Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,937)

Search Parameters:
Keywords = innovation networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6687 KiB  
Article
Research on Anti-Lock Braking Performance Based on CDOA-SENet-CNN Neural Network and Single Neuron Sliding Mode Control
by Yufeng Wei, Wencong Huang, Yichi Zhang, Yi Xie, Xiankai Huang, Yanlei Gao and Yan Chen
Processes 2025, 13(8), 2486; https://doi.org/10.3390/pr13082486 - 6 Aug 2025
Abstract
Traditional vehicle emergency braking research suffers from inaccurate maximum road adhesion coefficient identification and suboptimal wheel slip ratio control. To address these challenges in electronic hydraulic braking systems’ anti-lock braking technology, firstly, this paper proposes a CDOA-SENet-CNN neural network to precisely estimate the [...] Read more.
Traditional vehicle emergency braking research suffers from inaccurate maximum road adhesion coefficient identification and suboptimal wheel slip ratio control. To address these challenges in electronic hydraulic braking systems’ anti-lock braking technology, firstly, this paper proposes a CDOA-SENet-CNN neural network to precisely estimate the maximum road adhesion coefficient by monitoring and analyzing the braking process. Secondly, correlation curves between peak adhesion coefficients and ideal slip ratios are established using the Burckhardt model and CarSim 2020, and the estimated maximum adhesion coefficient from the CDOA-SENet-CNN network is used with these curves to determine the optimal slip ratio for the single-neuron integral sliding mode control (SNISMC) algorithm. Finally, an SNISMC control strategy is developed to adjust the wheel slip ratio to the optimal value, achieving stable wheel control across diverse road surfaces. Results indicate that the CDOA-SENet-CNN network rapidly and accurately estimates the peak braking surface adhesion coefficient. The SNISMC control strategy significantly enhances wheel slip ratio control, consequently increasing the effectiveness of vehicle brakes. This paper introduces an innovative, stable, and efficient solution for enhancing vehicle braking safety. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 2415 KiB  
Article
Auto Deep Spiking Neural Network Design Based on an Evolutionary Membrane Algorithm
by Chuang Liu and Haojie Wang
Biomimetics 2025, 10(8), 514; https://doi.org/10.3390/biomimetics10080514 - 6 Aug 2025
Abstract
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the [...] Read more.
In scientific research and engineering practice, the design of deep spiking neural network (DSNN) architectures remains a complex task that heavily relies on the expertise and experience of professionals. These architectures often require repeated adjustments and modifications based on factors such as the DSNN’s performance, resulting in significant consumption of human and hardware resources. To address these challenges, this paper proposes an innovative evolutionary membrane algorithm for optimizing DSNN architectures. This algorithm automates the construction and design of promising network models, thereby reducing reliance on manual tuning. More specifically, the architecture of DSNN is transformed into the search space of the proposed evolutionary membrane algorithm. The proposed algorithm thoroughly explores the impact of hyperparameters, such as the candidate operation blocks of DSNN, to identify optimal configurations. Additionally, an early stopping strategy is adopted in the performance evaluation phase to mitigate the time loss caused by objective evaluations, further enhancing efficiency. The optimal models identified by the proposed algorithm were evaluated on the CIFAR-10 and CIFAR-100 datasets. The experimental results demonstrate the effectiveness of the proposed algorithm, showing significant improvements in accuracy compared to the existing state-of-the-art methods. This work highlights the potential of evolutionary membrane algorithms to streamline the design and optimization of DSNN architectures, offering a novel and efficient approach to address the challenges in the applications of automated parameter optimization for DSNN. Full article
(This article belongs to the Special Issue Exploration of Bio-Inspired Computing: 2nd Edition)
Show Figures

Figure 1

22 pages, 1029 KiB  
Review
Inter-Organellar Ca2+ Homeostasis in Plant and Animal Systems
by Philip Steiner and Susanna Zierler
Cells 2025, 14(15), 1204; https://doi.org/10.3390/cells14151204 - 6 Aug 2025
Abstract
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ [...] Read more.
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ homeostasis, highlighting key regulators and mechanisms in plant and animal cells. We discuss the roles of key Ca2+ channels and transporters, including IP3Rs, RyRs, TPCs, MCUs, TRPMLs, and P2XRs in animals, as well as their plant counterparts. Here, we explore recent innovations in structural biology and advanced microscopic techniques that have enhanced our understanding of these proteins’ structure, functions, and regulations. We examine the importance of membrane contact sites in facilitating Ca2+ transfer between organelles and the specific expression patterns of Ca2+ channels and transporters. Furthermore, we address the physiological implications of inter-organellar Ca2+ homeostasis and its relevance in various pathological conditions. For extended comparability, a brief excursus into bacterial intracellular Ca2+ homeostasis is also made. This meta-analysis aims to bridge the gap between plant and animal Ca2+ signaling research, identifying common themes and unique adaptations in these diverse biological systems. Full article
Show Figures

Figure 1

13 pages, 1194 KiB  
Review
Kiwifruit Peelability (Actinidia spp.): A Review
by Beibei Qi, Peng Li, Jiewei Li, Manrong Zha and Faming Wang
Horticulturae 2025, 11(8), 927; https://doi.org/10.3390/horticulturae11080927 (registering DOI) - 6 Aug 2025
Abstract
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged [...] Read more.
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged as a critical breeding target in fruit crop improvement programs. The present review systematically synthesized existing studies on kiwifruit peelability, and focused on its evolutionary trajectory, genotypic divergence, quantitative evaluation, possible underlying mechanisms, and artificial manipulation strategies. Kiwifruit peelability research has advanced from early exploratory studies in New Zealand (2010s) to systematic investigations in China (2020s), with milestones including the development of evaluation metrics and the identification of genetic resources. Genotypic variation exists among kiwifruit genera. Several Actinidia eriantha accessions and the novel Actinidia longicarpa cultivar ‘Guifei’ exhibit superior peelability, whereas most commercial Actinidia chinensis and Actinidia deliciosa cultivars exhibit poor peelability. Quantitative evaluation highlights the need for standardized metrics, with “skin-flesh adhesion force” and “peel toughness” proposed as robust, instrument-quantifiable indicators to minimize operational variability. Mechanistically, peelability is speculated to be governed by cell wall polysaccharide metabolism and phytohormone signaling networks. Pectin degradation and differential distribution during fruit development form critical “peeling zones”, whereas ethylene, abscisic acid, and indoleacetic acid may regulate cell wall remodeling and softening, collectively influencing skin-flesh adhesion. Owing to the scarcity of easy-to-peel kiwifruit cultivars, artificial manipulation methods, including manual peeling benchmarking, lye treatment, and thermal peeling, can be employed to further optimize kiwifruit peelability. Currently, shortcomings include incomplete genotype-phenotype characterization, limited availability of easy-peeling germplasms, and a fragmented understanding of the underlying mechanisms. Future research should focus on methodological innovation, germplasm development, and the elucidation of relevant mechanisms. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

20 pages, 10605 KiB  
Article
Network Analysis of Outcome-Based Education Curriculum System: A Case Study of Environmental Design Programs in Medium-Sized Cities
by Yang Wang, Zixiao Zhan and Honglin Wang
Sustainability 2025, 17(15), 7091; https://doi.org/10.3390/su17157091 - 5 Aug 2025
Abstract
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of [...] Read more.
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of enrollment decline and market contraction critical for urban sustainability. Using network analysis, we construct curriculum support and contribution networks and course temporal networks to assess structural dependencies and teaching effectiveness, revealing structural patterns and optimizing the OBE-based Environmental Design curriculum to enhance educational quality and student competencies. Analysis reveals computer basic courses as knowledge transmission hubs, creating a course network with a distinct core–periphery structure. Technical course reforms significantly outperform theoretical course reforms in improving student performance metrics, such as higher average scores, better grade distributions, and reduced performance gaps, while innovative practice courses show peripheral isolation patterns, indicating limited connectivity with core curriculum modules, which reduces their educational impact. These findings provide empirical insights for curriculum optimization, supporting urban sustainable development through enhanced professional talent cultivation equipped to address environmental challenges like sustainable design practices and resource-efficient urban planning. Network analysis applications introduce innovative frameworks for curriculum reform strategies. Future research expansion through larger sample validation will support urban sustainable development goals and enhance professional talent cultivation outcomes. Full article
Show Figures

Figure 1

21 pages, 4707 KiB  
Article
A Real-Time Cell Image Segmentation Method Based on Multi-Scale Feature Fusion
by Xinyuan Zhang, Yang Zhang, Zihan Li, Yujiao Song, Shuhan Chen, Zhe Mao, Zhiyong Liu, Guanglan Liao and Lei Nie
Bioengineering 2025, 12(8), 843; https://doi.org/10.3390/bioengineering12080843 (registering DOI) - 5 Aug 2025
Abstract
Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing [...] Read more.
Cell confluence and number are critical indicators for assessing cellular growth status, contributing to disease diagnosis and the development of targeted therapies. Accurate and efficient cell segmentation is essential for quantifying these indicators. However, current segmentation methodologies still encounter significant challenges in addressing multi-scale heterogeneity, poorly delineated boundaries under limited annotation, and the inherent trade-off between computational efficiency and segmentation accuracy. We propose an innovative network architecture. First, a preprocessing pipeline combining contrast-limited adaptive histogram equalization (CLAHE) and Gaussian blur is introduced to balance noise suppression and local contrast enhancement. Second, a bidirectional feature pyramid network (BiFPN) is incorporated, leveraging cross-scale feature calibration to enhance multi-scale cell recognition. Third, adaptive kernel convolution (AKConv) is developed to capture the heterogeneous spatial distribution of glioma stem cells (GSCs) through dynamic kernel deformation, improving boundary segmentation while reducing model complexity. Finally, a probability density-guided non-maximum suppression (Soft-NMS) algorithm is proposed to alleviate cell under-detection. Experimental results demonstrate that the model achieves 95.7% mAP50 (box) and 95% mAP50 (mask) on the GSCs dataset with an inference speed of 38 frames per second. Moreover, it simultaneously supports dual-modality output for cell confluence assessment and precise counting, providing a reliable automated tool for tumor microenvironment research. Full article
Show Figures

Figure 1

30 pages, 9435 KiB  
Article
Intelligent Fault Warning Method for Wind Turbine Gear Transmission System Driven by Digital Twin and Multi-Source Data Fusion
by Tiantian Xu, Xuedong Zhang and Wenlei Sun
Appl. Sci. 2025, 15(15), 8655; https://doi.org/10.3390/app15158655 (registering DOI) - 5 Aug 2025
Abstract
To meet the demands for real-time and accurate fault warning of wind turbine gear transmission systems, this study proposes an innovative intelligent warning method based on the integration of digital twin and multi-source data fusion. A digital twin system architecture is developed, comprising [...] Read more.
To meet the demands for real-time and accurate fault warning of wind turbine gear transmission systems, this study proposes an innovative intelligent warning method based on the integration of digital twin and multi-source data fusion. A digital twin system architecture is developed, comprising a high-precision geometric model and a dynamic mechanism model, enabling real-time interaction and data fusion between the physical transmission system and its virtual model. At the algorithmic level, a CNN-LSTM-Attention fault prediction model is proposed, which innovatively integrates the spatial feature extraction capabilities of a convolutional neural network (CNN), the temporal modeling advantages of long short-term memory (LSTM), and the key information-focusing characteristics of an attention mechanism. Experimental validation shows that this model outperforms traditional methods in prediction accuracy. Specifically, it achieves average improvements of 0.3945, 0.546 and 0.061 in Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2) metrics, respectively. Building on the above findings, a monitoring and early warning platform for the wind turbine transmission system was developed, integrating digital twin visualization with intelligent prediction functions. This platform enables a fully intelligent process from data acquisition and status evaluation to fault warning, providing an innovative solution for the predictive maintenance of wind turbines. Full article
Show Figures

Figure 1

20 pages, 2225 KiB  
Article
Network Saturation: Key Indicator for Profitability and Sensitivity Analyses of PRT and GRT Systems
by Joerg Schweizer, Giacomo Bernieri and Federico Rupi
Future Transp. 2025, 5(3), 104; https://doi.org/10.3390/futuretransp5030104 - 4 Aug 2025
Abstract
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as [...] Read more.
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as they are low-emission and able to attract car drivers. The parameterized cost modeling framework developed in this paper has the advantage that profitability of different PRT/GRT systems can be rapidly verified in a transparent way and in function of a variety of relevant system parameters. This framework may contribute to a more transparent, rapid, and low-cost evaluation of PRT/GRT schemes for planning and decision-making purposes. The main innovation is the introduction of the “peak hour network saturation” S: the number of vehicles in circulation during peak hour divided by the maximum number of vehicles running at line speed with minimum time headways. It is an index that aggregates the main uncertainties in the planning process, namely the demand level relative to the supply level. Furthermore, a maximum S can be estimated for a PRT/GRT project, even without a detailed demand estimation. The profit per trip is analytically derived based on S and a series of more certain parameters, such as fares, capital and maintenance costs, daily demand curve, empty vehicle share, and physical properties of the system. To demonstrate the ability of the framework to analyze profitability in function of various parameters, we apply the methods to a single vehicle PRT, a platooned PRT, and a mixed PRT/GRT. The results show that PRT services with trip length proportional fares could be profitable already for S>0.25. The PRT capacity, profitability, and robustness to tripled infrastructure costs can be increased by vehicle platooning or GRT service during peak hours. Full article
Show Figures

Figure 1

24 pages, 6437 KiB  
Article
LEAD-YOLO: A Lightweight and Accurate Network for Small Object Detection in Autonomous Driving
by Yunchuan Yang, Shubin Yang and Qiqing Chan
Sensors 2025, 25(15), 4800; https://doi.org/10.3390/s25154800 - 4 Aug 2025
Abstract
The accurate detection of small objects remains a critical challenge in autonomous driving systems, where improving detection performance typically comes at the cost of increased model complexity, conflicting with the lightweight requirements of edge deployment. To address this dilemma, this paper proposes LEAD-YOLO [...] Read more.
The accurate detection of small objects remains a critical challenge in autonomous driving systems, where improving detection performance typically comes at the cost of increased model complexity, conflicting with the lightweight requirements of edge deployment. To address this dilemma, this paper proposes LEAD-YOLO (Lightweight Efficient Autonomous Driving YOLO), an enhanced network architecture based on YOLOv11n that achieves superior small object detection while maintaining computational efficiency. The proposed framework incorporates three innovative components: First, the Backbone integrates a lightweight Convolutional Gated Transformer (CGF) module, which employs normalized gating mechanisms with residual connections, and a Dilated Feature Fusion (DFF) structure that enables progressive multi-scale context modeling through dilated convolutions. These components synergistically enhance small object perception and environmental context understanding without compromising network efficiency. Second, the neck features a hierarchical feature fusion module (HFFM) that establishes guided feature aggregation paths through hierarchical structuring, facilitating collaborative modeling between local structural information and global semantics for robust multi-scale object detection in complex traffic scenarios. Third, the head implements a shared feature detection head (SFDH) structure, incorporating shared convolution modules for efficient cross-scale feature sharing and detail enhancement branches for improved texture and edge modeling. Extensive experiments validate the effectiveness of LEAD-YOLO: on the nuImages dataset, the method achieves 3.8% and 5.4% improvements in mAP@0.5 and mAP@[0.5:0.95], respectively, while reducing parameters by 24.1%. On the VisDrone2019 dataset, performance gains reach 7.9% and 6.4% for corresponding metrics. These findings demonstrate that LEAD-YOLO achieves an excellent balance between detection accuracy and model efficiency, thereby showcasing substantial potential for applications in autonomous driving. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

14 pages, 379 KiB  
Essay
Is Platform Capitalism Socially Sustainable?
by Andrea Fumagalli
Sustainability 2025, 17(15), 7071; https://doi.org/10.3390/su17157071 - 4 Aug 2025
Abstract
This theoretical essay aims to analyze some of the socio-economic innovations introduced by Platform Capitalism Specifically, it focuses on two main aspects: first, the digital platform as a radical organizational innovation. Digital platforms represent a structural novelty in the market economy, signaling a [...] Read more.
This theoretical essay aims to analyze some of the socio-economic innovations introduced by Platform Capitalism Specifically, it focuses on two main aspects: first, the digital platform as a radical organizational innovation. Digital platforms represent a structural novelty in the market economy, signaling a new organization of production and labor. Second, the essay examines the role of platforms in directly generating value through the concept of “network value”. To this end, it explores the function of “business intelligence” as a strategic and competitive tool. Finally, the paper discusses the key issues associated with platform capitalism, which could threaten its social sustainability and contribute to economic and financial instability. These issues include the increasing commodification of everyday activities, the devaluation of paid labor in favor of free production driven by platform users (the so-called prosumers), and the emergence of proprietary and financial monopolies. Hence, digital platforms do not inherently ensure comprehensive social and environmental sustainability unless supported by targeted economic policy interventions. Conclusively, it is emphasized that defining robust social welfare frameworks—which account for emerging value creation processes—is imperative. Simultaneously, policymakers must incentivize the proliferation of cooperative platforms capable of fostering experimental circular economy models aligned with ecological sustainability. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

20 pages, 1688 KiB  
Article
Spectrum Sensing for Noncircular Signals Using Augmented Covariance-Matrix-Aware Deep Convolutional Neural Network
by Songlin Chen, Zhenqing He, Wenze Song and Guohao Sun
Sensors 2025, 25(15), 4791; https://doi.org/10.3390/s25154791 - 4 Aug 2025
Abstract
This work investigates spectrum sensing in cognitive radio networks, where multi-antenna secondary users aim to detect the spectral occupancy of noncircular signals transmitted by primary users. Specifically, we propose a deep-learning-based spectrum sensing approach using an augmented covariance-matrix-aware convolutional neural network (CNN). The [...] Read more.
This work investigates spectrum sensing in cognitive radio networks, where multi-antenna secondary users aim to detect the spectral occupancy of noncircular signals transmitted by primary users. Specifically, we propose a deep-learning-based spectrum sensing approach using an augmented covariance-matrix-aware convolutional neural network (CNN). The core innovation of our approach lies in employing an augmented sample covariance matrix, which integrates both a standard covariance matrix and complementary covariance matrix, thereby fully exploiting the statistical properties of noncircular signals. By feeding augmented sample covariance matrices into the designed CNN architecture, the proposed approach effectively learns discriminative patterns from the underlying data structure, without stringent model constraints. Meanwhile, our approach eliminates the need for restrictive model assumptions and significantly enhances the detection performance by fully exploiting noncircular signal characteristics. Various experimental results demonstrate the significant performance improvement and generalization capability of the proposed approach compared to existing benchmark methods. Full article
Show Figures

Figure 1

27 pages, 7629 KiB  
Article
A Multilevel Multimodal Hybrid Mamba-Large Strip Convolution Network for Remote Sensing Semantic Segmentation
by Lingyu Yan, Qingyang Feng, Jing Wang, Jinshan Cao, Xiaoxiao Feng and Xing Tang
Remote Sens. 2025, 17(15), 2696; https://doi.org/10.3390/rs17152696 - 4 Aug 2025
Viewed by 96
Abstract
Semantic segmentation is one of the key tasks in the intelligent interpretation of remote sensing images with extensive potential applications. However, when ultra-high resolution (UHR) remote sensing images exhibit complex background intersections and significant variations in object sizes, existing multimodal fusion segmentation methods [...] Read more.
Semantic segmentation is one of the key tasks in the intelligent interpretation of remote sensing images with extensive potential applications. However, when ultra-high resolution (UHR) remote sensing images exhibit complex background intersections and significant variations in object sizes, existing multimodal fusion segmentation methods based on convolutional neural networks and Transformers face challenges such as limited receptive fields and high secondary complexity, leading to inadequate global context modeling and multimodal feature representation. Moreover, the lack of accurate boundary detail feature constraints in the final segmentation further limits segmentation accuracy. To address these challenges, we propose a novel boundary-enhanced multilevel multimodal fusion Mamba-Large Strip Convolution network (FMLSNet) for remote sensing image segmentation, which offers the advantages of a global receptive field and efficient linear complexity. Specifically, this paper introduces a new multistage Mamba multimodal fusion framework (FMB) for UHR remote sensing image segmentation. By employing an innovative multimodal scanning mechanism integrated with disentanglement strategies to deepen the fusion process, FMB promotes deep fusion of multimodal features and captures cross-modal contextual information at multiple levels, enabling robust and comprehensive feature integration with enriched global semantic context. Additionally, we propose a Large Strip Spatial Detail (LSSD) extraction module, which adaptively combines multi-directional large strip convolutions to capture more precise and fine-grained boundary features. This enables the network to learn detailed spatial features from shallow layers. A large number of experimental results on challenging remote sensing image datasets show that our method exhibits superior performance over state-of-the-art models. Full article
Show Figures

Figure 1

32 pages, 2102 KiB  
Article
D* Lite and Transformer-Enhanced SAC: A Hybrid Reinforcement Learning Framework for COLREGs-Compliant Autonomous Navigation in Dynamic Maritime Environments
by Tianqing Chen, Yamei Lan, Yichen Li, Jiesen Zhang and Yijie Yin
J. Mar. Sci. Eng. 2025, 13(8), 1498; https://doi.org/10.3390/jmse13081498 - 4 Aug 2025
Viewed by 38
Abstract
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently [...] Read more.
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently rely on simplistic state representations that fail to capture complex spatio-temporal interactions among vessels. We introduce a novel hybrid reinforcement learning framework, D* Lite + Transformer-Enhanced Soft Actor-Critic (TE-SAC), to overcome these limitations. This hierarchical framework synergizes the strengths of global and local planning. An enhanced D* Lite algorithm generates efficient, long-horizon reference paths at the global level. At the local level, the TE-SAC agent performs COLREGs-compliant tactical maneuvering. The core innovation resides in TE-SAC’s synergistic state encoder, which uniquely combines a Graph Neural Network (GNN) to model the instantaneous spatial topology of vessel encounters with a Transformer encoder to capture long-range temporal dependencies and infer vessel intent. Comprehensive simulations demonstrate the framework’s superior performance, validating the strengths of both planning layers. At the local level, our TE-SAC agent exhibits remarkable tactical intelligence, achieving an exceptional 98.7% COLREGs compliance rate and reducing energy consumption by 15–20% through smoother, more decisive maneuvers. This high-quality local control, guided by the efficient global paths from the enhanced D* Lite algorithm, culminates in a 10–32 percentage point improvement in overall task success rates compared to state-of-the-art baselines. This work presents a robust, verifiable, and efficient framework. By demonstrating superior performance and compliance with rules in high-fidelity simulations, it lays a crucial foundation for advancing the practical application of intelligent autonomous navigation systems. Full article
(This article belongs to the Special Issue Motion Control and Path Planning of Marine Vehicles—3rd Edition)
Show Figures

Figure 1

22 pages, 5188 KiB  
Article
LCDAN: Label Confusion Domain Adversarial Network for Information Detection in Public Health Events
by Qiaolin Ye, Guoxuan Sun, Yanwen Chen and Xukan Xu
Electronics 2025, 14(15), 3102; https://doi.org/10.3390/electronics14153102 - 4 Aug 2025
Viewed by 30
Abstract
With the popularization of social media, information related to public health events has seen explosive growth online, making it essential to accurately identify informative tweets with decision-making and management value for public health emergency response and risk monitoring. However, existing methods often suffer [...] Read more.
With the popularization of social media, information related to public health events has seen explosive growth online, making it essential to accurately identify informative tweets with decision-making and management value for public health emergency response and risk monitoring. However, existing methods often suffer performance degradation during cross-event transfer due to differences in data distribution, and research specifically targeting public health events remains limited. To address this, we propose the Label Confusion Domain Adversarial Network (LCDAN), which innovatively integrates label confusion with domain adaptation to enhance the detection of informative tweets across different public health events. First, LCDAN employs an adversarial domain adaptation model to learn cross-domain feature representation. Second, it dynamically evaluates the importance of different source domain samples to the target domain through label confusion to optimize the migration effect. Experiments were conducted on datasets related to COVID-19, Ebola disease, and Middle East Respiratory Syndrome public health events. The results demonstrate that LCDAN significantly outperforms existing methods across all tasks. This research provides an effective tool for information detection during public health emergencies, with substantial theoretical and practical implications. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop