Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = inhalable nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1739 KiB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 - 1 Aug 2025
Viewed by 167
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

39 pages, 4547 KiB  
Review
Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases
by Doaa Elsayed Mahmoud, Seyedeh Hanieh Hosseini, Hassaan Anwer Rathore, Alaaldin M. Alkilany, Andreas Heise and Abdelbary Elhissi
Pharmaceutics 2025, 17(7), 893; https://doi.org/10.3390/pharmaceutics17070893 - 9 Jul 2025
Viewed by 561
Abstract
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to [...] Read more.
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to be the most appropriate type of inhalation devices for the pulmonary delivery of nanoparticles, since formulations can be prepared using straightforward techniques, with no need for liquefied propellants as in the case of pressurized metered dose inhalers (pMDIs), or complicated preparation procedures as in the case of dry powder inhalers (DPIs). We demonstrated examples of how formulations should be designed considering the operation mechanism of nebulizers, and how an interplay of factors can affect the aerosol characteristics of nanoparticle formulations. Overall, nanoparticle-based formulations offer promising potential for the treatment of inflammatory lung diseases due to their unique physicochemical properties and ability to provide localized drug delivery in the lung following inhalation. Full article
(This article belongs to the Special Issue Recent Advances in Pulmonary Inhalation of Nanoformulations)
Show Figures

Figure 1

18 pages, 741 KiB  
Review
Cardiovascular Toxicity of Metal-Based Nanoparticles
by Eun-Hye Kim, Sehyeon Park and Ok-Nam Bae
Int. J. Mol. Sci. 2025, 26(12), 5816; https://doi.org/10.3390/ijms26125816 - 17 Jun 2025
Viewed by 761
Abstract
The rapid development of nanotechnology has led to increased human exposure to metal-based nanoparticles (MNPs) through inhalation, ingestion, and dermal contact, raising growing concerns on their potential health effects. Due to their nanoscale size and unique physicochemical properties, the MNPs can translocate from [...] Read more.
The rapid development of nanotechnology has led to increased human exposure to metal-based nanoparticles (MNPs) through inhalation, ingestion, and dermal contact, raising growing concerns on their potential health effects. Due to their nanoscale size and unique physicochemical properties, the MNPs can translocate from the initial exposure sites to the circulatory system and accumulate in the body. This review focuses on MNP-induced cardiovascular toxicity, highlighting its biodistribution, cytotoxic mechanisms, and pathological impact associated with various cardiovascular diseases. MNPs disrupt endothelial function, promote oxidative stress, and induce apoptosis and ferroptosis in cardiovascular cells. Furthermore, MNPs increase endothelial permeability, impair blood–brain barrier integrity, and enhance procoagulant activity, thereby contributing to vascular and cardiac dysfunction. The particles and their released metal ions play a synergistic role in mediating these toxic effects. Here, we focused on the effects of nano-sized particles while incorporating recent in vitro and in vivo studies that address the cardiovascular impacts and mechanisms of MNP-induced toxicity. This comprehensive review will help understand and explain the potentially toxic effects of MNPs on the cardiovascular system. Full article
Show Figures

Figure 1

15 pages, 1269 KiB  
Article
Linear DNA–Chitosan Nanoparticles: Formulation Challenges and Transfection Efficiency in Lung Cell Line
by Chiara Migone, Angela Fabiano, Ylenia Zambito, Rebecca Piccarducci, Laura Marchetti, Chiara Giacomelli, Claudia Martini and Anna Maria Piras
Appl. Biosci. 2025, 4(2), 29; https://doi.org/10.3390/applbiosci4020029 - 6 Jun 2025
Viewed by 498
Abstract
Linear DNA constructs are used in gene delivery and therapy application due to their capacity of integration into the mammalian genome, offering stable transgene expression. Compared to circular plasmids, linear DNA also has the advantage that its dimension and steric hindrance are directly [...] Read more.
Linear DNA constructs are used in gene delivery and therapy application due to their capacity of integration into the mammalian genome, offering stable transgene expression. Compared to circular plasmids, linear DNA also has the advantage that its dimension and steric hindrance are directly correlated to the length of the nucleotide chain. These considerations make linear DNA an effective choice for gene delivery pilot studies, where formulations and transfection efficiency calculations are studied considering the nucleic acid dimensions. Meanwhile, the development of DNA–chitosan nanoparticles (NPs) has gained significant interest for their potential in nucleic acid delivery, especially as non-viral gene delivery systems and for embedding linear DNA fragments, as well as gene delivery to the lung. This study explored an easy polyelectrolyte complexing preparation of linear DNA-loaded chitosan nanoparticles. Among the different formulations of nanoparticles prepared, the optimal one exhibited a size of approximately 290 nm, an encapsulation efficiency of 86% and a zeta potential of 25 mV. Additionally, this study examined how the concentration of DNA in solution influenced nanoparticle formation, encapsulation efficiency and particle size. In particular, transient transfection of the chitosan–linear DNA fragment complex, encoding for green fluorescent protein (GFP), was conducted in human pulmonary distal lung cells (NCI-H441 cells), demonstrating successful cellular internalization and protein expression. These studies highlight the potential of DNA–chitosan NPs in nucleic acid delivery, particularly for pulmonary applications. Future works will focus on formulating the achieved carrier into an inhalable dosage form to improve its translational application. Full article
Show Figures

Figure 1

24 pages, 1795 KiB  
Review
SARS-CoV-2 Replication Revisited: Molecular Insights and Current and Emerging Antiviral Strategies
by Bryan John J. Subong and Imelda L. Forteza
COVID 2025, 5(6), 85; https://doi.org/10.3390/covid5060085 - 30 May 2025
Viewed by 1007
Abstract
The replication machinery of SARS-CoV-2 is a primary target for therapeutic intervention, and has led to significant progress in antiviral medication discovery. This review consolidates contemporary molecular insights into viral replication and rigorously assesses treatment methods at different phases of viruses’ clinical development. [...] Read more.
The replication machinery of SARS-CoV-2 is a primary target for therapeutic intervention, and has led to significant progress in antiviral medication discovery. This review consolidates contemporary molecular insights into viral replication and rigorously assesses treatment methods at different phases of viruses’ clinical development. Direct-acting antivirals, such as nucleoside analogs (e.g., remdesivir, molnupiravir) and protease inhibitors (e.g., nirmatrelvir), have shown clinical effectiveness in diminishing morbidity and hospitalization rates. Simultaneously, host-targeted medicines like baricitinib, camostat, and brequinar leverage critical host–virus interactions, providing additional pathways to reduce viral replication while possibly minimizing the development of resistance. Notwithstanding these advancements, constraints in distribution methods, antiviral longevity, and the risk of mutational evasion demand novel strategies. Promising investigational approaches encompass CRISPR-mediated RNA degradation systems, inhalable siRNA-nanoparticle conjugates, and molecular glue degraders that target host and viral proteins. Furthermore, next-generation treatments aimed at underutilized enzyme domains (e.g., NiRAN, ExoN) and host chaperone systems (e.g., TRiC complex) signify a transformative approach in antiviral targeting. The integration of high-throughput phenotypic screening, AI-driven medication repurposing, and systems virology is transforming the antiviral discovery field. An ongoing interdisciplinary endeavor is necessary to convert these findings into versatile, resistance-resistant antiviral strategies that are applicable beyond the present pandemic and in future coronavirus epidemics. Full article
(This article belongs to the Special Issue New Antivirals against Coronaviruses)
Show Figures

Graphical abstract

18 pages, 941 KiB  
Review
The Toxicological Profile of Active Pharmaceutical Ingredients–Containing Nanoparticles: Classification, Mechanistic Pathways, and Health Implications
by Muhaimin Muhaimin, Anis Yohana Chaerunisaa, Mayang Kusuma Dewi, Alfi Khatib and Aghnia Hazrina
Pharmaceuticals 2025, 18(5), 703; https://doi.org/10.3390/ph18050703 - 9 May 2025
Cited by 2 | Viewed by 710
Abstract
Nanotechnology is the manipulation of matter on an atomic and molecular scale, producing a lot of new substances with properties that are not necessarily easily expected based on present knowledge. Nanotechnology produces substances with unique properties that can be beneficial or harmful depending [...] Read more.
Nanotechnology is the manipulation of matter on an atomic and molecular scale, producing a lot of new substances with properties that are not necessarily easily expected based on present knowledge. Nanotechnology produces substances with unique properties that can be beneficial or harmful depending on their biocompatibility and distribution. Understanding nanomaterial toxicity is essential to ensure their safe application in biological and environmental applications. This review aims to provide a comprehensive overview of nanoparticle toxicity, focusing on their physicochemical properties, mechanisms of cellular uptake, and potential health risks. Key factors influencing toxicity include particle size, shape, concentration, aspect ratio, crystallinity, surface charge, dissolution, and agglomeration. Nanoparticles can induce oxidative stress and inflammation, contributing to adverse effects when inhaled, ingested, or applied to the skin. However, their toxicity may not be limited to just these pathways, as they can also exhibit other toxic properties, such as activation of the apoptotic pathway and mitochondrial damage. By summarizing the current knowledge on these aspects, this article intends to support the development of nanoparticles in a safer way for future applications. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

14 pages, 3131 KiB  
Article
Aerosol Delivery of Hesperetin-Loaded Nanoparticles and Immunotherapy Increases Survival in a Murine Lung Cancer Model
by Sayeda Yasmin-Karim, Geraud Richards, Amanda Fam, Alina-Marissa Ogurek, Srinivas Sridhar and G. Mike Makrigiorgos
Nanomaterials 2025, 15(8), 586; https://doi.org/10.3390/nano15080586 - 11 Apr 2025
Viewed by 987
Abstract
Flavonoids, like Hesperetin, have been shown to be an ACE2 receptor agonists with antioxidant and pro-apoptotic activity and can induce apoptosis in cancer cells. ACE2 receptors are abundant in lung cancer cells. Here, we explored the application of Hesperetin bound to PegPLGA-coated nanoparticles [...] Read more.
Flavonoids, like Hesperetin, have been shown to be an ACE2 receptor agonists with antioxidant and pro-apoptotic activity and can induce apoptosis in cancer cells. ACE2 receptors are abundant in lung cancer cells. Here, we explored the application of Hesperetin bound to PegPLGA-coated nanoparticles (Hesperetin nanoparticles, HNPs) and anti-CD40 antibody as an aerosol treatment for lung tumor-bearing mice. The Hesperetin nanoparticles (HNPs) were engineered using a nano-formulation microfluidic technique and polymeric nanoparticles. The in vitro studies were performed in human A549 (ATCC) and murine LL/2-Luc2 (ATCC) lung cancer cell lines. A syngeneic orthotopic murine model of lung cancer was generated in wild (+/+) C57/BL6 background mice with luciferase-positive cell line LL/2-Luc2 cells. Lung tumor-bearing mice were treated via aerosol inhalation with HNP, anti-CD40 antibody, or both. Survival was used to analyze the efficacy of the aerosol treatment. The cohorts were also analyzed for body condition score, weight, and liver and kidney function. Analysis of an orthotopic murine lung cancer model demonstrated a differential uptake of the HNPs and anti-CD40 by the cancer cells. A higher survival rate was observed when the combination of aerosol treatment with HNPs was added with the treatment with anti-CD40 (p < 0.001), as compared to anti-CD40 alone (p < 0.01). Moreover, two tumor-bearing mice survived long-term with the combination treatment, and their tumors were diminished. Subsequently, these two mice were shown to be refractory to the development of subcutaneous tumors, indicating systemic resilience to developing new tumors. Using an inhalation-based administration, we successfully established a treatment model of increased therapeutic efficacy with HNPs and anti-CD40 in an orthotopic murine lung cancer model. Our findings open the possibility of improved lung cancer treatment using nanoparticles like flavonoids and immunoadjuvants. Full article
(This article belongs to the Special Issue Advanced Nanomedicine for Drug Delivery)
Show Figures

Figure 1

18 pages, 4804 KiB  
Article
Nanoparticle-Based Dry Powder Inhaler Containing Ciprofloxacin for Enhanced Targeted Antibacterial Therapy
by Petra Party, Márk László Klement, Bianca Maria Gaudio, Milena Sorrenti and Rita Ambrus
Pharmaceutics 2025, 17(4), 486; https://doi.org/10.3390/pharmaceutics17040486 - 7 Apr 2025
Viewed by 923
Abstract
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral [...] Read more.
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral administration. Moreover, the application of nanoparticles potentially enhances the effectiveness of the treatments while lowering the possible side effects. Therefore, we aimed to develop a “nano-in-micro” structured dry powder inhaler formulation containing CIP. Methods: A two-step preparation method was used. Firstly, a nanosuspension was first prepared using a high-performance planetary mill by wet milling. After the addition of different additives (leucine and mannitol), the solid formulations were created by spray drying. The prepared DPI samples were analyzed by using laser diffraction, nanoparticle tracking analysis, scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. The solubility and in vitro dissolution tests in artificial lung fluid and in vitro aerodynamic investigations (Spraytec® device, Andersen Cascade Impactor) were carried out. Results: The nanosuspension (D50: 140.0 ± 12.8 nm) was successfully prepared by the particle size reduction method. The DPIs were suitable for inhalation based on the particle diameter and their spherical shape. Improved surface area and amorphization after the preparation processes led to faster drug release. The excipient-containing systems were characterized by large lung deposition (fine particle fraction around 40%) and suitable aerodynamic diameter (between 3 and 4 µm). Conclusions: We have successfully formulated a nanosized antibiotic-containing formulation for pulmonary delivery, which could provide a potential treatment for patients with different respiratory infections. Full article
Show Figures

Figure 1

29 pages, 8960 KiB  
Review
Do We Need Titanium Dioxide (TiO2) Nanoparticles in Face Masks?
by Stijn Everaert, Lode Godderis, Jean-Marie Raquez, Greet Schoeters, Pieter Spanoghe, Jonas Moens, Luc Hens, Olivier Michel, Dirk Adang and Norbert Fraeyman
Toxics 2025, 13(4), 244; https://doi.org/10.3390/toxics13040244 - 25 Mar 2025
Viewed by 796
Abstract
The use of face masks has proven to be an effective preventive measure during the COVID-19 pandemic. However, concerns have emerged regarding the safety of metal (nano)particles incorporated into face masks for antimicrobial purposes. Specifically, this review examines the risks associated with TiO [...] Read more.
The use of face masks has proven to be an effective preventive measure during the COVID-19 pandemic. However, concerns have emerged regarding the safety of metal (nano)particles incorporated into face masks for antimicrobial purposes. Specifically, this review examines the risks associated with TiO2 nanoparticles (NPs), which are classified as a possible human carcinogen. The inhalation of TiO2 NPs can cause multiple adverse effects, including oxidative stress, pulmonary inflammation, histopathological changes, and (secondary) genotoxicity. Different aspects are discussed, such as the composition and filtration efficiency of face masks, the antimicrobial mode of action and effectiveness of various metals, and the hazards of TiO2 NPs to human health, including exposure limits. A conservative risk assessment was conducted using different worst-case scenarios of potential (sub)chronic TiO2 exposure, derived from published leaching experiments. Most face masks are considered safe, especially for occasional or single use. However, the nanosafety of a minority of face masks on the European market may be inadequate for prolonged and intensive use. Important uncertainties remain, including the risks of combined exposure to TiO2 NPs and silver biocides, and the lack of direct exposure measurements. Considering the potential safety issues and the limited added protective value of TiO2 NPs, it is recommended to ban all applications of TiO2 in face masks based on the precautionary principle. Full article
(This article belongs to the Special Issue Toxicity Assessment and Safety Management of Nanomaterials)
Show Figures

Figure 1

42 pages, 2020 KiB  
Review
Innovative Strategies for Combating Multidrug-Resistant Tuberculosis: Advances in Drug Delivery Systems and Treatment
by Omobolanle A. Omoteso, Adewale O. Fadaka, Roderick B. Walker and Sandile M. Khamanga
Microorganisms 2025, 13(4), 722; https://doi.org/10.3390/microorganisms13040722 - 24 Mar 2025
Cited by 2 | Viewed by 3757
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a significant public health challenge globally, exacerbated by the limited efficacy of existing therapeutic approaches, prolonged treatment duration, and severe side effects. As drug resistance continues to emerge, innovative drug delivery systems and treatment strategies are critical to combating [...] Read more.
Multidrug-resistant tuberculosis (MDR-TB) is a significant public health challenge globally, exacerbated by the limited efficacy of existing therapeutic approaches, prolonged treatment duration, and severe side effects. As drug resistance continues to emerge, innovative drug delivery systems and treatment strategies are critical to combating this crisis. This review highlights the molecular mechanisms underlying resistance to drugs in Mycobacterium tuberculosis, such as genetic mutation, efflux pump activity, and biofilm formation, contributing to the persistence and difficulty in eradicating MDR-TB. Current treatment options, including second-line drugs, offer limited effectiveness, prompting the need for innovation of advanced therapies and drug delivery systems. The progression in drug discovery has resulted in the approval of innovative therapeutics, including bedaquiline and delamanid, amongst other promising candidates under investigation. However, overcoming the limitations of traditional drug delivery remains a significant challenge. Nanotechnology has emerged as a promising solution, with nanoparticle-based drug delivery systems offering improved bioavailability and targeted and controlled release delivery, particularly for pulmonary targeting and intracellular delivery to macrophages. Furthermore, the development of inhalable formulations and the potential of nanomedicines to bypass drug resistance mechanisms presents a novel approach to enhancing drug efficacy. Moreover, adjunctive therapies, including immune modulation and host-directed therapies, are being explored to improve treatment outcomes. Immunotherapies, such as cytokine modulation and novel TB vaccines, offer complementary strategies to the use of antibiotics in combating MDR-TB. Personalized medicine approaches, leveraging genomic profiling of both the pathogen and the host, offer promise in optimizing treatment regimens and minimizing drug resistance. This review underscores the importance of multidisciplinary approaches, combining drug discovery, advanced delivery system development, and immune modulation to address the complexities of treating MDR-TB. Continued innovation, global collaboration, and improved diagnostics are essential to developing practical, accessible, and affordable treatments for MDR-TB. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

25 pages, 7183 KiB  
Article
Ceftriaxone-Loaded Liposomal Nanoparticles for Pulmonary Delivery Against Lower Respiratory Tract Infections: Development and Characterization
by Vijay Kumar Panthi, Kathryn E. Fairfull-Smith, Timothy J. Wells, Tony Wang and Nazrul Islam
Pharmaceuticals 2025, 18(3), 414; https://doi.org/10.3390/ph18030414 - 14 Mar 2025
Cited by 1 | Viewed by 2058
Abstract
Background/Objectives: Herein, we demonstrate the development and characterization of ceftriaxone (CTX)-loaded liposomal nanoparticles (NPs) intended to be applicable to the management of lower respiratory tract infections (LRTIs) associated with resistant bacteria. Methods: The CTX-loaded liposomal NPs were fabricated by a thin film hydration [...] Read more.
Background/Objectives: Herein, we demonstrate the development and characterization of ceftriaxone (CTX)-loaded liposomal nanoparticles (NPs) intended to be applicable to the management of lower respiratory tract infections (LRTIs) associated with resistant bacteria. Methods: The CTX-loaded liposomal NPs were fabricated by a thin film hydration approach. Results: The particle size of the NPs, determined by a Zetasizer, was within the range of 90–536 nm. Microscopic examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that particles are spherical in shape and have retained their original morphology even after freeze-drying. Attenuated total reflection-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric (TG), and powder X-ray diffraction (PXRD) spectra exhibited that CTX is incorporated into the liposomes with no possible interaction between drug and excipients. The formation of the CTX-loaded liposomal NPs was dependent on the concentrations of phospholipids, cholesterol and mannitol; however, no considerable differences were observed in entrapment efficiency and loading capacity of CTX formulations (F6–F10). Using a twin-stage impinger (TSI), the in vitro aerosolization of the formulations were carried out at a flow rate of 60 ± 5 L/min and CTX was determined by a validated HPLC method and the prepared liposomal formulations produced promising fine particle fraction (FPF) between 47 and 62%. The prepared formulation (F6) showed prolonged CTX release of 94.0% ± 5.7 and 95.9% ± 3.9 at 24 h and 48 h, respectively. The drug release followed the Hixon–Crowell model, with CTX being transported through Fickian diffusion. Conclusions: These results highlight the prepared CTX-loaded inhaled liposomal formulation would be suitable for pulmonary delivery and extend the successful antibiotic delivery strategies for the effective management of LRTIs. Full article
(This article belongs to the Special Issue Recent Advances in Inhalation Therapy)
Show Figures

Figure 1

16 pages, 1006 KiB  
Systematic Review
Composite Dust Toxicity Related to Restoration Polishing: A Systematic Review
by Kamila Kucharska, Anna Lehmann, Martyna Ortarzewska, Jakub Jankowski and Kacper Nijakowski
J. Compos. Sci. 2025, 9(2), 90; https://doi.org/10.3390/jcs9020090 - 18 Feb 2025
Viewed by 939
Abstract
An integral part of daily dental practice is preparing and polishing placed composite restorations. When these procedures are performed, significant amounts of composite dust are released from the grinding material. This systematic review aims to enhance the existing body of knowledge, encourage further [...] Read more.
An integral part of daily dental practice is preparing and polishing placed composite restorations. When these procedures are performed, significant amounts of composite dust are released from the grinding material. This systematic review aims to enhance the existing body of knowledge, encourage further dialogue, and expand the understanding of composite dust and its related risks. Following inclusion and exclusion criteria, twelve studies were included. Several studies highlight that composite dust contains nanoparticles capable of deep lung penetration, posing significant health risks to both dental staff and patients. Inhalation of composite dust can lead to respiratory diseases such as pneumoconiosis. Studies have shown that water cooling during composite grinding reduces dust emissions but does not eliminate them completely. Researchers suggest that thermal degradation of the composite material, not just filler particles, may be the source of the nanoparticles. In vitro studies have shown the toxicity of composite dust to bronchial and gingival epithelial cells, especially at high concentrations. Further research is needed on the health effects of composite dust and the development of effective methods to protect staff and patients. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

19 pages, 3640 KiB  
Review
Fundamental and Targeted Approaches in Pulmonary Arterial Hypertension Treatment
by Ji Su Park, Yong Hwan Choi, Ji-Young Min, Jaeseong Lee and Gayong Shim
Pharmaceutics 2025, 17(2), 224; https://doi.org/10.3390/pharmaceutics17020224 - 10 Feb 2025
Cited by 2 | Viewed by 1654
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its [...] Read more.
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its treatment, while irreversible vascular changes, such as fibrosis, remain unaddressed by current therapies. Fundamental research on molecular pathways and targeted delivery systems has paved the way for advanced therapeutic strategies that aim to modify disease progression rather than merely manage symptoms. Nanoparticle-based drug delivery systems, leveraging controlled release and pulmonary targeting, offer a promising avenue to overcome these challenges. Such systems enable precise localization to pulmonary vasculature, minimize systemic side effects, and support emerging approaches like gene therapy and combination treatments. Future research should focus on refining nanoparticle formulations for personalized medicine, optimizing inhalation delivery systems, and integrating multi-target approaches to achieve curative outcomes in PAH. This review explores pathophysiology of PAH, current pharmacological strategies, and innovative nanoparticle-based therapies, emphasizing their potential to transform PAH treatment and address its underlying mechanisms. Full article
Show Figures

Figure 1

34 pages, 1732 KiB  
Review
Dry Powder Inhalers for Delivery of Synthetic Biomolecules
by Hossein Omidian, Ali Nokhodchi and Niloofar Babanejad
Pharmaceuticals 2025, 18(2), 175; https://doi.org/10.3390/ph18020175 - 27 Jan 2025
Cited by 2 | Viewed by 2479
Abstract
This manuscript provides a comprehensive review of advancements in dry powder inhaler (DPI) technology for pulmonary and systemic drug delivery, focusing on proteins, peptides, nucleic acids, and small molecules. Innovations in spray-drying (SD), spray freeze-drying (SFD), and nanocarrier engineering have led to enhanced [...] Read more.
This manuscript provides a comprehensive review of advancements in dry powder inhaler (DPI) technology for pulmonary and systemic drug delivery, focusing on proteins, peptides, nucleic acids, and small molecules. Innovations in spray-drying (SD), spray freeze-drying (SFD), and nanocarrier engineering have led to enhanced stability, bioactivity, and aerosol performance. Studies reveal the critical role of excipients, particle morphology, and device design in optimizing deposition and therapeutic efficacy. Applications include asthma, cystic fibrosis, tuberculosis (TB), and lung cancer, with emerging platforms such as ternary formulations and siRNA-loaded systems demonstrating significant clinical potential. Challenges such as stability, scalability, and patient adherence are addressed through novel strategies, including Quality by Design (QbD) approaches and advanced imaging tools. This work outlines pathways for future innovation in pulmonary drug delivery. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

22 pages, 29766 KiB  
Article
Engineering Lipid Nanoparticles to Enhance Intracellular Delivery of Transforming Growth Factor-Beta siRNA (siTGF-β1) via Inhalation for Improving Pulmonary Fibrosis Post-Bleomycin Challenge
by Xu Deng, Yingjie Yang, Liming Gan, Xinliu Duan, Xiwei Wang, Jingyan Zhang, Aiping Wang, Anan Zhang, Zhizhao Yuan, Daquan Chen and Aiping Zheng
Pharmaceutics 2025, 17(2), 157; https://doi.org/10.3390/pharmaceutics17020157 - 24 Jan 2025
Cited by 1 | Viewed by 1796
Abstract
Background/Objectives: Transforming Growth Factor-beta (TGFβ1) plays a core role in the process of pulmonary fibrosis (PF). The progression of pulmonary fibrosis can be alleviated by siRNA-based inhibiting TGF-β1. However, the limitations of naked siRNA lead to the failure of achieving [...] Read more.
Background/Objectives: Transforming Growth Factor-beta (TGFβ1) plays a core role in the process of pulmonary fibrosis (PF). The progression of pulmonary fibrosis can be alleviated by siRNA-based inhibiting TGF-β1. However, the limitations of naked siRNA lead to the failure of achieving therapeutic effect. This study aimed to design lipid nanoparticles (LNPs) that can deliver siTGF-β1 to the lungs for therapeutic purposes. Methods: The cytotoxicity and transfection assay in vitro were used to screen ionizable lipids (ILs). Design of Experiments (DOE) was used to obtain novel LNPs that can enhance resistance to atomization shear forces. Meanwhile, the impact of LNPs encapsulating siTGF-β1 (siTGFβ1-LNPs) on PF was investigated. Results: When DLin-DMA-MC3 (MC3) was used as the ILs, the lipid phase ratio was MC3:DSPC:DMG-PEG2000:cholesterol = 50:10:3:37, and N/P = 3.25; the siTGFβ1-LNPs could be stably delivered to the lungs via converting the siTGFβ1-LNPs solution into an aerosol (atomization). In vitro experiments have confirmed that siTGFβ1-LNPs have high safety, high encapsulation, and can promote cellular uptake and endosomal escape. In addition, siTGFβ1-LNPs significantly reduced inflammatory infiltration and attenuated deposition of extracellular matrix (ECM) and protected the lung tissue from the toxicity of bleomycin (BLM) without causing systemic toxicity. Conclusions: The siTGFβ1-LNPs can be effectively delivered to the lungs, resulting in the silencing of TGF-β1 mRNA and the inhibition of the epithelial–mesenchymal transition pathway, thereby delaying the process of PF, which provides a new method for the treatment and intervention of PF. Full article
Show Figures

Figure 1

Back to TopTop