magnago, Luciano da Silva, Adriano da Silva, and Afonso Henrique da Silva Júnior. 2025. "Polymer Composite Materials for Water Purification: Removal of Organic, Inorganic, and Biological Contaminants" Eng 6, no. 11: 284. https://doi.org/10.3390/eng6110284
APA Stylede Oliveira, C. R. S., Mulinari, J., Rodrigues, É. F., Oro, C. E. D., Schlindwein, R., Magnago, R. F., da Silva, L., da Silva, A., & da Silva Júnior, A. H. (2025). Polymer Composite Materials for Water Purification: Removal of Organic, Inorganic, and Biological Contaminants. Eng, 6(11), 284. https://doi.org/10.3390/eng6110284

