Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
Abstract
:1. Introduction
2. Basics of Photocatalytic Water Splitting
3. Newly Developed Photocatalytic Nanostructures and Composite Materials
3.1. Carbon-Based Materials
3.2. Composite Photocatalysts and Photocatalysts Multicomponent Heterojunctions
3.3. Metal–Organic Frameworks (MOFs)
3.4. Covalent Organic Frameworks (COFs)
3.5. Hybrid Materials
3.5.1. Two-Component Composites Based on Graphitic Carbon Nitride (g-C3N4) and Organic–Inorganic Hybrid Composites
Major Achievements in the Development of Organic–Inorganic Hybrid Photocatalytic Composites for Photocatalytic H2 Production
3.5.2. Two-Component and Three-Component Z-Type Heterojunctions
Major Achievements in the Development of the Z-Type Heterojunction Photocatalytic Composites for Photocatalytic H2 Production
3.5.3. MXene as a New Class of Two-Dimensional (2D) Metal Carbides, Nitrides, or Carbonitrides
Major Achievements in the Development of MXene-Based Composites for Photocatalytic H2 Production
4. Interfacial Charge Separation and Transfer in Composite Photocatalysts
5. Photocatalytic H2 Production with Composite Photocatalysts
5.1. Apparent Quantum Efficiency (AQE) for H2 Evolution
5.2. Role of Sacrificial Agent
6. Additional Challenges in the Development of Photocatalytic Nanostructures and Composite Materials for H2 Production
6.1. Effect of Annealing Temperature on Crystallinity
6.2. Photocatalyst Characterization
6.3. Durability and Recyclability of Selected Composite Materials
7. Conclusions and Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, H.; Yang, Y.; Kang, Y.; Niu, P.; Kang, X.; Yang, Z.; Ye, H.; Liu, G. Strong interface contact between NaYF4:Yb, Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites. J. Mater. Sci. Technol. 2022, 102, 1–7. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, Z.; Zhou, J.; Wang, Y.; Wang, W.; Li, T. Natural molybdenite mineral enhanced polymeric carbon nitride nano-composites for efficient noble-metal-free photocatalytic hydrogen evolution. Mater. Res. Bull. 2021, 136, 111158. [Google Scholar]
- Wadhai, S.; Jadhav, Y.; Thakur, P. Synthesis of metal-free phosphorus doped graphitic carbon nitride-P25 (TiO2) composite: Characterization, cyclic voltammetry and photocatalytic hydrogen evolution. Sol. Energy Mater. Sol. Cells 2021, 223, 110958. [Google Scholar] [CrossRef]
- Ren, G.; Ren, Q.; Ren, Z.; Chen, P.; Yue, M.; Sun, N.; Gao, J.; Wu, J.; Fu, Y.; Ma, J. Laser solid-phase synthesis of TiO2 anatase/rutile homojunctions for efficient photocatalytic hydrogen evolution. Opt. Express 2025, 33, 13692. [Google Scholar] [CrossRef]
- Suhaimi, N.H.S.; Azhar, R.; Adzis, N.S.; Ishak, M.A.M.; Ramli, M.Z.; Hamzah, M.Y.; Ismail, K.; Nawawi, W.I. Recent updates on TiO2-based materials for various photocatalytic applications in environmental remediation and energy production. Desalin. Water Treat. 2025, 321, 100976. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Fornasiero, P. Photocatalytic hydrogen production: A rift into the future energy supply. ChemCatChem 2017, 9, 1523–1544. [Google Scholar] [CrossRef]
- Ying, H.; Huang, Z.; Dong, G.; Ying, H.; Huang, Z.; Dong, G.; Zhang, Y. The charge transfer pathway of CoO QDs/g-C3N4 composites for highly efficient photocatalytic hydrogen evolution. J. Photoch. Photobiol. A Chem. 2021, 415, 113305. [Google Scholar] [CrossRef]
- Wang, J.-T.; Liu, G.-F.; Yu, K.; Liu, H.-H.; Zhang, Q.; Pan, J.; Wei, Q.; Wei, L. Photocatalytic hydrogen evolution on CdS–based composites derived from in situ carbonization of a sulfonic azo dye complex. Inorg. Chem. Commun. 2021, 125, 108370. [Google Scholar] [CrossRef]
- Hu, S.; Ma, L.; You, J.; Li, F.; Fan, Z.; Lu, G.; Liu, D.; Gui, J. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 2014, 311, 164–171. [Google Scholar] [CrossRef]
- Singh, J.A.; Overbury, S.H.; Dudney, N.J.; Li, M.; Veith, G.M. Gold nanoparticles supported on carbon nitride: Influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal. 2012, 2, 1138–1146. [Google Scholar] [CrossRef]
- Ge, L.; Han, C.; Liu, J. Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal. B Environ. 2011, 109, 100–107. [Google Scholar] [CrossRef]
- Yan, J.; Wu, H.; Chen, H.; Zhang, Y.; Zhang, F.; Liu, S.F. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl. Catal. B Environ. 2016, 191, 130–137. [Google Scholar] [CrossRef]
- Hernández-Alonso, M.D.; Portela, R.; Coronado, J.M. Turning sunlight into fuels: Photocatalysis for energy. In Design of Advanced Photocatalytic Materials for Energy and Environmental Applications; Green Energy and Technol; Coronado, J.M., Ed.; Springer: London, UK, 2013; Chapter 4; pp. 75–98. [Google Scholar]
- Heinzel, A.; Vogel, B.; Hübner, P. Reforming of natural gas—Hydrogen generation for small scale stationary fuel cell systems. J. Power Sources 2002, 105, 202–207. [Google Scholar] [CrossRef]
- Dash, S.K.; Chakraborty, S.; Elangovan, D. A brief review of hydrogen production methods and their challenges. Energies 2023, 16, 1141. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Ahmed, E.; Ahmad, M.; Manzoor, M.F.; Ahmed, E.; Ahmad, M.; Ahmad, I.; Rana, A.M.; Ali, A.; Ghouri, M.I.; et al. Enhanced photocatalytic activity of hydrogen evolution through Cu incorporated ZnO nano composites. Mater. Sci. Semicond. Process. 2020, 120, 105278. [Google Scholar] [CrossRef]
- Hernández-Alonso, M.D.; Fresno, F.; Suárez, S.; Coronado, J.M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci. 2009, 2, 1231–1257. [Google Scholar] [CrossRef]
- Ding, F.; Yang, D.; Tong, Z.; Nan, Y.; Wang, Y.; Zou, X.; Jiang, Z. Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ. Sci. Nano 2017, 4, 1455–1469. [Google Scholar] [CrossRef]
- Bhanderi, D.; Lakhani, P.; Modi, C.K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: A comprehensive review. RSC Sustain. 2024, 2, 265–287. [Google Scholar] [CrossRef]
- Qiao, S.; Di, M.; Jiang, J.-X.; Han, B.-H. Conjugated porous polymers for photocatalysis: The road from catalytic mechanism, molecular structure to advanced applications. EnergyChem 2022, 4, 100094. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Sohail, M.; Rauf, S.; Irfan, M.; Hayat, A.; Alghamdi, M.M.; El-Zahhar, A.A.; Ghernaout, D.; Al-Hadeethi, Y.; Lv, W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. Nanoscale Adv. 2024, 6, 1286–1330. [Google Scholar] [CrossRef] [PubMed]
- Balapure, A.; Dutta, J.R.; Ganesan, R. Recent advances in semiconductor heterojunctions: A detailed review of the fundamentals of photocatalysis, charge transfer and materials. RSC Appl. Interfaces 2024, 1, 43–69. [Google Scholar] [CrossRef]
- Li, K.; Gao, S.; Wang, Q.; Xu, H.; Wang, Z.; Huang, B.; Dai, Y.; Lu, J. In-Situ-Reduced Synthesis of Ti3+ Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation. ACS Appl. Mater. Interfaces 2015, 7, 9023–9030. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Y.; Xu, H.; Li, Y.P.; Cheng, X.; Xia, J.; Xu, Y.; Cai, G. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans. 2013, 42, 8606. [Google Scholar] [CrossRef]
- Pan, C.; Xu, J.; Wang, Y.; Li, D.; Zhu, Y. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518. [Google Scholar] [CrossRef]
- Che, L.; Pan, J.; Cai, K.; Cong, Y.; Lv, S.-W. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review. Sep. Purif. Technol. 2023, 315, 123708. [Google Scholar] [CrossRef]
- Fernández-Catalá, J.; Greco, R.; Navlani-García, M.; Cao, W.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. g-C3N4-based direct Z-scheme photocatalysts for environmental applications. Catalysts 2022, 12, 1137. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.; Meng, S.; Fu, X. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater. 2014, 280, 713–722. [Google Scholar] [CrossRef]
- Omidkar, A.; Hu, J.; Chen, Z. p-n heterojunction of nickel oxide on titanium dioxide nanosheets for hydrogen and value-added chemicals coproduction from glycerol photoreforming. J. Colloid Interface Sci. 2023, 647, 255–263. [Google Scholar]
- Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486–1503. [Google Scholar] [CrossRef]
- Marschall, R. 50 years of materials research for photocatalytic water splitting. Eur. J. Inorg. Chem. 2021, 14, 2435–2441. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Ma, D. Advances in 2D/2D Z-scheme heterojunctions for photocatalytic applications. Solar RRL 2021, 5, 2000397. [Google Scholar] [CrossRef]
- Li, X.; Garlisi, C.; Guan, Q.; Anwer, S.; Al-Ali, K.; Palmisano, G.; Zheng, L. A review of material aspects in developing direct Z-scheme photocatalysts. Mater. Today 2021, 47, 75–107. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Zhou, F.Q.; Fan, J.C.; Xu, Q.J.; Min, Y.L. BiVO4 nanowires decorated with CdS nanoparticles as a Z-scheme photocatalyst with enhanced H2 generation. Appl. Catal. B Environ. 2017, 201, 77–83. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, L.; Wang, L.; Huang, J.; She, H.; Wang, Q. Construction of heterostructured g-C3N4@TiATA/Pt composites for efficacious photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 24407–24417. [Google Scholar] [CrossRef]
- You, J.; Zhao, Y.; Wang, L.; Bao, W. Recent developments in the photocatalytic applications of covalent organic frameworks: A review. J. Clean. Prod. 2021, 291, 125822. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, L.; Wang, W.; Yi, Q.; Wu, H.; Li, J.; Guo, J. Constructing the covalent organic framework and In2O3 composites via covalent bonds towards excellent visible-light photocatalytic hydrogen evolution. Fuel 2024, 355, 129470. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, P.; Zhao, J.; Zhang, Y.; Hu, J.; Shao, G. Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system. Appl. Catal. B Environ. 2017, 210, 297–305. [Google Scholar] [CrossRef]
- Gu, H.; Liu, C.; Zhu, J.; Gu, J.; Wujcik, E.K.; Shao, L.; Wang, N.; Wei, H.; Scaffaro, R.; Zhang, J.; et al. Introducing advanced composites and hybrid materials. Adv. Compos. Hybrid Mater. 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Lu, H.; Jia, R.; Wang, C.; Guan, W.; Wang, P.; Zhang, L.; Gan, Z.; Dong, L.; Yu, L.; Sui, L. High efficiency photocatalytic hydrogen evolution by black phosphorus quantum dots decorated 1D g-C3N4 nanotubes. Int. J. Hydrogen Energy 2024, 95, 766–772. [Google Scholar] [CrossRef]
- Augustin, A.; Yesupatham, M.S.; Dhileepan, M.D.; Son, S.; Ravindran, E.; Neppolian, B.; Kim, H.; Sekar, K. Construction of organic–inorganic hybrid composites derived from C3N5 incorporated with CeO2 for enhanced photocatalytic hydrogen evolution. Energy Adv. 2024, 3, 2604–2612. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Zong, S.; Wang, X.; Chen, K.; Liu, L.; Fang, Y. Fabrication of graphitic carbon Nitride/Nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. J. Colloid Interface Sci. 2022, 606, 848–859. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Zhang, X.; Yang, Y.; Xu, Y.; Qian, G. Facile fabrication of mesoporous biochar/ZnFe2O4 composite with enhanced visible-light photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 19967–19977. [Google Scholar] [CrossRef]
- Xie, L.; Teng, J.; Li, T.; Li, F. Z-type heterojunction Pt/Zn0.2Cd0.8S/Cs3PW12O40 Mitigating photocorrosion, leveraging photochromism, and efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2025, 679 Pt B, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, M.; Li, J.; Guo, J.; Zhou, Q.; Zhao, X.; Wang, S.; Wang, L.; Wang, J.; Chen, Y.; et al. Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D ZnIn2S4 nanosheet composites. J. Colloid Interface Sci. 2021, 604, 500–507. [Google Scholar] [CrossRef]
- Chen, K.; Liu, J.; Huang, Z.; Zong, S.; Liu, L.; Tan, W. Construction of novel 2D-0D MnPS3–Cs4W11O35 composite for the improved photocatalytic hydrogen evolution activity. Int. J. Hydrogen Energy 2021, 46, 33823–33834. [Google Scholar] [CrossRef]
- Li, Q.; Xu, J.; Shang, Y. The photocatalytic hydrogen evolution activity enhanced by doping nonmetallic B and constructing interfacial p-n heterojunction to co-regulate photogenerated carrier migration. J. Alloys Compd. 2025, 1010, 177485. [Google Scholar] [CrossRef]
- Chang, S.; Gu, H.; Zhang, H.; Wang, X.; Li, Q.; Cui, Y.; Dai, W.-L. Facile construction of a robust CuS@NaNbO3 nanorod composite: A unique p-n heterojunction structure with superior performance in photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 644, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Yan, P.; Koide, R.; Shu, S.; Chu, Y.; Wang, Z.; Sano, T. A novel Co1.29Ni1.71O4/glycerolate-derived oxygen-vacancies-containing TiO2 composite for highly efficient photocatalytic hydrogen evolution. J. Environ. Chem. Eng. 2023, 11, 109142. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Zhang, X.; Jin, Z. Based on amorphous carbon C@ZnxCd1-xS/Co3O4 composite for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 8405–8417. [Google Scholar] [CrossRef]
- Wu, T.; Huang, J.; Cheng, G.; Pang, Y. Enhanced photocatalytic hydrogen evolution based on ternary noble-metal-free Co3O4/CdS/g-C3N4 composite. Mater. Lett. 2021, 292, 129274. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, X.; Li, Y.; Jin, Z. Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 499, 143862. [Google Scholar] [CrossRef]
- Xu, J.; Qi, Y.; Wang, W.; Wang, L. Montmorillonite-hybridized g-C3N4 composite modified by NiCoP cocatalyst for efficient visible-light-driven photocatalytic hydrogen evolution by dye-sensitization. Int. J. Hydrogen Energy 2019, 44, 4114–4122. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Dai, H.; Wang, Y.; Qin, C.; Chen, W.; Zhou, Y.; Yuan, S. Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D composites for efficient photocatalytic hydrogen evolution. J. Catal. 2019, 378, 331–340. [Google Scholar] [CrossRef]
- Huang, T.; Huang, Z.; Yang, X.; Yang, S.; Gao, Q.; Cai, X.; Liu, Y.; Fang, Y.; Zhang, S.; Zhang, S. Green and regulable synthesis of CdNCN on CdS semiconductor: Atomic-level heterostructures for enhanced photocatalytic hydrogen evolution. Adv. Powder Mater. 2024, 3, 100242. [Google Scholar] [CrossRef]
- Yang, X.; Barwani, S.A.; Alhabradi, M.; Alruwaili, M.; Saremi-Yarahmadi, S.; Clarkson, T.; Roy, A.; Shanks, K.; Chang, H.; Tahir, A.A. Synthesis, characterization, and photocatalytic hydrogen evolution performance of neodymium iron composites: Influence of annealing temperature. Inorg. Chem. Commun. 2023, 158 Pt 1, 111592. [Google Scholar] [CrossRef]
- Zheng, S.; Peng, S.; Wang, Z.; Huang, J.; Luo, X.; Han, L.; Li, X. Schottky-structured 0D/2D composites via electrostatic self-assembly for efficient photocatalytic hydrogen evolution. Ceram. Int. 2021, 47, 28304–28311. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Gu, H.; Cui, Y.; Gao, R.; Dai, W.-L. In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Phys. Chim. Sin. 2024, 40, 100031. [Google Scholar] [CrossRef]
- Huang, K.; Li, C.; Meng, X. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 580, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.; Liu, J.; Huang, Z.; Liu, L.; Liu, J.; Zheng, J.; Fang, Y. Mxene-TiO2 composite with exposed {101} facets for the improved photocatalytic hydrogen evolution activity. J. Alloys Compd. 2022, 896, 163039. [Google Scholar] [CrossRef]
- Meng, F.; Qin, Y.; Lu, J.; Lin, X.; Meng, M.; Sun, G.; Yan, Y. Biomimetic design and synthesis of visible-light-driven g-C3N4 nanotube @polydopamine/NiCo-layered double hydroxides composite photocatalysts for improved photocatalytic hydrogen evolution activity. J. Colloid Interface Sci. 2021, 584, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, G.; Bai, J.; He, R.; Li, C. Enhanced photocatalytic activities of CdS-BiOCl/PAN composites towards photocatalytic hydrogen evolution. Mater. Res. Bull. 2019, 117, 9–17. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. [Google Scholar] [CrossRef]
- Zhang, M.; Piao, C.; Wang, D.; Liu, Z.; Liu, J.; Zhang, Z.; Wang, J.; Song, Y. Fixed Z-scheme TiO2|Ti|WO3 composite film as recyclable and reusable photocatalyst for highly effective hydrogen production. Opt. Mater. 2020, 99, 109545. [Google Scholar] [CrossRef]
Photocatalytic Composites, Organic–Inorganic Hybride | Advantage | H2 Production | Ref. |
---|---|---|---|
NaYF4:Yb,Er/CdS-380 | λ > 400 nm, λ > 600 nm, 300 W Xe lamp Critical role of structural and interfacial engineering in enhancing photocatalytic performance Na2S/Na2SO3 as sacrificial agents NaYF4:Yb,Er enhances photocatalytic activity by converting (NIR) light into (VIS) light, which can then excite the CdS photocatalyst. The role of upconversion processes in promoting photocatalytic performance. | 2.539 mmol h−1 g−1 0.019 mmol h−1 g−1 | [1] |
Polymeric carbon nitride (PCN)/molybdenite nanocomposites (PCN/Mo-x) | Molybdenite replaced the Pt co-catalyst, improve the separation efficiency of photoinduced e− and h+, enhance light absorption, 0.75 M triethanolamine (TEOA) aqueous solution, with TEOA acting as a sacrificial agent, λ > 420 nm, 300 W Xe lamp. | bulk-PCN/Pt-0.067 mmol g−1 h−1 and PCN/Pt-0.08 mmol g−1 h−1 PCN/Mo-1, 2, and 3 0.016, 0.027, and 0.019 mmol g−1 h−1 | [2] |
Phosphorus-doped graphitic carbon nitride (PCN) 1-Hydroxyethane-1,1-diphosphonic acid (HEDP) as the phosphorus source and carbon nitride (CN) | 1000 W xenon lamp, 10% methanol solution | 3.0CN–P25 composite–0.92 mmol/g CN alone (0.041 mmol/g) P25 alone (0.099 mmol/g) 2.0PCN–P25 composite–2.531 mmol/g | [3] |
CoO quantum dots within hollow-sphere g-C3N4 (SCNO) | λ > 420 nm, 300 W Xe lamp, water and triethanolamine (TEOA)-as the sacrificial agent, in a volume ratio of 9:1 | SCNO/CoO (0.2)–11.495 mmol H2 h−1 g−1 | [7] |
CdS@NC composites; CdS nanoparticles, were simultaneously deposited on nitrogen-doped carbon (NC) CdS@NC-500-4 | λ ≥ 420 nm, Na2S/Na2SO3 as sacrificial agents, Assembly of Cd2+ and MO anions into a crystalline phase is essential for optimizing photocatalytic performance. | 7.428 mmol h−1 g−1 | [8] |
Bent g-C3N4 into nanotubes and subsequently merged it with black phosphorus quantum dots (BPQDs) | λ = 420 nm | 0.50751 mmol h−1 g−1 | [44] |
C3N5 conjugated polymer-ceric oxide (CeO2) (10 wt% CeO2) | 1.256 mmol g−1 h−1 | [45] | |
Z-scheme two-dimensional (2D)/one-dimensional (1D) g-C3N4/MoO3-x composites MoO3-x nanorods on the g-C3N4 nanosheets | 365 nm | 0.2092 mmol h−1 | [46] |
Photocatalytic Composites Z-Type Heterojunction | Advantage | H2 Production | Ref. |
---|---|---|---|
g-C3N4@TiATA composites Ti-MOFs (TiATA) were coupled with metal-free graphitic carbon nitride (g-C3N4) | 300 W Xenon lamp, extends the light absorption range of g-C3N4@TiATA to 490 nm, significantly accelerates charge migration | 0.2658 mmol h−1 | [39] |
Organic–inorganic hybrid Covalent organic frameworks (COFs) BDA-THTA-30 | 9.69184 mmol g−1 h−1 | [41] | |
Z-type heterojunction Pt/Zn0.2Cd0.8S/Cs3PW12O40 | Reducing the photocorrosion of sulfides, λ = 420 nm | 10.4 mmol g−1 h−1 | [48] |
CdS/ZnIn2S4, ZnIn2S4 0.3wt% | LED light | 5.80 mmol g−1 | [49] |
Z-scheme 2D-0D MnPS3-Cs4W11O35 composite; Cs4W11O35 (10.9 wt%) | 0.0996 mmol g−1 h−1 | [50] | |
Heterojunction B/CoMoO4 | Incorporation of nonmetallic atoms like B enhances the specific surface area, increases the bandgap | 7.460 mmol g−1 h−1 | [51] |
CuS/NaNbO3 p–n heterojunction CuS nanoparticles and NaNbO3 nanorods | 1.603 mmol g−1 h−1 | [52] | |
2.5% Co1.29Ni1.71O4/TiO2 hybrid heterojunction | 365 nm LED | 1.685 mmol g−1 h−1 | [53] |
C@ZnxCd1-xS/Co3O4 (30%) | 10 vol% lactic acid aqueous solution, 5 W LED lamp, p–n heterostructure between Co3O4 and ZCS accelerates the separation of carriers, carbon particles accelerated the e− transfer and inhibited the recombination of e− and h+. | (C@ZCS/CO-30)-1.4051 mmol | [54] |
5% Co3O4/CdS/g-C3N4 CdS/g-C3N4 | 30.880 mmol h−1 g−1 4.177 mmol h−1 g−1 | [55] | |
NiS/WO3/g-C3N4 CNWN-4 | 5 W LED, λ ≥ 420 nm, aqueous solution of 15% TEOA-as a sacrificial hole scavenger, eosin Y (EY) and co-catalyst g-C3N4 Incorporation of WO3 and NiS significantly enhanced photocatalytic activity by increasing the number of active sites and improving electron mobility. | 2.9291 mmol g−1 h−1. | [56] |
MMT/g-C3N4/15%NiCoP composites | 420 nm | 12.50 mmol h−1 g−1 at pH 11 under 1.0 mmol L−1 of eosin Y (EY) sensitization | [57] |
3D hollow-sphere structure of graphitic carbon nitride (g-C3N4) | 300 W Xe lamp, water and triethanolamine (TEOA) at a volume ratio of 9:1, Pd nanoparticles enhancing visible light absorption, acting as e− acceptors, are incorporated into g-C3N4, which increases the material’s ability to trap transition e−, boosting the number of photogenerated carriers. | Pd/SCN (10 h)–0.2679 mmol/h | [58] |
CdNCN-CdS heterostructure | Visible light | 14.7 mmol g−1 h−1 | [59] |
Nanostructure composite NdOCl/Fe2O3/NdFeO3 | Methanol as the sacrificial agent | 0.01279 mmol g−1 h−1 | [60] |
Nanostructure composite NdOCl/Fe2O3/NdFeO3 | Triethanolamine as the sacrificial agent | 0.01899 mmol g−1 h−1 | [60] |
MXene Photocatalytic Composites | Advantage | H2 Production | Ref. |
---|---|---|---|
0D/2D structure of CdxZn1-xS/Ti3C2 ultrathin MXene composites Ti3C2 MXene, CZS, and CZS/Ti3C2 MXene composites | λ > 420 nm, 300 W Xe lamp, 70 mL deionized water and 30 mL of a sacrificial agent mixture (Na2S and Na2SO3) in a 1:1 volume ratio, Na2S/Na2SO3 as sacrificial agents | bare CZS–5.56635 mmol g−1 h−1 CZS/Ti3C2 MXene composites (Ti3C2 content 1 wt%)–15.03581 mmol g−1 h−1 | [61] |
Binary heterojunction photocatalyst, consisting of Cd0.5Zn0.5S nanorods on 0.5 wt% Ti3C2 MXene nanosheet | λ = 350 nm | 15.56 mmol g−1 h−1 | [62] |
Ti3C2 MXene@TiO2/ZnIn2S4 (MXene@TiO2/ZIS) | 300 W Xeon lamp Na2S/Na2SO3 as sacrificial agents | 1.1858 mmol g−1 h−1 | [63] |
Ti3C2Tx MXene-based composites Ti3C2 MXene 6.7 wt% dispersion modified with tetraethyl hydroxyl ammonium (TEHA) alongside rhombic-shaped TiO2 nanoparticles | 0.39092 mmol h−1 | [64] | |
g-C3N4 nanotube@polydopamine(pDA)/NiCo-LDH (LPC) composite | λ > 420 nm, triethanolamine (TEOA) as the hole-capturing reagent | 1.5551 mmol h−1 g−1 | [65] |
CdS–BiOCl/PAN composites | lactic acid as a sacrificial agent, 300 W Xenon lamp | CdS powder–0.38948 mmol g−1 h−1 0.09753 mmol g−1 h−1 during the second cycle CdS–BiOCl/PAN composites- C–B–P(3) > C–B–P(2) > C–B–P(1) > C–B–P(4) > C–B–P(5): 0.28865, 0.24371, 0.21504, 0.20763, and 0.15618 mmol g−1 h−1 BiOCl/PAN–0.03601 mmol g−1 h−1 | [66] |
Experimental Technique | Purpose | Evidence |
---|---|---|
X-ray Photoelectron Spectroscopy (XPS) | Probes of the electronic structure and chemical states |
|
Photoluminescence (PL) Spectroscopy | Measurement of the recombination of photogenerated charge carriers |
|
Time-resolved Photoluminescence (TRPL) | Measurement of the carrier lifetime |
|
Electron Spin Resonance (ESR) | Detection of the unpaired electrons, radicals, and trapped charge carriers |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratovčić, A.; Tomašić, V. Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials. Processes 2025, 13, 1813. https://doi.org/10.3390/pr13061813
Bratovčić A, Tomašić V. Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials. Processes. 2025; 13(6):1813. https://doi.org/10.3390/pr13061813
Chicago/Turabian StyleBratovčić, Amra, and Vesna Tomašić. 2025. "Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials" Processes 13, no. 6: 1813. https://doi.org/10.3390/pr13061813
APA StyleBratovčić, A., & Tomašić, V. (2025). Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials. Processes, 13(6), 1813. https://doi.org/10.3390/pr13061813