Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases
Abstract
1. Introduction
2. Lung Barriers and Aerodynamic Considerations When Designing Nanoparticles for Pulmonary Drug Delivery
2.1. Pulmonary Barriers Affecting Drug Delivery of Nanoparticles
2.2. Aerodynamic Considerations for Effective Pulmonary Drug Delivery
3. Inhalation Drug Delivery Systems
3.1. Pressurized Metered Dose Inhalers (pMDIs)
3.2. Dry Powder Inhalers (DPIs)
3.3. Soft Mist Inhalers (SMIs)
3.4. Medical Nebulizers
3.4.1. Air-Jet Nebulizers
3.4.2. Ultrasonic Nebulizers
3.4.3. Vibrating-Mesh Nebulizers
4. Inhaled Nanomedicine Formulations in Inflammatory Lung Diseases
4.1. Liposomes
4.2. Polymeric Nanoparticles
4.3. Inorganic Nanoparticles
4.4. Nanocrystals
4.5. Quantum Dots
4.6. Exosomes
4.7. Other Nanosystems
5. Challenges in the Treatment of Inflammatory Lung Diseases
5.1. Transition from Preclinical Studies to Clinical Trials
Nanoparticle Formulation | Product Name (Active Pharmaceutical Ingredient) | Disease/Condition | Route of Administration (Device) | Phase (Year of Last Update) | Clinical Trial Identifier/Relevant Reference |
---|---|---|---|---|---|
Liposome | Arikayce® (Amikacin) | NTM abscessus or MAC lung infections | Inhalation (via nebulization) | Complete—FDA Approved (2018) | NCT01315236/[143] |
Lipid | LUNAR®-CFTR (ARCT-032)—CFTR mRNA | CF | Inhalation (via nebulization) | Phase II (2025) | NCT06747858/[142] |
Nanobodies | LQ036 (IL-4Rα Nbs) | Mild asthma | Inhalation and IV infusion | Phase I (2023) | NCT04993443/[144] |
Liposome | Arikayce® (Amikacin) | Pseudomonas infection | Inhalation (via nebulization) | Phase III (2020) | NCT01315678/[145] |
Liposome | Arikayce® (Amikacin) | CF | Inhalation (via nebulization) | Phase III (2020) | NCT01316276/[146] |
Anticalin proteins | Elarekibep (AZD1402/PRS-060). IL-4Rα antagonist | Mild asthma | Oral inhalation (via nebulization) | Phase I (2020) | NCT03574805/[141] |
Anticalin proteins | Elarekibep (AZD1402/PRS-060). IL-4Rα antagonist | Moderate asthma | Oral inhalation (via DPI) | Phase II (2023) | NCT04643158/[147] |
Silver nanoparticles | NA | Immune response | Inhalation (via nebulization) | Withdrawn | NCT02408874/[142] |
Nanoparticle formulation of Remdesivir | NEUROSIVIR (Remdesivir alone and with NA-831) | COVID-19 | Inhalation (via nebulization) | Phase I (2020) | NCT04480333/[142] |
Lipid | MRT5005. Codon-optimized CFTR mRNA | Cystic fibrosis | Inhalation (via nebulization) | Phase I/II (2020) | NCT03375047/[148] |
Lipid | pGM169/GL67A. CFTR gene–liposome complex | Cystic fibrosis | Inhalation (via nebulization) | Phase II (2015) | NCT01621867/[149] |
Liposome | Arikayce®/ALIS (Amikacin) | Refractory MAC lung disease | Inhalation (via nebulization) | Phase III (2020) | NCT02344004/[150] |
Exosome | Exo-1 and Exo-2 formulations with standard therapy | SARS-CoV-2 Associated Pneumonia | Inhalation (not mentioned) | Phase I/II (2020) | NCT04491240/[151] |
Exosome | Exo-1 and Exo-2 formulations with standard therapy | COVID-19 Associated Pneumonia | Inhalation (not mentioned) | Phase II (2020) | NCT04602442/[142] |
5.2. Toxicity of the Different Types of Inhalable Nanoparticles
5.3. Scale-Up and Regulatory Hurdles of Inhalable Nanoparticles
5.4. Recent Breakthroughs and Their Potential Influence on the Future of Inhalable Nanomedicines
6. Bridging Inhalation Devices and Nanotechnology: Nanoparticle-Device Studies
6.1. pMDIs for the Delivery of Nanoparticles
6.2. DPIs for the Delivery of Inhalable Nanoparticles
6.3. Nebulizers for the Delivery of Nanoparticles
Inhalation Devices | Key Principle | Advantages | Limitations | Compatible Nanoparticles (Reference) |
---|---|---|---|---|
Jet nebulizers |
|
|
| |
Ultrasonic nebulizers |
|
|
| |
Mesh nebulizers |
|
|
| |
DPIs |
|
|
| |
pMDIs |
|
|
| |
SMIs |
|
|
|
|
7. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADME | Absorption, distribution, metabolism, and excretion |
AGM | African green monkey |
AgNPs | Silver nanoparticles |
AI | Artificial intelligence |
AILDs | Acute inflammatory lung disorders |
ALI | Acute lung injury |
ARDS | Acute respiratory distress syndrome |
AuNPs | Gold nanoparticles |
BALB/c | Bagg Albino c mice |
BCS | Biopharmaceutics Classification System |
CF | Cystic fibrosis |
CFC | Chlorofluorocarbon |
CFTR | Cystic fibrosis transmembrane conductance regulator |
CILDs | Chronic inflammatory lung disorders |
CLF | Clofazimine |
CLF-NCLs | Clofazimine nanocrystals |
CMAs | Critical material attributes |
COPD | Chronic obstructive pulmonary disease |
COVID-19 | CoronaVirus Disease of 2019 |
CPPs | Critical process parameters |
CQAs | Critical quality attributes |
CS | Cepacia syndrome |
DMs | Dendritic macromolecules (dendrimers) |
DPI | Dry powder inhaler |
EVs | Extracellular vesicles |
EXOs | Exosomes |
FDA | Food and Drug Administration |
FeNPs | Iron oxide nanoparticles |
FP | Fluticasone propionate |
FPF | Fine particle fraction |
GMP | Good Manufacturing Practice |
H&E stain | Hematoxylin and eosin stain |
HFA | Hydrofluoroalkane |
HFO | Hydrofluoroolefin |
IFN-γ | Interferon gamma |
IgE | Immunoglobulin E |
IL | Interleukin |
INPs | Inorganic Nanoparticles |
IV | Intravenous |
LNs | Liposomal nanoparticles |
Lung-Exos | Lung exosomes |
LUVs | Large unilamellar vesicles |
MAC | Mycobacterium Avium Complex |
MCs | Microcrystals |
MEs | Microemulsions |
MIC | Minimum inhibitory concentration |
MLVs | Multilamellar vesicles |
MMAD | Mass median aerodynamic diameter |
mPEG | Methoxy poly(ethylene glycol) |
mRNA | Messenger Ribonucleic Acid |
MTB | Mycobacterium tuberculosis |
NAMs | Nano-agglomerates |
Nas | Nanoaggregates |
Nbs | Nanobodies |
NCs | Nanocrystals |
NEs | Nano-emulsions |
NGs | Nanogels |
NTM | Nontuberculous mycobacteria |
OLVs | Oligolamellar vesicles |
PEG | Polyethylene glycol |
PEI | Polyethyleneimine |
PLGA | Poly(lactic-co-glycolic) acid |
pMDI | Pressurized metered dose inhaler |
PNPs | Polymeric nanoparticles |
QbD | Quality-by-Design |
RBP-exo/Cur | Curcumin-loaded exosomes modified with RAGE-binding anti-inflammatory peptides |
SAL | Salmeterol xinafoate |
SDND | Solid drug nanoparticle dispersions |
SEM | Scanning electron microscopy |
SLP | Solid lipid nanoparticle |
SMI | Soft mist inhaler |
SPC | Soya phosphatidylcholine |
SPIONPs | Super-paramagnetic iron oxide nanoparticles |
SUVs | Small unilamellar vesicles |
TEM | Transmission Electron Microscopy |
VLPs | Virus-like particles |
WHO | World Health Organization |
References
- Brannon, E.R.; Guevara, M.V.; Pacifici, N.J.; Lee, J.K.; Lewis, J.S.; Eniola-Adefeso, O. Polymeric particle-based therapies for acute inflammatory diseases. Nat. Rev. Mater. 2022, 7, 796–813. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 8 January 2025).
- Gulati, N.; Chellappan, D.K.; MacLoughlin, R.; Dua, K.; Dureja, H. Inhaled nano-based therapeutics for inflammatory lung diseases: Recent advances and future prospects. Life Sci. 2021, 285, 119969. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.; Pier, J.; Litonjua, A.A. Asthma epidemiology and risk factors. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 5–15. [Google Scholar]
- Bollmeier, S.G.; Hartmann, A.P. Management of chronic obstructive pulmonary disease: A review focusing on exacerbations. Am. J. Health-Syst. Pharm. 2020, 77, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Smalley, K.R.; Aufegger, L.; Flott, K.; Mayer, E.K.; Darzi, A. Can self-management programmes change healthcare utilisation in COPD?: A systematic review and framework analysis. Patient Educ. Couns. 2021, 104, 50–63. [Google Scholar] [CrossRef]
- Gomes, M.; Teixeira, A.L.; Coelho, A.; Araújo, A.; Medeiros, R. The role of inflammation in lung cancer. Adv. Exp. Med. Biol. 2014, 816, 1–23. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Shao, Y.; He, D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023, 15, 2151. [Google Scholar] [CrossRef]
- Christenson, S.A.; Smith, B.M.; Bafadhel, M.; Putcha, N. Chronic obstructive pulmonary disease. Lancet 2022, 399, 2227–2242. [Google Scholar] [CrossRef]
- Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 2017, 3, 1–19. [Google Scholar] [CrossRef]
- Miller, R.L.; Grayson, M.H.; Strothman, K. Advances in asthma: New understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J. Allergy Clin. Immunol. 2021, 148, 1430–1441. [Google Scholar] [CrossRef]
- Porsbjerg, C.M.; Sverrild, A.; Lloyd, C.M.; Menzies-Gow, A.N.; Bel, E.H. Anti-alarmins in asthma: Targeting the airway epithelium with next-generation biologics. Eur. Respir. J. 2020, 56, 2000260. [Google Scholar] [CrossRef]
- Brightling, C.; Greening, N. Airway inflammation in COPD: Progress to precision medicine. Eur. Respir. J. 2019, 54, 1900651. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, K.; Cai, X.; Yang, B.; He, Q.; Wang, J.; Weng, Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm. Sin. B 2022, 12, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.L.; Tan, S.J.; Campolongo, M.J.; Hartman, M.R.; Kahn, J.S.; Luo, D. 3.03—Bio-Mediated Assembly of Ordered Nanoparticle Superstructures. In Comprehensive Nanoscience and Technology; Andrews, D.L., Scholes, G.D., Wiederrecht, G.P., Eds.; Academic Press: Amsterdam, The Netherlands, 2011; pp. 69–103. [Google Scholar] [CrossRef]
- Van Eerdenbrugh, B.; Vermant, J.; Martens, J.A.; Froyen, L.; Humbeeck, J.V.; Van den Mooter, G.; Augustijns, P. Solubility Increases Associated with Crystalline Drug Nanoparticles: Methodologies and Significance. Mol. Pharm. 2010, 7, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liang, Y.; Yuhong, J.; Xin, P.; Han, J.L.; Du, Y.; Yu, X.; Zhu, R.; Zhang, M.; Chen, W.; et al. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des. Devel. Ther. 2024, 18, 1469–1495. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef]
- Kaur, G.; Narang, R.K.; Rath, G.; Goyal, A.K. Advances in Pulmonary Delivery of Nanoparticles. Artif. Cells Blood Substit. Biotechnol. 2012, 40, 75–96. [Google Scholar] [CrossRef]
- Yue, P.; Zhou, W.; Huang, G.; Lei, F.; Chen, Y.; Ma, Z.; Chen, L.; Yang, M. Nanocrystals based pulmonary inhalation delivery system: Advance and challenge. Drug Deliv. 2022, 29, 637–651. [Google Scholar] [CrossRef]
- van Rijt, S.H.; Bein, T.; Meiners, S. Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J. 2014, 44, 765–774. [Google Scholar] [CrossRef]
- Myrdal, P.B.; Sheth, P.; Stein, S.W. Advances in metered dose inhaler technology: Formulation development. AAPS PharmSciTech 2014, 15, 434–455. [Google Scholar] [CrossRef]
- Kageyama, T.; Ito, T.; Tanaka, S.; Nakajima, H. Physiological and immunological barriers in the lung. Semin. Immunopathol. 2024, 45, 533–547. [Google Scholar] [CrossRef]
- Murgia, X.; de Souza Carvalho, C.; Lehr, C.-M. Overcoming the pulmonary barrier: New insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 2014, 6, 157–169. [Google Scholar] [CrossRef]
- García-Fernández, A.; Sancenón, F.; Martínez-Máñez, R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv. Rev. 2021, 177, 113953. [Google Scholar] [CrossRef] [PubMed]
- Munkholm, M.; Mortensen, J. Mucociliary clearance: Pathophysiological aspects. Clin. Physiol. Funct. Imaging 2014, 34, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.; Comstock, A.T.; Sajjan, U.S. Barrier function of airway tract epithelium. Tissue Barriers 2013, 1, e24997. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.D.; Swaroop Vanka, K.; Chavelier, A.; Shastri, M.D.; Tambuwala, M.M.; Bakshi, H.A.; Pabreja, K.; Mahmood, M.Q.; O’Toole, R.F. Chapter 1—Chronic respiratory diseases: An introduction and need for novel drug delivery approaches. In Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Dua, K., Hansbro, P.M., Wadhwa, R., Haghi, M., Pont, L.G., Williams, K.A., Eds.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 1–31. [Google Scholar] [CrossRef]
- George, M.; Boukherroub, R.; Sanyal, A.; Szunerits, S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater. Today Bio. 2025, 31, 101616. [Google Scholar] [CrossRef]
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef]
- Kim, J.; Sahay, G. Nanomedicine hitchhikes on neutrophils to the inflamed lung. Nat. Nanotechnol. 2022, 17, 1–2. [Google Scholar] [CrossRef]
- Xu, Y.; Parra-Ortiz, E.; Wan, F.; Cañadas, O.; Garcia-Alvarez, B.; Thakur, A.; Franzyk, H.; Pérez-Gil, J.; Malmsten, M.; Foged, C. Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant. J Colloid Interface Sci. 2023, 633, 511–525. [Google Scholar] [CrossRef]
- Feng, X.; Shi, Y.; Zhang, Y.; Lei, F.; Ren, R.; Tang, X. Opportunities and Challenges for Inhalable Nanomedicine Formulations in Respiratory Diseases: A Review. Int. J. Nanomed. 2024, 19, 1509–1538. [Google Scholar] [CrossRef]
- Patton, J.S.; Brain, J.D.; Davies, L.A.; Fiegel, J.; Gumbleton, M.; Kim, K.-J.; Sakagami, M.; Vanbever, R.; Ehrhardt, C. The particle has landed—Characterizing the fate of inhaled pharmaceuticals. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, S71–S87. [Google Scholar] [CrossRef]
- Raine, R.I. Technology in respiratory medicine. Contin. Med. Educ. 2003, 21, 200–204. [Google Scholar]
- Accomasso, L.; Cristallini, C.; Giachino, C. Risk Assessment and Risk Minimization in Nanomedicine: A Need for Predictive, Alternative, and 3Rs Strategies. Front. Pharmacol. 2018, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Rogueda, P.G.; Traini, D. The nanoscale in pulmonary delivery. Part 1: Deposition, fate, toxicology and effects. Expert Opin. Drug Deliv. 2007, 4, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Xie, J.; Luo, Y.; Ma, Y.; Tang, S.; Yue, P.; Yang, M. Hyaluronic acid based nanocrystals hydrogels for enhanced topical delivery of drug: A case study. Carbohydr. Polym. 2018, 202, 64–71. [Google Scholar] [CrossRef]
- Wang, B.; Wang, L.; Yang, Q.; Zhang, Y.; Qinglai, T.; Yang, X.; Xiao, Z.; Lei, L.; Li, S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater. Today Bio 2024, 25, 100966. [Google Scholar] [CrossRef]
- Banat, H.; Ambrus, R.; Csóka, I. Drug combinations for inhalation: Current products and future development addressing disease control and patient compliance. Int. J. Pharm. 2023, 643, 123070. [Google Scholar] [CrossRef]
- Xiroudaki, S.; Schoubben, A.; Giovagnoli, S.; Rekkas, D.M. Dry powder inhalers in the digitalization era: Current status and future perspectives. Pharmaceutics 2021, 13, 1455. [Google Scholar] [CrossRef]
- Raju, S.; Suryawanshi, S. Use of pressurized metered dose inhalers in patients with chronic obstructive pulmonary disease: Review of evidence. Expert Rev. Clin. Pharmacol. 2014, 7, 929–937. [Google Scholar] [CrossRef]
- Chandel, A.; Goyal, A.K.; Ghosh, G.; Rath, G. Recent advances in aerosolised drug delivery. Biomed. Pharmacother. 2019, 112, 108601. [Google Scholar] [CrossRef]
- Vaswani, S.K.; Creticos, P.S. Metered Dost Inhaler: Past, Present, and Future. Ann. Allergy Asthma Immunol. 1998, 80, 11–23. [Google Scholar] [CrossRef]
- Hess, D.R. Aerosol delivery devices in the treatment of asthma. Respir. Care 2008, 53, 699–725. [Google Scholar] [PubMed]
- Smyth, H.D. The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv. Drug Deliv. Rev. 2003, 55, 807–828. [Google Scholar] [CrossRef] [PubMed]
- Legh-Land, V.; Haddrell, A.E.; Lewis, D.; Murnane, D.; Reid, J.P. Water Uptake by Evaporating pMDI Aerosol Prior to Inhalation Affects Both Regional and Total Deposition in the Respiratory System. Pharmaceutics 2021, 13, 941. [Google Scholar] [CrossRef] [PubMed]
- Usmani, O.S. Choosing the right inhaler for your asthma or COPD patient. Ther. Clin. Risk Manag. 2019, 15, 461–472. [Google Scholar] [CrossRef]
- Newman, S.P.; Pavia, D.; Moren, F.; Sheahan, N.F.; Clarke, S.W. Deposition of pressurised aerosols in the human respiratory tract. Thorax 1981, 36, 52–55. [Google Scholar] [CrossRef]
- Urrutia-Pereira, M.; Chong-Neto, H.J.; Winders, T.A.; Solé, D. Environmental impact of inhaler devices on respiratory care: A narrative review. J. Bras. Pneumol. 2023, 48, e20220270. [Google Scholar] [CrossRef]
- Zhou, Q.T.; Tang, P.; Leung, S.S.Y.; Chan, J.G.Y.; Chan, H.-K. Emerging inhalation aerosol devices and strategies: Where are we headed? Adv. Drug Deliv. Rev. 2014, 75, 3–17. [Google Scholar] [CrossRef]
- Tewari, S.G.; Bell, J.P.; Budgen, N.; Platz, S.; Gibbs, M.; Newham, P.; Kimko, H. Pressurized metered-dose inhalers using next-generation propellant HFO-1234ze (E) deposit negligible amounts of trifluoracetic acid in the environment. Front. Environ. Sci. 2023, 11, 1297920. [Google Scholar] [CrossRef]
- Murphy, A.; Howlett, D.; Gowson, A.; Lewis, H. Understanding the feasibility and environmental effectiveness of a pilot postal inhaler recovery and recycling scheme. npj Prim. Care Respir. Med. 2023, 33, 5. [Google Scholar] [CrossRef]
- Wilkinson, A.J.; Braggins, R.; Steinbach, I.; Smith, J. Costs of switching to low global warming potential inhalers. An economic and carbon footprint analysis of NHS prescription data in England. BMJ Open 2019, 9, e028763. [Google Scholar] [CrossRef]
- Tan, S.Y.; Hoon, M.; Tan, Y.H.; Teo, A.H.; Cheng, Z.R.; Teoh, O.H. 425 Ensuring safe use of pressurised metered dose inhalers without a built-in dose counter. BMJ Paediatr. Open 2021, 5 (Suppl. 1), A125.2. Available online: https://bmjpaedsopen.bmj.com/content/5/Suppl_1/A125.2 (accessed on 2 June 2025).
- Wilkinson, A.J.K.; Anderson, G. Sustainability in Inhaled Drug Delivery. Pharm. Med. 2020, 34, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, J.; Corrigan, C.; Levy, M.L.; Viejo, J.L. Inhaler devices–from theory to practice. Respir. Med. 2013, 107, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Verma, R.; Garcia-Contreras, L. Inhalation drug delivery devices: Technology update. Med. Devices Evid. Res. 2015, 8, 131–139. [Google Scholar]
- Ye, Y.; Ma, Y.; Zhu, J. The future of dry powder inhaled therapy: Promising or discouraging for systemic disorders? Int. J. Pharm. 2022, 614, 121457. [Google Scholar] [CrossRef]
- Clark, A.R.; Weers, J.G.; Dhand, R. The Confusing World of Dry Powder Inhalers: It Is All About Inspiratory Pressures, Not Inspiratory Flow Rates. J. Aerosol. Med. Pulm Drug Deliv. 2020, 33, 1–11. [Google Scholar] [CrossRef]
- Janson, C.; Lööf, T.; Telg, G.; Stratelis, G.; Nilsson, F. Difference in resistance to humidity between commonly used dry powder inhalers: An in vitro study. NPJ Prim. Care Respir. Med. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Perriello, E.A.; Sobieraj, D.M. The Respimat Soft Mist Inhaler, a Novel Inhaled Drug Delivery Device. Conn. Med. 2016, 80, 359–364. [Google Scholar]
- Sadeghi, T.; Fatehi, P.; Pakzad, L. Effect of Nasal Inhalation on Drug Particle Deposition and Size Distribution in the Upper Airway: With Soft Mist Inhalers. Ann. Biomed. Eng. 2024, 52, 1195–1212. [Google Scholar] [CrossRef]
- Smith, G.; Hiller, C.; Mazumder, M.; Bone, R. Aerodynamic size distribution of cromolyn sodium at ambient and airway humidity. Am. Rev. Respir. Dis. 1980, 121, 513–517. [Google Scholar] [CrossRef]
- Wachtel, H.; Kattenbeck, S.; Dunne, S.; Disse, B. The Respimat® development story: Patient-centered innovation. Pulm. Ther. 2017, 3, 19–30. [Google Scholar] [CrossRef]
- Carrigy, N.B.; Chang, R.Y.; Leung, S.S.; Harrison, M.; Petrova, Z.; Pope, W.H.; Hatfull, G.F.; Britton, W.J.; Chan, H.-K.; Sauvageau, D. Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm. Res. 2017, 34, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, T.; Tohda, Y.; Nakamura, S.; Suga, Y. The Respimat® soft mist inhaler: Implications of drug delivery characteristics for patients. Clin. Drug Investig. 2019, 39, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P. Use of Respimat Soft Mist inhaler in COPD patients. Int. J. Chron. Obs. Pulmon. Dis. 2006, 1, 251–259. [Google Scholar] [CrossRef]
- Gumani, D.; Newmarch, W.; Puopolo, A.; Casserly, B. Inhaler technology. Int. J. Respir. Pulm. Med. 2016, 3, 064. [Google Scholar]
- Khairnar, S.V.; Jain, D.D.; Tambe, S.M.; Chavan, Y.R.; Amin, P.D. Nebulizer systems: A new frontier for therapeutics and targeted delivery. Ther. Deliv. 2022, 13, 31–49. [Google Scholar] [CrossRef]
- Fink, J.B.; Stapleton, K.W. Nebulizers. J. Aerosol Med. Pulm. Drug Deliv. 2024, 37, 140–156. [Google Scholar] [CrossRef]
- Khan, I.; Elhissi, A.; Shah, M.; Alhnan, M.A.; Ahmed, W. 9—Liposome-based carrier systems and devices used for pulmonary drug delivery. In Biomaterials and Medical Tribology; Davim, J.P., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 395–443. [Google Scholar] [CrossRef]
- Arı, A. Jet, Ultrasonic, and Mesh Nebulizers: An Evaluation of Nebulizers for Better Clinical Outcomes. Eurasian J. Pulmonol. 2014, 16, 1–7. [Google Scholar] [CrossRef]
- Ari, A.; Fink, J.B. Guidelines for aerosol devices in infants, children and adults: Which to choose, why and how to achieve effective aerosol therapy. Expert Rev. Respir. Med. 2011, 5, 561–572. [Google Scholar] [CrossRef]
- Ari, A.; Restrepo, R.D. Aerosol delivery device selection for spontaneously breathing patients: 2012. Respir. Care 2012, 57, 613–626. [Google Scholar] [CrossRef]
- Taylor, K.M.; McCallion, O.N. Ultrasonic nebulisers for pulmonary drug delivery. Int. J. Pharm. 1997, 153, 93–104. [Google Scholar] [CrossRef]
- Watts, A.B.; McConville, J.T.; Williams III, R.O. Current therapies and technological advances in aqueous aerosol drug delivery. Drug Dev. Ind. Pharm. 2008, 34, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Hickey, A.J. Emerging trends in inhaled drug delivery. Adv. Drug Deliv. Rev. 2020, 157, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Vecellio, L.; De Gersem, R.; Le Guellec, S.; Reychler, G.; Pitance, L.; Le Pennec, D.; Diot, P.; Chantrel, G.; Bonfils, P.; Jamar, F. Deposition of aerosols delivered by nasal route with jet and mesh nebulizers. Int. J. Pharm. 2011, 407, 87–94. [Google Scholar] [CrossRef]
- Dhand, R. How should aerosols be delivered during invasive mechanical ventilation? Respir. Care 2017, 62, 1343–1367. [Google Scholar] [CrossRef]
- Skaria, S.; Smaldone, G.C. Omron NE U22: Comparison between vibrating mesh and jet nebulizer. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 173–180. [Google Scholar] [CrossRef]
- Johnson, J.C.; Waldrep, J.C.; Guo, J.; Dhand, R. Aerosol delivery of recombinant human DNase I: In vitro comparison of a vibrating-mesh nebulizer with a jet nebulizer. Respir. Care 2008, 53, 1703–1708. [Google Scholar]
- Ruickbie, S.; Hall, A.; Ball, J. Therapeutic aerosols in mechanically ventilated patients. Annu. Update Intensive Care Emerg. Med. 2011, 2011, 197–206. [Google Scholar]
- Paszko, E.; Ehrhardt, C.; Senge, M.O.; Kelleher, D.P.; Reynolds, J.V. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 2011, 8, 14–29. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, Y.; Peng, C.; Muluh, T.A.; Anayyat, U.; Liang, L. Recent advancement in inhaled nano-drug delivery for pulmonary, nasal, and nose-to-brain diseases. Curr. Drug Deliv. 2025, 22, 3–14. [Google Scholar] [CrossRef]
- Lim, Y.H.; Tiemann, K.M.; Hunstad, D.A.; Elsabahy, M.; Wooley, K.L. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 842–871. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, J.; Li, G.; Zhang, H.; Wang, L.; Li, D.; Ding, J. Spermidine-mediated poly (lactic-co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int. J. Nanomed. 2017, 12, 6687–6704. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Wang, W.; Zhang, R.; Wu, C.; Pan, X.; Huang, Z. Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives. Pharmaceutics 2024, 16, 161. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.-C.; Alsup, J.W.; Lai, Y.; Hu, Y.; Heyde, B.R.; Tung, D. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res. Lett. 2009, 4, 254–261. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Awad, M.; Al-Farraj, A.S.; Al-Turki, A.M. Stability and Dynamic Aggregation of Bare and Stabilized Zero-Valent Iron Nanoparticles under Variable Solution Chemistry. Nanomaterials 2020, 10, 192. [Google Scholar] [CrossRef]
- Elhissi, A. Liposomes for pulmonary drug delivery: The role of formulation and inhalation device design. Curr. Pharm. Des. 2017, 23, 362–372. [Google Scholar] [CrossRef]
- Elhissi, A.; Elkhalifa, D.; Khan, I.; Ahmed, W. Proliposomes: A Manufacturing Technology of Liposomes for Pulmonary Drug Delivery; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Dymek, M.; Sikora, E. Liposomes as biocompatible and smart delivery systems—The current state. Adv. Colloid Interface Sci. 2022, 309, 102757. [Google Scholar] [CrossRef]
- Honmane, S.; Hajare, A.; More, H.; Osmani, R.A.M.; Salunkhe, S. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. J. Liposome Res. 2019, 29, 332–342. [Google Scholar] [CrossRef]
- Leong, E.W.X.; Ge, R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022, 10, 2179. [Google Scholar] [CrossRef]
- Weber, S.; Zimmer, A.; Pardeike, J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 2014, 86, 7–22. [Google Scholar] [CrossRef]
- McCalden, T.A.; Radhakrishnan, R. A comparative study of the bronchodilator effect and duration of action of liposome encapsulated beta-2 adrenergic agonists in the guinea-pig. Pulm. Pharmacol. 1991, 4, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Chellappan, D.K.; Prasher, P.; Saravanan, V.; Yee, V.S.V.; Chi, W.C.W.; Wong, J.W.; Wong, J.K.; Wong, J.T.; Wan, W.; Chellian, J. Protein and peptide delivery to lungs by using advanced targeted drug delivery. Chem.-Biol. Interact. 2022, 351, 109706. [Google Scholar] [CrossRef] [PubMed]
- Gallez, A.; Palazzo, C.; Blacher, S.; Tskitishvili, E.; Noël, A.; Foidart, J.-M.; Evrard, B.; Pequeux, C.; Piel, G. Liposomes and drug-in-cyclodextrin-in-liposomes formulations encapsulating 17β-estradiol: An innovative drug delivery system that prevents the activation of the membrane-initiated steroid signaling (MISS) of estrogen receptor α. Int. J. Pharm. 2020, 573, 118861. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, D.; Blanchard, J.; Gonda, I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics 2016, 8, 6. [Google Scholar] [CrossRef]
- Lowry, C.; Marty, F.; Vargas, S.; Lee, J.; Fiumara, K.; Deykin, A.; Baden, L. Safety of aerosolized liposomal versus deoxycholate amphotericin B formulations for prevention of invasive fungal infections following lung transplantation: A retrospective study. Transpl. Infect. Dis. 2007, 9, 121–125. [Google Scholar] [CrossRef]
- Letsou, G.V.; Safi, H.J.; Reardon, M.J.; Ergenoglu, M.; Li, Z.; Klonaris, C.N.; Baldwin, J.C.; Gilbert, B.E.; Waldrep, J.C. Pharmacokinetics of liposomal aerosolized cyclosporine A for pulmonary immunosuppression. Ann. Thorac. Surg. 1999, 68, 2044–2048. [Google Scholar] [CrossRef]
- Tagami, T.; Ando, Y.; Ozeki, T. Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A2 for efficient pulmonary drug delivery to lung cancers. Int. J. Pharm. 2017, 517, 35–41. [Google Scholar] [CrossRef]
- LoPresti, S.T.; Arral, M.L.; Chaudhary, N.; Whitehead, K.A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 2022, 345, 819–831. [Google Scholar] [CrossRef]
- Garbuzenko, O.B.; Saad, M.; Betigeri, S.; Zhang, M.; Vetcher, A.A.; Soldatenkov, V.A.; Reimer, D.C.; Pozharov, V.P.; Minko, T. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm. Res. 2009, 26, 382–394. [Google Scholar] [CrossRef]
- Goldstein, D.A.; Tan, Y.K.; Soldin, S.J. Pharmacokinetics and absolute bioavailability of salbutamol in healthy adult volunteers. Eur. J. Clin. Pharmacol. 1987, 32, 631–634. [Google Scholar] [CrossRef]
- De Leo, V.; Ruscigno, S.; Trapani, A.; Di Gioia, S.; Milano, F.; Mandracchia, D.; Comparelli, R.; Castellani, S.; Agostiano, A.; Trapani, G.; et al. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm. 2018, 545, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.W.; Santos, J.L.; Williford, J.M.; Mao, H.Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control Release 2015, 219, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez Cisneros, C.; Bloemen, V.; Mignon, A. Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review. Polymers 2021, 13, 760. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Bai, Y.; Zhang, K.; Wang, Z.; Zhang, Y.; Guan, Q.; Wang, S.; Li, Z.; Li, Z.; et al. Polysialic acid-based nanoparticles for enhanced targeting and controlled dexamethasone release in pulmonary inflammation treatment. Int. J. Biol. Macromol. 2025, 297, 139550. [Google Scholar] [CrossRef]
- Ghazanfary, S.; Rahmanian, M.; Vatanchian, M.; Haghbin, A.; Shakeri, F.; Oroojalian, F. Characterization and Efficacy Evaluation of mPEG-PLGA/Taraxasterol Acetate Nanoparticles as Nano-Therapeutic Agents in Asthma Management. BioNanoScience 2024, 15, 124. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. A Review of Clinical Translation of Inorganic Nanoparticles. Aaps J. 2015, 17, 1041–1054. [Google Scholar] [CrossRef]
- D’Souza, A.; Shegokar, R. 16—Polymer: Lipid Hybrid Nanostructures in Cancer Drug Delivery: Successes and Limitations. In Nanoarchitectonics for Smart Delivery and Drug Targeting; Holban, A.M., Grumezescu, A.M., Eds.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 431–463. [Google Scholar] [CrossRef]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Martín-Faivre, L.; Prince, L.; Cornu, C.; Villeret, B.; Sanchez-Guzman, D.; Rouzet, F.; Sallenave, J.-M.; Garcia-Verdugo, I. Pulmonary delivery of silver nanoparticles prevents influenza infection by recruiting and activating lymphoid cells. Biomaterials 2025, 312, 122721. [Google Scholar] [CrossRef]
- Srinivas, A.; Rao, P.J.; Selvam, G.; Goparaju, A.; Murthy, B.P.; Reddy, N.P. Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum. Exp. Toxicol. 2012, 31, 1113–1131. [Google Scholar] [CrossRef]
- Yue, L.; Qidian, L.; Jiawei, W.; Rou, X.; Miao, H. Acute iron oxide nanoparticles exposure induced murine eosinophilic airway inflammation via TLR2 and TLR4 signaling. Environ. Toxicol. 2022, 37, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Al Faraj, A.; Shaik, A.S.; Afzal, S.; Al Sayed, B.; Halwani, R. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int. J. Nanomed. 2014, 9, 1491–1503. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias-Zambrano, O.; Motamedi, M.; Ameredes, B.T.; Tian, B.; Calhoun, W.J.; Zhao, Y.; Brasier, A.R.; Kalubowilage, M.; Malalasekera, A.P.; Yapa, A.S.; et al. Optical biosensing of markers of mucosal inflammation. Nanomedicine 2022, 40, 102476. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Pinar, A.A.; Lam, M.; Bourke, J.E.; Royce, S.G.; Selomulya, C.; Samuel, C.S. Pulmonary myeloid cell uptake of biodegradable nanoparticles conjugated with an anti-fibrotic agent provides a novel strategy for treating chronic allergic airways disease. Biomaterials 2021, 273, 120796. [Google Scholar] [CrossRef]
- Jadhav, K.; Jhilta, A.; Singh, R.; Ray, E.; Sharma, N.; Shukla, R.; Singh, A.K.; Verma, R.K. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. Biomater. Adv. 2023, 154, 213594. [Google Scholar] [CrossRef]
- Dacco, V.; Alicandro, G.; Consales, A.; Rosazza, C.; Sciarrabba, C.S.; Cariani, L.; Colombo, C. Cepacia syndrome in cystic fibrosis: A systematic review of the literature and possible new perspectives in treatment. Pediatr. Pulmonol. 2023, 58, 1337–1343. [Google Scholar] [CrossRef]
- Costabile, G.; Provenzano, R.; Azzalin, A.; Scoffone, V.C.; Chiarelli, L.R.; Rondelli, V.; Grillo, I.; Zinn, T.; Lepioshkin, A.; Savina, S.; et al. PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomed. Nanotechnol. Biol. Med. 2020, 23, 102113. [Google Scholar] [CrossRef]
- Reddy, K.T.K.; Madhavi Latha, B.; Gupta, J.K.; Chaitanya, A.; Srinivasa Babu, P.; Vamseekrishna, G.; Manikanta, Y.; Sahithi, A. Discovery and History of Quantum Dots. In Quantum Dots Based Nanocomposites: Design, Fabrication and Emerging Applications; Thomas, S., Das, P., Ganguly, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 13–34. [Google Scholar] [CrossRef]
- Ren, L.; Wang, L.; Rehberg, M.; Stoeger, T.; Zhang, J.; Chen, S. Applications and immunological effects of quantum dots on respiratory system. Front. Immunol. 2022, 12, 795232. [Google Scholar] [CrossRef]
- Roberts, J.R.; Antonini, J.M.; Porter, D.W.; Chapman, R.S.; Scabilloni, J.F.; Young, S.-H.; Schwegler-Berry, D.; Castranova, V.; Mercer, R.R. Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Part. Fibre Toxicol. 2013, 10, 5. [Google Scholar] [CrossRef]
- Lee, V.; McMahan, R.S.; Hu, X.; Gao, X.; Faustman, E.M.; Griffith, W.C.; Kavanagh, T.J.; Eaton, D.L.; McGuire, J.K.; Parks, W.C. Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages. Nanotoxicology 2015, 9, 336–343. [Google Scholar] [CrossRef]
- Ju, Y.; Hu, Y.; Yang, P.; Xie, X.; Fang, B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio 2023, 18, 100522. [Google Scholar] [CrossRef] [PubMed]
- Hough, K.P.; Chanda, D.; Duncan, S.R.; Thannickal, V.J.; Deshane, J.S. Exosomes in immunoregulation of chronic lung diseases. Allergy 2017, 72, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhu, Y.; Youngblood, H.A.; Almuntashiri, S.; Jones, T.W.; Wang, X.; Liu, Y.; Somanath, P.R.; Zhang, D. Nebulization of extracellular vesicles: A promising small RNA delivery approach for lung diseases. J. Control. Release 2022, 352, 556–569. [Google Scholar] [CrossRef] [PubMed]
- Popowski, K.D.; Moatti, A.; Scull, G.; Silkstone, D.; Lutz, H.; de Juan Abad, B.L.; George, A.; Belcher, E.; Zhu, D.; Mei, X. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 2022, 5, 2960–2974. [Google Scholar] [CrossRef]
- Kim, G.; Lee, Y.; Ha, J.; Han, S.; Lee, M. Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. J. Control. Release 2021, 330, 684–695. [Google Scholar] [CrossRef]
- Nasr, M.; Nawaz, S.; Elhissi, A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int. J. Pharm. 2012, 436, 611–616. [Google Scholar] [CrossRef]
- Chen, Y.-B.; Zhang, Y.-B.; Wang, Y.-L.; Kaur, P.; Yang, B.-G.; Zhu, Y.; Ye, L.; Cui, Y.-L. A novel inhalable quercetin-alginate nanogel as a promising therapy for acute lung injury. J. Nanobiotechnol. 2022, 20, 272. [Google Scholar] [CrossRef]
- Nasr, M.; Najlah, M.; D’Emanuele, A.; Elhissi, A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int. J. Pharm. 2014, 461, 242–250. [Google Scholar] [CrossRef]
- Zakaria, M.Y.; Abd El-Halim, S.M.; Beshay, B.Y.; Zaki, I.; Abourehab, M.A.S. ‘Poly phenolic phytoceutical loaded nano-bilosomes for enhanced caco-2 cell permeability and SARS-CoV 2 antiviral activity’: In-vitro and insilico studies. Drug Deliv. 2023, 30, 2162157. [Google Scholar] [CrossRef]
- Wang, Z.; Popowski, K.D.; Zhu, D.; de Juan Abad, B.L.; Wang, X.; Liu, M.; Lutz, H.; De Naeyer, N.; DeMarco, C.T.; Denny, T.N.; et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat. Biomed. Eng. 2022, 6, 791–805. [Google Scholar] [CrossRef]
- Ramachandran, S.; Prakash, P.; Mohtar, N.; Kumar, K.S.; Parumasivam, T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm. Dev. Technol. 2023, 28, 978–991. [Google Scholar] [CrossRef] [PubMed]
- Geller, D.; Crowley, C.; Froehlich, J.; Schwabe, C.; O’Carroll, M. WS10. 03 Inhaled LUNAR®-CFTR mRNA (ARCT-032) is safe and well-tolerated: A phase 1 study. J. Cyst. Fibros. 2024, 23, S19. [Google Scholar] [CrossRef]
- Bruns, I.B.; Fitzgerald, M.F.; Pardali, K.; Gardiner, P.; Keeling, D.J.; Axelsson, L.T.; Jiang, F.; Lickliter, J.; Close, D.R. Phase 1 evaluation of the inhaled IL-4Rα antagonist, AZD1402/PRS-060, a potent and selective blocker of IL-4Rα. Eur. Respir. J. 2019, 54 (Suppl. 63), OA5336. [Google Scholar]
- U.S. National Library of Medicine. Available online: https://clinicaltrials.gov/ (accessed on 1 April 2025).
- Food and Drug Administration. FDA Approves a New Antibacterial Drug to Treat a Serious Lung Disease Using a Novel Pathway to Spur innovation; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Zhu, M.; Ma, L.; Zhong, P.; Huang, J.; Gai, J.; Li, G.; Li, Y.; Qiao, P.; Gu, H.; Li, X.; et al. A novel inhalable nanobody targeting IL-4Rα for the treatment of asthma. J. Allergy Clin. Immunol. 2024, 154, 1008–1021. [Google Scholar] [CrossRef]
- Bilton, D.; Pressler, T.; Fajac, I.; Clancy, J.P.; Sands, D.; Minic, P.; Cipolli, M.; Galeva, I.; Solé, A.; Quittner, A.L.; et al. Amikacin liposome inhalation suspension for chronic Pseudomonas aeruginosa infection in cystic fibrosis. J. Cyst. Fibros. 2020, 19, 284–291. [Google Scholar] [CrossRef]
- Bilton, D.; Fajac, I.; Pressler, T.; Clancy, J.P.; Sands, D.; Minic, P.; Cipolli, M.; Galeva, I.; Solé, A.; Quittner, A.L.; et al. Long-term amikacin liposome inhalation suspension in cystic fibrosis patients with chronic P. aeruginosa infection. J. Cyst. Fibros. 2021, 20, 1010–1017. [Google Scholar] [CrossRef]
- Matschiner, G.; Fitzgerald, M.F.; Moebius, U.; Hohlbaum, A.M.; Gille, H.; Jensen, K.; Kirchfeld, K.; Rattenstetter, B.; Laforge, A.; Bel Aiba, R.S.; et al. Elarekibep (PRS-060/AZD1402), a new class of inhaled Anticalin medicine targeting IL-4Ra for type 2 endotype asthma. J. Allergy Clin. Immunol. 2023, 151, 966–975. [Google Scholar] [CrossRef]
- Rowe, S.M.; Zuckerman, J.B.; Dorgan, D.; Lascano, J.; McCoy, K.; Jain, M.; Schechter, M.S.; Lommatzsch, S.; Indihar, V.; Lechtzin, N.; et al. Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study. J. Cyst. Fibros. 2023, 22, 656–664. [Google Scholar] [CrossRef]
- Alton, E.W.F.W.; Armstrong, D.K.; Ashby, D.; Bayfield, K.J.; Bilton, D.; Bloomfield, E.V.; Boyd, A.C.; Brand, J.; Buchan, R.; Calcedo, R.; et al. A Randomised, Double-Blind, Placebo-Controlled Trial of Repeated Nebulisation of Non-Viral Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene Therapy in Patients with Cystic Fibrosis; NIHR Journals Library: Southampton, UK, 2016. [Google Scholar]
- Griffith, D.E.; Eagle, G.; Thomson, R.; Aksamit, T.R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D.J.; O’Donnell, A.E.; Marras, T.K.; Flume, P.A.; et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am. J. Respir. Crit. Care Med. 2018, 198, 1559–1569. [Google Scholar] [CrossRef]
- Tyumina, O. Evaluation of Safety and Efficiency of Method of Exosome Inhalation in SARS-CoV-2 Associated Pneumonia.(COVID-19EXO). [2021 Mar 10]. ClinicalTrials. gov [Internet]. Samara: US National Library of Medicine. Available online: https://clinicaltrials.gov/ct2/show/results/NCT04491240 (accessed on 2 June 2025).
- Fattal, E.; Grabowski, N.; Mura, S.; Vergnaud, J.; Tsapis, N.; Hillaireau, H. Lung toxicity of biodegradable nanoparticles. J. Biomed. Nanotechnol. 2014, 10, 2852–2864. [Google Scholar] [CrossRef]
- Card, J.W.; Zeldin, D.C.; Bonner, J.C.; Nestmann, E.R. Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. -Lung Cell. Mol. Physiol. 2008, 295, L400–L411. [Google Scholar] [CrossRef] [PubMed]
- Soto, K.F.; Murr, L.E.; Garza, K.M. Cytotoxic Responses and Potential Respiratory Health Effects of Carbon and Carbonaceous Nanoparticulates in the Paso del Norte Airshed Environment. Int. J. Environ. Res. Public Health 2008, 5, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Tang, M. Toxicity of quantum dots on respiratory system. Inhal. Toxicol. 2014, 26, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Lahouty, M.; Fadaee, M.; Shanehbandi, D.; Kazemi, T. Exosome-driven nano-immunotherapy: Revolutionizing colorectal cancer treatment. Mol. Biol. Rep. 2024, 52, 83. [Google Scholar] [CrossRef]
- Vega-Villa, K.R.; Takemoto, J.K.; Yáñez, J.A.; Remsberg, C.M.; Forrest, M.L.; Davies, N.M. Clinical toxicities of nanocarrier systems. Adv. Drug Deliv. Rev. 2008, 60, 929–938. [Google Scholar] [CrossRef]
- Lee, S.-H.; Wang, T.-Y.; Hong, J.-H.; Cheng, T.-J.; Lin, C.-Y. NMR-based metabolomics to determine acute inhalation effects of nano-and fine-sized ZnO particles in the rat lung. Nanotoxicology 2016, 10, 924–934. [Google Scholar] [CrossRef]
- Dobson, J. Toxicological aspects and applications of nanoparticles in paediatric respiratory disease. Paediatr. Respir. Rev. 2007, 8, 62–66. [Google Scholar] [CrossRef]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef]
- Chan, H.W.; Chow, S.; Zhang, X.; Zhao, Y.; Tong, H.H.Y.; Chow, S.F. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023, 24, 98. [Google Scholar] [CrossRef]
- Murday, J.S.; Siegel, R.W.; Stein, J.; Wright, J.F. Translational nanomedicine: Status assessment and opportunities. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 251–273. [Google Scholar] [CrossRef]
- Feng, J.; Markwalter, C.E.; Tian, C.; Armstrong, M.; Prud’homme, R.K. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J. Transl. Med. 2019, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Drug Products, Including Biological Products, That Contain Nanomaterials: Guidance for Industry; U.S. Department of Health and Human Services: Silver Spring, MD, USA, 2022. [Google Scholar]
- Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS PharmSciTech 2014, 15, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022, 14, 1886. [Google Scholar] [CrossRef] [PubMed]
- Klinkova, A.; Thérien-Aubin, H. Chapter 3—Inorganic nanoparticles. In Nanochemistry; Klinkova, A., Thérien-Aubin, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 49–110. [Google Scholar] [CrossRef]
- Junghanns, J.U.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008, 3, 295–309. [Google Scholar] [CrossRef]
- Pielenhofer, J.; Meiser, S.L.; Gogoll, K.; Ciciliani, A.-M.; Denny, M.; Klak, M.; Lang, B.M.; Staubach, P.; Grabbe, S.; Schild, H.; et al. Quality by Design (QbD) Approach for a Nanoparticulate Imiquimod Formulation as an Investigational Medicinal Product. Pharmaceutics 2023, 15, 514. [Google Scholar] [CrossRef]
- Azad, M.A.; Capellades, G.; Wang, A.B.; Klee, D.M.; Hammersmith, G.; Rapp, K.; Brancazio, D.; Myerson, A.S. Impact of Critical Material Attributes (CMAs)-Particle Shape on Miniature Pharmaceutical Unit Operations. AAPS PharmSciTech 2021, 22, 98. [Google Scholar] [CrossRef]
- Hu, F.; Ma, S.; Hu, T. Mechanistic Analysis of Fluid Dynamics and Multifactorial Impact Mechanisms in Inhaled Pharmaceutical Deposition for Chronic Respiratory Diseases. Bioengineering 2025, 12, 643. [Google Scholar] [CrossRef]
- Heredero, J.; Peña, Á.; Broset, E.; Blandín, B.; de Miguel, D.; Alejo, T.; Toro, A.; Mata, E.; López-Gavín, A.; Gallego-Lleyda, A. Predictive Lung-and Spleen-Targeted mRNA Delivery with Biodegradable Ionizable Lipids in Four-Component LNPs. Pharmaceutics 2025, 17, 459. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Foster, J.M.; Usherwood, T.; Smith, L.; Sawyer, S.M.; Xuan, W.; Rand, C.S.; Reddel, H.K. Inhaler reminders improve adherence with controller treatment in primary care patients with asthma. J. Allergy Clin. Immunol. 2014, 134, 1260–1268.e1263. [Google Scholar] [CrossRef]
- Chan, A.H.; Stewart, A.W.; Harrison, J.; Camargo, C.A.; Black, P.N.; Mitchell, E.A. The effect of an electronic monitoring device with audiovisual reminder function on adherence to inhaled corticosteroids and school attendance in children with asthma: A randomised controlled trial. Lancet Respir. Med. 2015, 3, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.; Smyth, H.D.C.; Watts, A.B.; Williams, R.O. Delivery Technologies for Orally Inhaled Products: An Update. AAPS PharmSciTech 2019, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-E.; Wu, J.-C.; Lin, H.-L.; Chiu, L.-C.; Liu, C.-T.; Liu, Y.-F.; Jhunjhunwala, M.; Chen, C.-S. Late Breaking Abstract - Engineering an AI-base mesh nebulizer system for personalized respiratory drug delivery. Eur. Respir. J. 2024, 64, PA2339. [Google Scholar] [CrossRef]
- Islam, M.R.; Liu, C.; Cai, C.; Shah, J.; Feng, Y. A user-centered smart inhaler algorithm for targeted drug delivery in juvenile onset recurrent respiratory papillomatosis treatment integrating computational fluid particle dynamics and machine learning. Phys. Fluids 2024, 36, b1912. [Google Scholar] [CrossRef]
- Bannuscher, A.; Karkossa, I.; Buhs, S.; Nollau, P.; Kettler, K.; Balas, M.; Dinischiotu, A.; Hellack, B.; Wiemann, M.; Luch, A. A multi-omics approach reveals mechanisms of nanomaterial toxicity and structure–activity relationships in alveolar macrophages. Nanotoxicology 2020, 14, 181–195. [Google Scholar] [CrossRef]
- Forest, V.; Pourchez, J. Nano-delivery to the lung-by inhalation or other routes and why nano when micro is largely sufficient? Adv. Drug Deliv. Rev. 2022, 183, 114173. [Google Scholar] [CrossRef]
- Khatib, I.; Khanal, D.; Ruan, J.; Cipolla, D.; Dayton, F.; Blanchard, J.D.; Chan, H.-K. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. Int. J. Pharm. 2019, 566, 641–651. [Google Scholar] [CrossRef]
- Beck-Broichsitter, M.; Knuedeler, M.-C.; Oesterheld, N.; Seeger, W.; Schmehl, T. Boosting the aerodynamic properties of vibrating-mesh nebulized polymeric nanosuspensions. Int. J. Pharm. 2014, 459, 23–29. [Google Scholar] [CrossRef]
- Dailey, L.A.; Schmehl, T.; Gessler, T.; Wittmar, M.; Grimminger, F.; Seeger, W.; Kissel, T. Nebulization of biodegradable nanoparticles: Impact of nebulizer technology and nanoparticle characteristics on aerosol features. J. Control. Release 2003, 86, 131–144. [Google Scholar] [CrossRef]
- Beck-Broichsitter, M.; Kleimann, P.; Gessler, T.; Seeger, W.; Kissel, T.; Schmehl, T. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb® Pro: Formulation aspects and nanoparticle stability to nebulization. Int. J. Pharm. 2012, 422, 398–408. [Google Scholar] [CrossRef]
- Rogueda, P.G.; Traini, D. The nanoscale in pulmonary delivery. Part 2: Formulation platforms. Expert Opin. Drug Deliv. 2007, 4, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Mangal, S.; Gao, W.; Li, T.; Zhou, Q. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacol. Sin. 2017, 38, 782–797. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Yang, Z.; Peng, X.; Xin, F.; Xu, Y.; Feng, M.; Zhao, C.; Hu, H.; Wu, C. A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants. Int. J. Pharm. 2011, 413, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Somavarapu, S.; Colombani, A.; Govind, N.; Taylor, K.M.G. Crosslinked chitosan nanoparticle formulations for delivery from pressurized metered dose inhalers. Eur. J. Pharm. Biopharm. 2012, 81, 74–81. [Google Scholar] [CrossRef]
- Vallorz, E.; Sheth, P.; Myrdal, P. Pressurized Metered Dose Inhaler Technology: Manufacturing. AAPS PharmSciTech 2019, 20, 177. [Google Scholar] [CrossRef]
- Sheth, P.; Grimes, M.R.; Stein, S.W.; Myrdal, P.B. Impact of droplet evaporation rate on resulting in vitro performance parameters of pressurized metered dose inhalers. Int. J. Pharm. 2017, 528, 360–371. [Google Scholar] [CrossRef]
- Kumar, R.; Mehta, P.; Shankar, K.R.; Rajora, M.A.K.; Mishra, Y.K.; Mostafavi, E.; Kaushik, A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm. Res. 2022, 39, 2831–2855. [Google Scholar] [CrossRef]
- Thorat, S.; Meshram, S. Formulation and product development of pressurised metered dose inhaler: An overview. PharmaTutor 2015, 3, 53–64. [Google Scholar]
- Shiehzadeh, F.; Tafaghodi, M. Dry powder form of polymeric nanoparticles for pulmonary drug delivery. Curr. Pharm. Des. 2016, 22, 2549–2560. [Google Scholar] [CrossRef]
- Yeganeh, E.M.; Bagheri, H.; Mahjub, R. Preparation, statistical optimization and in-vitro characterization of a dry powder inhaler (DPI) containing solid lipid nanoparticles encapsulating amphotericin B: Ion paired complexes with distearoyl phosphatidylglycerol. Iran. J. Pharm. Res. IJPR 2020, 19, 45. [Google Scholar]
- Topal, G.R.; Devrim, B.; Eryilmaz, M.; Bozkir, A. Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: Preparation, in vitro characterisation, and antimicrobial efficacy. J. Microencapsul. 2018, 35, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P. Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems. J. Drug Deliv. 2016, 2016, 8290963. [Google Scholar] [CrossRef] [PubMed]
- Dahmash, E.Z.; Achkar, N.R.; Ali, D.K.; Jarrar, Q.; Iyire, A.; Assaf, S.M.; Alyami, H. Preclinical evaluation of novel synthesised nanoparticles based on tyrosine poly(ester amide) for improved targeted pulmonary delivery. Sci. Rep. 2024, 14, 9845. [Google Scholar] [CrossRef] [PubMed]
- Hejduk, A.; Urbańska, A.; Osiński, A.; Łukaszewicz, P.; Domański, M.; Sosnowski, T.R. Technical challenges in obtaining an optimized powder/DPI combination for inhalation delivery of a bi-component generic drug. J. Drug Deliv. Sci. Technol. 2018, 44, 406–414. [Google Scholar] [CrossRef]
- Hirota, K.; Terada, H. Chapter 5—Particle-manufacturing technology-based inhalation therapy for pulmonary diseases. In Colloid and Interface Science in Pharmaceutical Research and Development; Ohshima, H., Makino, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 103–119. [Google Scholar] [CrossRef]
- Chan, H.-K.; Chew, N.Y.K. Novel alternative methods for the delivery of drugs for the treatment of asthma. Adv. Drug Deliv. Rev. 2003, 55, 793–805. [Google Scholar] [CrossRef]
- Wanning, S.; Süverkrüp, R.; Lamprecht, A. Pharmaceutical spray freeze drying. Int. J. Pharm. 2015, 488, 136–153. [Google Scholar] [CrossRef]
- Vass, P.; Démuth, B.; Hirsch, E.; Nagy, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; Nagy, Z.K.; Marosi, G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J. Control. Release 2019, 296, 162–178. [Google Scholar] [CrossRef]
- Liang, W.; Pan, H.W.; Vllasaliu, D.; Lam, J.K.W. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020, 12, 1025. [Google Scholar] [CrossRef]
- Movellan, J.; Murgia, X.; Gracia, R.; Marradi, M.; Miranda, J.I.; Aizpurua, J.M.; Grande, H.-J.; Dupin, D.; Loinaz, I. Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation. Int. J. Pharm. 2025, 671, 125241. [Google Scholar] [CrossRef]
- Yeo, L.Y.; Friend, J.R.; McIntosh, M.P.; Meeusen, E.N.; Morton, D.A. Ultrasonic nebulization platforms for pulmonary drug delivery. Expert Opin. Drug Deliv. 2010, 7, 663–679. [Google Scholar] [CrossRef]
- Metz, J.K.; Scharnowske, L.; Hans, F.; Schnur, S.; Knoth, K.; Zimmer, H.; Limberger, M.; Groß, H.; Lehr, C.-M.; Hittinger, M. Safety assessment of excipients (SAFE) for orally inhaled drug products. ALTEX-Altern. Anim. Exp. 2020, 37, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, L.; Chan, H.-K.; Watanabe, W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, A.; Menon, J.U. Impact of Nebulization on the Physicochemical Properties of Polymer–Lipid Hybrid Nanoparticles for Pulmonary Drug Delivery. Int. J. Mol. Sci. 2024, 25, 5028. [Google Scholar] [CrossRef] [PubMed]
- de Pablo, E.; Fernández-García, R.; Ballesteros, M.P.; Torrado, J.J.; Serrano, D.R. Nebulised antibiotherapy: Conventional versus nanotechnology-based approaches, is targeting at a nano scale a difficult subject? Ann. Transl. Med. 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Zaru, M.; Mourtas, S.; Klepetsanis, P.; Fadda, A.M.; Antimisiaris, S.G. Liposomes for drug delivery to the lungs by nebulization. Eur. J. Pharm. Biopharm. 2007, 67, 655–666. [Google Scholar] [CrossRef]
- Choi, W.S.; Murthy, G.K.; Edwards, D.A.; Langer, R.; Klibanov, A.M. Inhalation delivery of proteins from ethanol suspensions. Proc. Natl. Acad. Sci. 2001, 98, 11103–11107. [Google Scholar] [CrossRef]
- Ghanem, R.; Buin, X.; Haute, T.; Philippe, J.; Kaouane, G.; Leclerc, L.; Guivarch, M.; Le Gall, T.; Pourchez, J.; Montier, T. Impact of nebulizers on nanoparticles-based gene delivery efficiency: In vitro and in vivo comparison of jet and mesh nebulizers using branched-polyethyleneimine. Drug Deliv. 2025, 32, 2463428. [Google Scholar] [CrossRef]
- Fu, T.-T.; Cong, Z.-Q.; Zhao, Y.; Chen, W.-Y.; Liu, C.-Y.; Zheng, Y.; Yang, F.-F.; Liao, Y.-H. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation. Int. J. Pharm. 2019, 572, 118839. [Google Scholar] [CrossRef]
- Makled, S.; Nafee, N.; Boraie, N. Nebulized solid lipid nanoparticles for the potential treatment of pulmonary hypertension via targeted delivery of phosphodiesterase-5-inhibitor. Int. J. Pharm. 2017, 517, 312–321. [Google Scholar] [CrossRef]
- Beck-Broichsitter, M.; Kleimann, P.; Schmehl, T.; Betz, T.; Bakowsky, U.; Kissel, T.; Seeger, W. Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers. Eur. J. Pharm. Biopharm. 2012, 82, 272–280. [Google Scholar] [CrossRef]
- Lavorini, F.; Buttini, F.; Usmani, O.S. 100 Years of Drug Delivery to the Lungs. In Concepts and Principles of Pharmacology: 100 Years of the Handbook of Experimental Pharmacology; Barrett, J.E., Page, C.P., Michel, M.C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 143–159. [Google Scholar] [CrossRef]
- Klein DM, Poortinga A, Verhoeven FM, Bonn D, Bonnet S, van Rijn CJM. Degradation of lipid-based drug delivery formulations during nebulization. Chem Phys. 2021, 547, 111192. [CrossRef]
- Lin, H.-L.; Chen, C.-S.; Fink, J.B.; Lee, G.-H.; Huang, C.-W.; Chen, J.-C.; Chiang, Z.Y. In vitro evaluation of a vibrating-mesh nebulizer repeatedly use over 28 days. Pharmaceutics 2020, 12, 971. [Google Scholar] [CrossRef] [PubMed]
- Steckel, H.; Eskandar, F. Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. Eur. J. Pharm. Sci. 2003, 19, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Stabile, S.G.G.; Perez, N.; Jerez, H.E.; Simioni, Y.R.; Butassi, E.; Mizrahi, M.D.; Nobile, M.L.; Perez, A.P.; Morilla, M.J.; Higa, L.H.; et al. Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells. Int. J. Mol. Sci. 2025, 26, 392. [Google Scholar] [CrossRef]
- Patel, A.K.; Kaczmarek, J.C.; Bose, S.; Kauffman, K.J.; Mir, F.; Heartlein, M.W.; DeRosa, F.; Langer, R.; Anderson, D.G. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 2019, 31, 1805116. [Google Scholar] [CrossRef]
- Mišík, O.; Kejíková, J.; Cejpek, O.; Malý, M.; Jugl, A.; Bělka, M.; Mravec, F.; Lízal, F. Nebulization and In Vitro Upper Airway Deposition of Liposomal Carrier Systems. Mol. Pharm. 2024, 21, 1848–1860. [Google Scholar] [CrossRef]
- Beck-Broichsitter, M.; Knuedeler, M.-C.; Schmehl, T.; Seeger, W. Following the Concentration of Polymeric Nanoparticles During Nebulization. Pharm. Res. 2013, 30, 16–24. [Google Scholar] [CrossRef]
- Chauhan, G.; Wang, X.; Quadros, M.; Vats, M.; Gupta, V. Chitosan/bovine serum albumin layer-by-layer assembled particles for non-invasive inhaled drug delivery to the lungs. Int. J. Biol. Macromol. 2024, 271, 132526. [Google Scholar] [CrossRef]
- Anderson, D.S.; Patchin, E.S.; Silva, R.M.; Uyeminami, D.L.; Sharmah, A.; Guo, T.; Das, G.K.; Brown, J.M.; Shannahan, J.; Gordon, T.; et al. Influence of Particle Size on Persistence and Clearance of Aerosolized Silver Nanoparticles in the Rat Lung. Toxicol. Sci. 2015, 144, 366–381. [Google Scholar] [CrossRef]
- Wiedmann, T.S.; DeCastro, L.; Wood, R.W. Nebulization of NanoCrystals(TM): Production of a Respirable Solid-in-Liquid-in-Air Colloidal Dispersion. Pharm. Res. 1997, 14, 112–116. [Google Scholar] [CrossRef]
- Elhissi, A.; Hidayat, K.; Phoenix, D.A.; Mwesigwa, E.; Crean, S.; Ahmed, W.; Faheem, A.; Taylor, K.M.G. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. Int. J. Pharm. 2013, 444, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Popowski, K.D.; López de Juan Abad, B.; George, A.; Silkstone, D.; Belcher, E.; Chung, J.; Ghodsi, A.; Lutz, H.; Davenport, J.; Flanagan, M.; et al. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle 2022, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
- Amani, A.; York, P.; Chrystyn, H.; Clark, B.J. Evaluation of a Nanoemulsion-Based Formulation for Respiratory Delivery of Budesonide by Nebulizers. AAPS PharmSciTech 2010, 11, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Lau, K.; Bnyan, R.; Houacine, C.; Roberts, M.; Isreb, A.; Elhissi, A.; Yousaf, S. A Facile and Novel Approach to Manufacture Paclitaxel-Loaded Proliposome Tablet Formulations of Micro or Nano Vesicles for Nebulization. Pharm. Res. 2020, 37, 116. [Google Scholar] [CrossRef]
- Rao, L.; Zhu, P.; Guo, M.; Hu, M.; Guo, X.; Du, Y.; Xu, G. Nebulized inhalation of nintedanib-loaded biomimetic nano-liposomes attenuated bleomycin-induced interstitial lung fibrosis in mice. Nano Today 2024, 56, 102298. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Khan, R.A.; Alhowail, A.H.; Alqasoumi, A.; Sajid, S.M.; Mohammed, A.M.; Alsharidah, M.; Rugaie, O.A.; Mousa, A.M. Octreotide-conjugated silver nanoparticles for active targeting of somatostatin receptors and their application in a nebulized rat model. Nanotechnol. Rev. 2022, 11, 266–283. [Google Scholar] [CrossRef]
- Ostrander, K.D.; Bosch, H.W.; Bondanza, D.M. An in-vitro assessment of a NanoCrystal™ beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur. J. Pharm. Biopharm. 1999, 48, 207–215. [Google Scholar] [CrossRef]
- Zhao, D.; Li, D.; Cheng, X.; Zou, Z.; Chen, X.; He, C. Mucoadhesive, Antibacterial, and Reductive Nanogels as a Mucolytic Agent for Efficient Nebulized Therapy to Combat Allergic Asthma. ACS Nano 2022, 16, 11161–11173. [Google Scholar] [CrossRef]
- Lee, J.; Han, C.H.; Oh, I.H.; Allu, S.; Kim, H.J.; Kim, J.; Kim, W.-S.; Park, B.J. Fabrication and evaluation of stable amorphous polymer-drug composite particles via a nozzle-free ultrasonic nebulizer. Int. J. Pharm. 2024, 657, 124177. [Google Scholar] [CrossRef]
- Sinswat, P.; Overhoff, K.A.; McConville, J.T.; Johnston, K.P.; Williams, R.O. Nebulization of nanoparticulate amorphous or crystalline tacrolimus—Single-dose pharmacokinetics study in mice. Eur. J. Pharm. Biopharm. 2008, 69, 1057–1066. [Google Scholar] [CrossRef]
- Kleemann, E.; Schmehl, T.; Gessler, T.; Bakowsky, U.; Kissel, T.; Seeger, W. Iloprost-Containing Liposomes for Aerosol Application in Pulmonary Arterial Hypertension: Formulation Aspects and Stability. Pharm. Res. 2007, 24, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Elhissi, A.; Faizi, M.; Naji, W.; Gill, H.; Taylor, K. Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures. Int. J. Pharm. 2007, 334, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.T.; Kromer, A.P.E.; Ezaddoustdar, A.; Alexopoulos, I.; Steinegger, K.M.; Porras-Gonzalez, D.L.; Berninghausen, O.; Beckmann, R.; Braubach, P.; Burgstaller, G.; et al. Nebulization of RNA-Loaded Micelle-Embedded Polyplexes as a Potential Treatment of Idiopathic Pulmonary Fibrosis. ACS Appl. Mater. Interfaces 2025, 17, 11861–11872. [Google Scholar] [CrossRef] [PubMed]
- Naveen, K.; Bose, S.; Basheer, C.; Zare, R.N.; Gnanamani, E. Handheld portable device for delivering capped silver nanoparticles for antimicrobial applications. QRB Discov. 2024, 5, e9. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Shi, M.-m.; Monsel, A.; Dai, C.-x.; Dong, X.; Shen, H.; Li, S.-k.; Chang, J.; Xu, C.-l.; Li, P.; et al. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: A pilot study. Stem Cell Res. Ther. 2022, 13, 220. [Google Scholar] [CrossRef]
- Merckx, P.; Lammens, J.; Nuytten, G.; Bogaert, B.; Guagliardo, R.; Maes, T.; Vervaet, C.; De Beer, T.; De Smedt, S.C.; Raemdonck, K. Lyophilization and nebulization of pulmonary surfactant-coated nanogels for siRNA inhalation therapy. Eur. J. Pharm. Biopharm. 2020, 157, 191–199. [Google Scholar] [CrossRef]
- Unsworth, C.; Dwyer, A.B.; Savage, A.C.; Hobson, J.J.; Massam, J.; McDonald, T.O.; Curley, P.; Owen, A.; O’Sullivan, A.; MacLoughlin, R. Development of solid drug nanoparticle dispersions for pulmonary delivery of niclosamide and nitazoxanide via vibrating mesh nebulisation. RSC Pharm. 2025, 2, 517–526. [Google Scholar] [CrossRef]
- Debnath, S.K.; Saisivam, S.; Omri, A. PLGA Ethionamide Nanoparticles for Pulmonary Delivery: Development and in vivo evaluation of dry powder inhaler. J. Pharm. Biomed. Anal. 2017, 145, 854–859. [Google Scholar] [CrossRef]
- Arora, S.; Haghi, M.; Loo, C.-Y.; Traini, D.; Young, P.M.; Jain, S. Development of an Inhaled Controlled Release Voriconazole Dry Powder Formulation for the Treatment of Respiratory Fungal Infection. Mol. Pharm. 2015, 12, 2001–2009. [Google Scholar] [CrossRef]
- Shah, S.P.; Misra, A. Liposomal amikacin dry powder inhaler: Effect of fines on in vitro performance. AAPS PharmSciTech 2004, 5, 65. [Google Scholar] [CrossRef]
- Joshi, M.R.; Misra, A. Liposomal budesonide for dry powder inhaler: Preparation and stabilization. AAPS PharmSciTech 2015, 2, 25. [Google Scholar] [CrossRef] [PubMed]
- AboulFotouh, K.; Almanza, G.; Yu, Y.-S.; Joyce, R.; Davenport, G.J.; Cano, C.; Williams Iii, R.O.; Zanetti, M.; Cui, Z. Inhalable dry powders of microRNA-laden extracellular vesicles prepared by thin-film freeze-drying. Int. J. Pharm. 2024, 651, 123757. [Google Scholar] [CrossRef] [PubMed]
- Rosière, R.; Van Woensel, M.; Mathieu, V.; Langer, I.; Mathivet, T.; Vermeersch, M.; Amighi, K.; Wauthoz, N. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int. J. Pharm. 2016, 501, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Casula, L.; Craparo, E.F.; Lai, E.; Scialabba, C.; Valenti, D.; Schlich, M.; Sinico, C.; Cavallaro, G.; Lai, F. Encapsulation of Nanocrystals in Mannitol-Based Inhalable Microparticles via Spray-Drying: A Promising Strategy for Lung Delivery of Curcumin. Pharmaceuticals 2024, 17, 1708. [Google Scholar] [CrossRef]
- Malamatari, M. Engineering Nanoparticle Agglomerates as Dry Powders for Pulmonary Drug Delivery; UCL (University College London): London, UK, 2016. [Google Scholar]
- Bielski, E.; Zhong, Q.; Mirza, H.; Brown, M.; Molla, A.; Carvajal, T.; da Rocha, S.R.P. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int. J. Pharm. 2017, 527, 171–183. [Google Scholar] [CrossRef]
- Price, D.N.; Stromberg, L.R.; Kunda, N.K.; Muttil, P. In Vivo Pulmonary Delivery and Magnetic-Targeting of Dry Powder Nano-in-Microparticles. Mol. Pharm. 2017, 14, 4741–4750. [Google Scholar] [CrossRef]
- Huang, Y.; Chang, Z.; Gao, Y.; Ren, C.; Lin, Y.; Zhang, X.; Wu, C.; Pan, X.; Huang, Z. Overcoming the Low-Stability Bottleneck in the Clinical Translation of Liposomal Pressurized Metered-Dose Inhalers: A Shell Stabilization Strategy Inspired by Biomineralization. Int. J. Mol. Sci. 2024, 25, 3261. [Google Scholar] [CrossRef]
- Nyambura, B.K.; Kellaway, I.W.; Taylor, K.M.G. Insulin nanoparticles: Stability and aerosolization from pressurized metered dose inhalers. Int. J. Pharm. 2009, 375, 114–122. [Google Scholar] [CrossRef]
- Li, H.-Y.; Zhang, F. Preparation of Spray-Dried Nanoparticles for Efficient Drug Delivery to the Lungs. In Nanoparticles in Biology and Medicine: Methods and Protocols; Ferrari, E., Soloviev, M., Eds.; Springer US: New York, NY, USA, 2020; pp. 139–145. [Google Scholar] [CrossRef]
- Changsan, N.; Atipairin, A.; Muenraya, P.; Sritharadol, R.; Srichana, T.; Balekar, N.; Sawatdee, S. In Vitro Evaluation of Colistin Conjugated with Chitosan-Capped Gold Nanoparticles as a Possible Formulation Applied in a Metered-Dose Inhaler. Antibiotics 2024, 13, 630. [Google Scholar] [CrossRef]
- Vehring, R.; Lechuga-Ballesteros, D.; Joshi, V.; Noga, B.; Dwivedi, S.K. Cosuspensions of Microcrystals and Engineered Microparticles for Uniform and Efficient Delivery of Respiratory Therapeutics from Pressurized Metered Dose Inhalers. Langmuir 2012, 28, 15015–15023. [Google Scholar] [CrossRef]
- Miao, H.; Huang, K.; Li, Y.; Li, R.; Zhou, X.; Shi, J.; Tong, Z.; Sun, Z.; Yu, A. Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA. Int. J. Pharm. 2023, 640, 123050. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, D.E.; Hosseini, S.H.; Rathore, H.A.; Alkilany, A.M.; Heise, A.; Elhissi, A. Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases. Pharmaceutics 2025, 17, 893. https://doi.org/10.3390/pharmaceutics17070893
Mahmoud DE, Hosseini SH, Rathore HA, Alkilany AM, Heise A, Elhissi A. Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases. Pharmaceutics. 2025; 17(7):893. https://doi.org/10.3390/pharmaceutics17070893
Chicago/Turabian StyleMahmoud, Doaa Elsayed, Seyedeh Hanieh Hosseini, Hassaan Anwer Rathore, Alaaldin M. Alkilany, Andreas Heise, and Abdelbary Elhissi. 2025. "Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases" Pharmaceutics 17, no. 7: 893. https://doi.org/10.3390/pharmaceutics17070893
APA StyleMahmoud, D. E., Hosseini, S. H., Rathore, H. A., Alkilany, A. M., Heise, A., & Elhissi, A. (2025). Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases. Pharmaceutics, 17(7), 893. https://doi.org/10.3390/pharmaceutics17070893