Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,549)

Search Parameters:
Keywords = informed land use planning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4529 KiB  
Article
Rainwater Harvesting Site Assessment Using Geospatial Technologies in a Semi-Arid Region: Toward Water Sustainability
by Ban AL- Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Bashar F. Maaroof and Salah L. Zubaidi
Water 2025, 17(15), 2317; https://doi.org/10.3390/w17152317 (registering DOI) - 4 Aug 2025
Abstract
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote [...] Read more.
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote sustainable farming practices. An integrated geospatial approach was adopted, combining Remote Sensing (RS), Geographic Information Systems (GIS), and Multi-Criteria Decision Analysis (MCDA). Key thematic layers, including soil type, land use/land cover, slope, and drainage density were processed in a GIS environment to model runoff potential. The Soil Conservation Service Curve Number (SCS-CN) method was used to estimate surface runoff. Criteria were weighted using the Analytical Hierarchy Process (AHP), enabling a structured and consistent evaluation of site suitability. The resulting suitability map classifies the region into four categories: very high suitability (10.2%), high (26.6%), moderate (40.4%), and low (22.8%). The integration of RS, GIS, AHP, and MCDA proved effective for strategic RWH site selection, supporting cost-efficient, sustainable, and data-driven agricultural planning in water-stressed environments. Full article
26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Viewed by 102
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

27 pages, 8496 KiB  
Article
Comparative Performance of Machine Learning Models for Landslide Susceptibility Assessment: Impact of Sampling Strategies in Highway Buffer Zone
by Zhenyu Tang, Shumao Qiu, Haoying Xia, Daming Lin and Mingzhou Bai
Appl. Sci. 2025, 15(15), 8416; https://doi.org/10.3390/app15158416 - 29 Jul 2025
Viewed by 138
Abstract
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, [...] Read more.
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, including Naïve Bayes (NB), Support Vector Machine (SVM), SVM-Random Forest hybrid (SVM-RF), and XGBoost. The study area is a 2 km buffer zone along the Duku Highway in Xinjiang, China, with 102 landslide and 102 non-landslide points extracted by aforementioned sampling methods. Models were tested using ROC curves and non-parametric significance tests based on 20 repetitions of 5-fold spatial cross-validation data. GLHM sampling consistently improved AUROC and accuracy across all models (e.g., AUROC gains: NB +8.44, SVM +7.11, SVM–RF +3.45, XGBoost +3.04; accuracy gains: NB +11.30%, SVM +8.33%, SVM–RF +7.40%, XGBoost +8.31%). XGBoost delivered the best performance under both sampling strategies, reaching 94.61% AUROC and 84.30% accuracy with GLHM sampling. SHAP analysis showed that GLHM sampling stabilized feature importance rankings, highlighting STI, TWI, and NDVI as the main controlling factors for landslides in the study area. These results highlight the importance of hazard-informed sampling to enhance landslide susceptibility modeling accuracy and interpretability. Full article
Show Figures

Figure 1

23 pages, 3831 KiB  
Article
Functional Connectivity in Future Land-Use Change Scenarios as a Tool for Assessing Priority Conservation Areas for Key Bird Species: A Case Study from the Chaco Serrano
by Julieta Rocío Arcamone, Luna Emilce Silvetti, Laura Marisa Bellis, Carolina Baldini, María Paula Alvarez, María Cecilia Naval-Fernández, Jimena Victoria Albornoz and Gregorio Gavier Pizarro
Sustainability 2025, 17(15), 6874; https://doi.org/10.3390/su17156874 - 29 Jul 2025
Viewed by 203
Abstract
Planning conservation for multiple species while accounting for habitat availability and connectivity under uncertain land-use changes presents a major challenge. This study proposes a protocol to identify strategic conservation areas by assessing the functional connectivity of key bird species under future land-use scenarios [...] Read more.
Planning conservation for multiple species while accounting for habitat availability and connectivity under uncertain land-use changes presents a major challenge. This study proposes a protocol to identify strategic conservation areas by assessing the functional connectivity of key bird species under future land-use scenarios in the Chaco Serrano of Córdoba, Argentina. We modeled three land-use scenarios for 2050: business as usual, sustainability, and intensification. Using the Equivalent Connected Area index, we evaluated functional connectivity for Chlorostilbon lucidus, Polioptila dumicola, Dryocopus schulzii, Milvago chimango, and Saltator aurantiirostris for 1989, 2019, and 2050, incorporating information about habitat specialization and dispersal capacity to reflect differences in ecological responses. All species showed declining connectivity from 1989 to 2019, with further losses expected under future scenarios. Connectivity declines varied by species and were not always proportional to habitat loss, highlighting the complex relationship between land-use change and functional connectivity. Surprisingly, the sustainability scenario led to the greatest losses in connectivity, emphasizing that habitat preservation alone does not ensure connectivity. Using the Integral Connectivity Index, we identified habitat patches critical for maintaining connectivity, particularly those vulnerable under the business as usual scenario. With a spatial prioritization analysis we identified priority conservation areas to support future landscape connectivity. These findings underscore the importance of multispecies, connectivity-based planning and offer a transferable framework applicable to other regions. Full article
(This article belongs to the Special Issue Landscape Connectivity for Sustainable Biodiversity Conservation)
Show Figures

Figure 1

20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 (registering DOI) - 28 Jul 2025
Viewed by 402
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 409
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

20 pages, 6273 KiB  
Review
A Comprehensive Review of Urban Expansion and Its Driving Factors
by Ming Li, Yongwang Cao, Jin Dai, Jianxin Song and Mengyin Liang
Land 2025, 14(8), 1534; https://doi.org/10.3390/land14081534 - 26 Jul 2025
Viewed by 218
Abstract
Urban expansion has a profound impact on both society and the environment. In this study, VOSviewer 1.6.16 and CiteSpace 6.3.R1 were used to conduct a bibliometric analysis of 2987 articles published during the period of 1992–2022 from the Web of Science database in [...] Read more.
Urban expansion has a profound impact on both society and the environment. In this study, VOSviewer 1.6.16 and CiteSpace 6.3.R1 were used to conduct a bibliometric analysis of 2987 articles published during the period of 1992–2022 from the Web of Science database in order to identify the research hotspots and trends of urban expansion and its driving factors. The number of articles significantly increased during the period of 1992–2022. The spatiotemporal characteristics and driving forces of urban expansion, urban growth models and simulations, and the impacts of urban expansion were the main research topics. The rate of urban expansion showed regional differences. Socioeconomic factors, political and institutional factors, natural factors, path effects, and proximity effects were the main driving factors. Urban expansion promoted economic growth, occupied cultivated land, and affected ecological environments. Big data and deep learning techniques were recently applied due to advancements in information techniques. With the increasing awareness of environmental protection, the number of studies on environmental impacts and spatial planning regulations has increased. Some political and institutional factors, such as subsidies, taxation, spatial planning, new development strategies, regulation policies, and economic industries, had controversial or unknown impacts. Further research on these factors and their mechanisms is needed. A limitation of this study is that articles which were not indexed, were not included in bibliometric analysis. Further studies can review these articles and conduct comparative research to capture the diversity. Full article
Show Figures

Figure 1

24 pages, 3066 KiB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 350
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 321
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

34 pages, 24111 KiB  
Article
Natural and Anthropic Constraints on Historical Morphological Dynamics in the Middle Stretch of the Po River (Northern Italy)
by Laura Turconi, Barbara Bono, Carlo Mambriani, Lucia Masotti, Fabio Stocchi and Fabio Luino
Sustainability 2025, 17(14), 6608; https://doi.org/10.3390/su17146608 - 19 Jul 2025
Viewed by 394
Abstract
Geo-historical information deduced from geo-iconographical resources, derived from extensive research and the selection of cartographies and historical documents, enabled the investigation of the natural and anthropic transformations of the perifluvial area of the Po River in the Emilia-Romagna region (Italy). This territory, significant [...] Read more.
Geo-historical information deduced from geo-iconographical resources, derived from extensive research and the selection of cartographies and historical documents, enabled the investigation of the natural and anthropic transformations of the perifluvial area of the Po River in the Emilia-Romagna region (Italy). This territory, significant in terms of its historical, cultural, and environmental contexts, for centuries has been the scene of flood events. These have characterised the morphological and dynamic variability in the riverbed and relative floodplain. The close relationship between man and river is well documented: the interference induced by anthropic activity has alternated with the sometimes-damaging effects of river dynamics. The attention given to the fluvial region of the Po River and its main tributaries, in a peculiar lowland sector near Parma, is critical for understanding spatial–temporal changes contributing to current geo-hydrological risks. A GIS project outlined the geomorphological aspects that define the considerable variations in the course of the Po River (involving width reductions of up to 66% and length changes of up to 14%) and its confluences from the 16th to the 21st century. Knowledge of anthropic modifications is essential as a tool within land-use planning and enhancing community awareness in risk-mitigation activities and strategic management. This study highlights the importance of interdisciplinary geo-historical studies that are complementary in order to decode river dynamics in damaging flood events and latent hazards in an altered river environment. Full article
Show Figures

Figure 1

27 pages, 3973 KiB  
Article
Modeling the Distribution and Richness of Mammalian Species in the Nyerere National Park, Tanzania
by Goodluck Massawe, Enrique Casas, Wilfred Marealle, Richard Lyamuya, Tiwonge I. Mzumara, Willard Mbewe and Manuel Arbelo
Remote Sens. 2025, 17(14), 2504; https://doi.org/10.3390/rs17142504 - 18 Jul 2025
Viewed by 1013
Abstract
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large [...] Read more.
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large and understudied protected area in Southern Tanzania. We applied species distribution models (SDMs) using presence data collected through ground surveys between 2022 and 2024, combined with environmental variables derived from remote sensing, including land surface temperature, vegetation indices, soil moisture, elevation, and proximity to water sources and human infrastructure. Models were constructed using the Maximum Entropy (MaxEnt) algorithm, and performance was evaluated using the Area Under the Curve (AUC) metric, yielding high accuracy ranging from 0.81 to 0.97. Temperature (32.3%) and vegetation indices (23.4%) emerged as the most influential predictors of species distributions, followed by elevation (21.7%) and proximity to water (14.5%). Species richness, estimated using a stacked SDM approach, was highest in the northern and riparian zones of the park, identifying potential biodiversity hotspots. This study presents the first fine-scale SDMs for mammal species in Nyerere National Park, offering a valuable ecological baseline to support conservation planning and promote sustainable ecotourism development in Tanzania’s southern protected areas. Full article
Show Figures

Graphical abstract

21 pages, 5313 KiB  
Article
MixtureRS: A Mixture of Expert Network Based Remote Sensing Land Classification
by Yimei Liu, Changyuan Wu, Minglei Guan and Jingzhe Wang
Remote Sens. 2025, 17(14), 2494; https://doi.org/10.3390/rs17142494 - 17 Jul 2025
Viewed by 337
Abstract
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and [...] Read more.
Accurate land-use classification is critical for urban planning and environmental monitoring, yet effectively integrating heterogeneous data sources such as hyperspectral imagery and laser radar (LiDAR) remains challenging. To address this, we propose MixtureRS, a compact multimodal network that effectively integrates hyperspectral imagery and LiDAR data for land-use classification. Our approach employs a 3-D plus heterogeneous convolutional stack to extract rich spectral–spatial features, which are then tokenized and fused via a cross-modality transformer. To enhance model capacity without incurring significant computational overhead, we replace conventional dense feed-forward blocks with a sparse Mixture-of-Experts (MoE) layer that selectively activates the most relevant experts for each token. Evaluated on a 15-class urban benchmark, MixtureRS achieves an overall accuracy of 88.6%, an average accuracy of 90.2%, and a Kappa coefficient of 0.877, outperforming the best homogeneous transformer by over 12 percentage points. Notably, the largest improvements are observed in water, railway, and parking categories, highlighting the advantages of incorporating height information and conditional computation. These results demonstrate that conditional, expert-guided fusion is a promising and efficient strategy for advancing multimodal remote sensing models. Full article
Show Figures

Graphical abstract

19 pages, 1760 KiB  
Article
A Multilevel Spatial Framework for E-Scooter Collision Risk Assessment in Urban Texas
by Nassim Sohaee, Arian Azadjoo Tabari and Rod Sardari
Safety 2025, 11(3), 67; https://doi.org/10.3390/safety11030067 - 17 Jul 2025
Viewed by 286
Abstract
As shared micromobility grows quickly in metropolitan settings, e-scooter safety issues have become more urgent. This paper uses a Bayesian hierarchical model applied to census block groups in several Texas metropolitan areas to construct a spatial risk assessment methodology for e-scooter crashes. Based [...] Read more.
As shared micromobility grows quickly in metropolitan settings, e-scooter safety issues have become more urgent. This paper uses a Bayesian hierarchical model applied to census block groups in several Texas metropolitan areas to construct a spatial risk assessment methodology for e-scooter crashes. Based on crash statistics from 2018 to 2024, we develop a severity-weighted crash risk index and combine it with variables related to land use, transportation, demographics, economics, and other factors. The model comprises a geographically structured random effect based on a Conditional Autoregressive (CAR) model, which accounts for residual spatial clustering after capture. It also includes fixed effects for covariates such as car ownership and nightlife density, as well as regional random intercepts to account for city-level heterogeneity. Markov Chain Monte Carlo is used for model fitting; evaluation reveals robust spatial calibration and predictive ability. The following key predictors are statistically significant: a higher share of working-age residents shows a positive association with crash frequency (incidence rate ratio (IRR): ≈1.55 per +10% population aged 18–64), as does a greater proportion of car-free households (IRR ≈ 1.20). In the built environment, entertainment-related employment density is strongly linked to elevated risk (IRR ≈ 1.37), and high intersection density similarly increases crash risk (IRR ≈ 1.32). In contrast, higher residential housing density has a protective effect (IRR ≈ 0.78), correlating with fewer crashes. Additionally, a sensitivity study reveals that the risk index is responsive to policy scenarios, including reducing car ownership or increasing employment density, and is sensitive to varying crash intensity weights. Results show notable collision hotspots near entertainment venues and central areas, as well as increased baseline risk in car-oriented urban environments. The results provide practical information for targeted initiatives to lower e-scooter collision risk and safety planning. Full article
(This article belongs to the Special Issue Road Traffic Risk Assessment: Control and Prevention of Collisions)
Show Figures

Figure 1

19 pages, 4141 KiB  
Article
Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models
by ByeongJun Jung, JuYeong Youn and SangWook Kim
Land 2025, 14(7), 1480; https://doi.org/10.3390/land14071480 - 17 Jul 2025
Viewed by 373
Abstract
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, [...] Read more.
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana. Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana. This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana, whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies. Full article
Show Figures

Figure 1

Back to TopTop