Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (428)

Search Parameters:
Keywords = information fusion system design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 (registering DOI) - 1 Aug 2025
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

18 pages, 4857 KiB  
Article
Fast Detection of FDI Attacks and State Estimation in Unmanned Surface Vessels Based on Dynamic Encryption
by Zheng Liu, Li Liu, Hongyong Yang, Zengfeng Wang, Guanlong Deng and Chunjie Zhou
J. Mar. Sci. Eng. 2025, 13(8), 1457; https://doi.org/10.3390/jmse13081457 - 30 Jul 2025
Viewed by 39
Abstract
Wireless sensor networks (WSNs) are used for data acquisition and transmission in unmanned surface vessels (USVs). However, the openness of wireless networks makes USVs highly susceptible to false data injection (FDI) attacks during data transmission, which affects the sensors’ ability to receive real [...] Read more.
Wireless sensor networks (WSNs) are used for data acquisition and transmission in unmanned surface vessels (USVs). However, the openness of wireless networks makes USVs highly susceptible to false data injection (FDI) attacks during data transmission, which affects the sensors’ ability to receive real data and leads to decision-making errors in the control center. In this paper, a novel dynamic data encryption method is proposed whereby data are encrypted prior to transmission and the key is dynamically updated using historical system data, with a view to increasing the difficulty for attackers to crack the ciphertext. At the same time, a dynamic relationship is established among ciphertext, key, and auxiliary encrypted ciphertext, and an attack detection scheme based on dynamic encryption is designed to realize instant detection and localization of FDI attacks. Further, an H fusion filter is designed to filter external interference noise, and the real information is estimated or restored by the weighted fusion algorithm. Ultimately, the validity of the proposed scheme is confirmed through simulation experiments. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

17 pages, 4338 KiB  
Article
Lightweight Attention-Based CNN Architecture for CSI Feedback of RIS-Assisted MISO Systems
by Anming Dong, Yupeng Xue, Sufang Li, Wendong Xu and Jiguo Yu
Mathematics 2025, 13(15), 2371; https://doi.org/10.3390/math13152371 - 24 Jul 2025
Viewed by 221
Abstract
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from [...] Read more.
Reconfigurable Intelligent Surface (RIS) has emerged as a promising enabling technology for wireless communications, which significantly enhances system performance through real-time manipulation of electromagnetic wave reflection characteristics. In RIS-assisted communication systems, existing deep learning-based channel state information (CSI) feedback methods often suffer from excessive parameter requirements and high computational complexity. To address this challenge, this paper proposes LwCSI-Net, a lightweight autoencoder network specifically designed for RIS-assisted multiple-input single-output (MISO) systems, aiming to achieve efficient and low-complexity CSI feedback. The core contribution of this work lies in an innovative lightweight feedback architecture that deeply integrates multi-layer convolutional neural networks (CNNs) with attention mechanisms. Specifically, the network employs 1D convolutional operations with unidirectional kernel sliding, which effectively reduces trainable parameters while maintaining robust feature-extraction capabilities. Furthermore, by incorporating an efficient channel attention (ECA) mechanism, the model dynamically allocates weights to different feature channels, thereby enhancing the capture of critical features. This approach not only improves network representational efficiency but also reduces redundant computations, leading to optimized computational complexity. Additionally, the proposed cross-channel residual block (CRBlock) establishes inter-channel information-exchange paths, strengthening feature fusion and ensuring outstanding stability and robustness under high compression ratio (CR) conditions. Our experimental results show that for CRs of 16, 32, and 64, LwCSI-Net significantly improves CSI reconstruction performance while maintaining fewer parameters and lower computational complexity, achieving an average complexity reduction of 35.63% compared to state-of-the-art (SOTA) CSI feedback autoencoder architectures. Full article
(This article belongs to the Special Issue Data-Driven Decentralized Learning for Future Communication Networks)
Show Figures

Figure 1

22 pages, 4306 KiB  
Article
A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models
by Donglin Li, Xiaoxin Zhao, Weimao Xu, Chao Ge and Chunzheng Li
Energies 2025, 18(14), 3781; https://doi.org/10.3390/en18143781 - 17 Jul 2025
Cited by 1 | Viewed by 261
Abstract
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the [...] Read more.
As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines. Full article
(This article belongs to the Special Issue Advances in Power Distribution Systems)
Show Figures

Figure 1

28 pages, 4068 KiB  
Article
GDFC-YOLO: An Efficient Perception Detection Model for Precise Wheat Disease Recognition
by Jiawei Qian, Chenxu Dai, Zhanlin Ji and Jinyun Liu
Agriculture 2025, 15(14), 1526; https://doi.org/10.3390/agriculture15141526 - 15 Jul 2025
Viewed by 299
Abstract
Wheat disease detection is a crucial component of intelligent agricultural systems in modern agriculture. However, at present, its detection accuracy still has certain limitations. The existing models hardly capture the irregular and fine-grained texture features of the lesions, and the results of spatial [...] Read more.
Wheat disease detection is a crucial component of intelligent agricultural systems in modern agriculture. However, at present, its detection accuracy still has certain limitations. The existing models hardly capture the irregular and fine-grained texture features of the lesions, and the results of spatial information reconstruction caused by standard upsampling operations are inaccuracy. In this work, the GDFC-YOLO method is proposed to address these limitations and enhance the accuracy of detection. This method is based on YOLOv11 and encompasses three key aspects of improvement: (1) a newly designed Ghost Dynamic Feature Core (GDFC) in the backbone, which improves the efficiency of disease feature extraction and enhances the model’s ability to capture informative representations; (2) a redesigned neck structure, Disease-Focused Neck (DF-Neck), which further strengthens feature expressiveness, to improve multi-scale fusion and refine feature processing pipelines; and (3) the integration of the Powerful Intersection over Union v2 (PIoUv2) loss function to optimize the regression accuracy and convergence speed. The results showed that GDFC-YOLO improved the average accuracy from 0.86 to 0.90 when the cross-overmerge threshold was 0.5 (mAP@0.5), its accuracy reached 0.899, its recall rate reached 0.821, and it still maintained a structure with only 9.27 M parameters. From these results, it can be known that GDFC-YOLO has a good detection performance and stronger practicability relatively. It is a solution that can accurately and efficiently detect crop diseases in real agricultural scenarios. Full article
Show Figures

Figure 1

16 pages, 2721 KiB  
Article
An Adapter and Segmentation Network-Based Approach for Automated Atmospheric Front Detection
by Xinya Ding, Xuan Peng, Yanguang Xue, Liang Zhang, Tianying Wang and Yunpeng Zhang
Appl. Sci. 2025, 15(14), 7855; https://doi.org/10.3390/app15147855 - 14 Jul 2025
Viewed by 155
Abstract
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide [...] Read more.
This study presents AD-MRCNN, an advanced deep learning framework for automated atmospheric front detection that addresses two critical limitations in existing methods. First, current approaches directly input raw meteorological data without optimizing feature compatibility, potentially hindering model performance. Second, they typically only provide frontal category information without identifying individual frontal systems. Our solution integrates two key innovations: 1. An intelligent adapter module that performs adaptive feature fusion, automatically weighting and combining multi-source meteorological inputs (including temperature, wind fields, and humidity data) to maximize their synergistic effects while minimizing feature conflicts; the utilized network achieves an average improvement of over 4% across various metrics. 2. An enhanced instance segmentation network based on Mask R-CNN architecture that simultaneously achieves (1) precise frontal type classification (cold/warm/stationary/occluded), (2) accurate spatial localization, and (3) identification of distinct frontal systems. Comprehensive evaluation using ERA5 reanalysis data (2009–2018) demonstrates significant improvements, including an 85.1% F1-score, outperforming traditional methods (TFP: 63.1%) and deep learning approaches (Unet: 83.3%), and a 31% reduction in false alarms compared to semantic segmentation methods. The framework’s modular design allows for potential application to other meteorological feature detection tasks. Future work will focus on incorporating temporal dynamics for frontal evolution prediction. Full article
Show Figures

Figure 1

34 pages, 947 KiB  
Review
Multimodal Artificial Intelligence in Medical Diagnostics
by Bassem Jandoubi and Moulay A. Akhloufi
Information 2025, 16(7), 591; https://doi.org/10.3390/info16070591 - 9 Jul 2025
Viewed by 978
Abstract
The integration of artificial intelligence into healthcare has advanced rapidly in recent years, with multimodal approaches emerging as promising tools for improving diagnostic accuracy and clinical decision making. These approaches combine heterogeneous data sources such as medical images, electronic health records, physiological signals, [...] Read more.
The integration of artificial intelligence into healthcare has advanced rapidly in recent years, with multimodal approaches emerging as promising tools for improving diagnostic accuracy and clinical decision making. These approaches combine heterogeneous data sources such as medical images, electronic health records, physiological signals, and clinical notes to better capture the complexity of disease processes. Despite this progress, only a limited number of studies offer a unified view of multimodal AI applications in medicine. In this review, we provide a comprehensive and up-to-date analysis of machine learning and deep learning-based multimodal architectures, fusion strategies, and their performance across a range of diagnostic tasks. We begin by summarizing publicly available datasets and examining the preprocessing pipelines required for harmonizing heterogeneous medical data. We then categorize key fusion strategies used to integrate information from multiple modalities and overview representative model architectures, from hybrid designs and transformer-based vision-language models to optimization-driven and EHR-centric frameworks. Finally, we highlight the challenges present in existing works. Our analysis shows that multimodal approaches tend to outperform unimodal systems in diagnostic performance, robustness, and generalization. This review provides a unified view of the field and opens up future research directions aimed at building clinically usable, interpretable, and scalable multimodal diagnostic systems. Full article
Show Figures

Graphical abstract

22 pages, 796 KiB  
Article
BIMCoder: A Comprehensive Large Language Model Fusion Framework for Natural Language-Based BIM Information Retrieval
by Bingru Liu and Hainan Chen
Appl. Sci. 2025, 15(14), 7647; https://doi.org/10.3390/app15147647 - 8 Jul 2025
Viewed by 306
Abstract
Building Information Modeling (BIM) has excellent potential to enhance building operation and maintenance. However, as a standardized data format in the architecture, engineering, and construction (AEC) industry, the retrieval of BIM information generally requires specialized software. Cumbersome software operations prevent its effective application [...] Read more.
Building Information Modeling (BIM) has excellent potential to enhance building operation and maintenance. However, as a standardized data format in the architecture, engineering, and construction (AEC) industry, the retrieval of BIM information generally requires specialized software. Cumbersome software operations prevent its effective application in the actual operation and management of buildings. This paper presents BIMCoder, a model designed to translate natural language queries into structured query statements compatible with professional BIM software (e.g., BIMserver v1.5). It serves as an intermediary component between users and various BIM platforms, facilitating access for users without specialized BIM knowledge. A dedicated BIM information query dataset was constructed, comprising 1680 natural language query and structured BIM query string pairs, categorized into 12 groups. Three classical pre-trained large language models (LLMs) (ERNIE 3.0, Llama-13B, and SQLCoder) were evaluated on this dataset. A fine-tuned model based on SQLCoder was then trained. Subsequently, a fusion model (BIMCoder) integrating ERNIE and SQLCoder was designed. Test results demonstrate that the proposed BIMCoder model achieves an outstanding accurate matching rate of 87.16% and an Execution Accuracy rate of 88.75% for natural language-based BIM information retrieval. This study confirms the feasibility of natural language-based BIM information retrieval and offers a novel solution to reduce the complexity of BIM system interaction. Full article
Show Figures

Figure 1

32 pages, 2740 KiB  
Article
Vision-Based Navigation and Perception for Autonomous Robots: Sensors, SLAM, Control Strategies, and Cross-Domain Applications—A Review
by Eder A. Rodríguez-Martínez, Wendy Flores-Fuentes, Farouk Achakir, Oleg Sergiyenko and Fabian N. Murrieta-Rico
Eng 2025, 6(7), 153; https://doi.org/10.3390/eng6070153 - 7 Jul 2025
Viewed by 1171
Abstract
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from [...] Read more.
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from sensing to deployment. We first examine the expanding sensor palette—monocular and multi-camera rigs, stereo and RGB-D devices, LiDAR–camera hybrids, event cameras, and infrared systems—highlighting the complementary operating envelopes and the rise of learning-based depth inference. The advances in visual localization and mapping are then analyzed, contrasting sparse and dense SLAM approaches, as well as monocular, stereo, and visual–inertial formulations. Additional topics include loop closure, semantic mapping, and LiDAR–visual–inertial fusion, which enables drift-free operation in dynamic environments. Building on these foundations, we review the navigation and control strategies, spanning classical planning, reinforcement and imitation learning, hybrid topological–metric memories, and emerging visual language guidance. Application case studies—autonomous driving, industrial manipulation, autonomous underwater vehicles, planetary rovers, aerial drones, and humanoids—demonstrate how tailored sensor suites and algorithms meet domain-specific constraints. Finally, the future research trajectories are distilled: generative AI for synthetic training data and scene completion; high-density 3D perception with solid-state LiDAR and neural implicit representations; event-based vision for ultra-fast control; and human-centric autonomy in next-generation robots. By providing a unified taxonomy, a comparative analysis, and engineering guidelines, this review aims to inform researchers and practitioners designing robust, scalable, vision-driven robotic systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

19 pages, 2533 KiB  
Article
Effective Identification of Aircraft Boarding Tools Using Lightweight Network with Large Language Model-Assisted Detection and Data Analysis
by Anan Zhao, Jia Yin, Wei Wang, Zhonghua Guo and Liqiang Zhu
Electronics 2025, 14(13), 2702; https://doi.org/10.3390/electronics14132702 - 4 Jul 2025
Viewed by 270
Abstract
Frequent and complex boarding operations require an effective management process for specialized tools. Traditional manual statistical analysis exhibits low efficiency, poor accuracy, and a lack of electronic records, making it difficult to meet the demands of modern aviation manufacturing. In this study, we [...] Read more.
Frequent and complex boarding operations require an effective management process for specialized tools. Traditional manual statistical analysis exhibits low efficiency, poor accuracy, and a lack of electronic records, making it difficult to meet the demands of modern aviation manufacturing. In this study, we propose an efficient and lightweight network designed for the recognition and analysis of professional tools. We employ a combination of knowledge distillation and pruning techniques to construct a compact network optimized for the target dataset and constrained deployment resources. We introduce a self-attention mechanism (SAM) for multi-scale feature fusion within the network to enhance its feature segmentation capability on the target dataset. In addition, we integrate a large language model (LLM), enhanced by retrieval-augmented generation (RAG), to analyze tool detection results, enabling the system to rapidly provide relevant information about operational tools for management personnel and facilitating intelligent monitoring and control. Experimental results on multiple benchmark datasets and professional tool datasets validate the effectiveness of our approach, demonstrating superior performance. Full article
(This article belongs to the Special Issue Computer Vision and Image Processing in Machine Learning)
Show Figures

Figure 1

28 pages, 8102 KiB  
Article
Multi-Neighborhood Sparse Feature Selection for Semantic Segmentation of LiDAR Point Clouds
by Rui Zhang, Guanlong Huang, Fengpu Bao and Xin Guo
Remote Sens. 2025, 17(13), 2288; https://doi.org/10.3390/rs17132288 - 3 Jul 2025
Viewed by 327
Abstract
LiDAR point clouds, as direct carriers of 3D spatial information, comprehensively record the geometric features and spatial topological relationships of object surfaces, providing intelligent systems with rich 3D scene representation capability. However, current point cloud semantic segmentation methods primarily extract features through operations [...] Read more.
LiDAR point clouds, as direct carriers of 3D spatial information, comprehensively record the geometric features and spatial topological relationships of object surfaces, providing intelligent systems with rich 3D scene representation capability. However, current point cloud semantic segmentation methods primarily extract features through operations such as convolution and pooling, yet fail to adequately consider sparse features that significantly influence the final results of point cloud-based scene perception, resulting in insufficient feature representation capability. To address these problems, a sparse feature dynamic graph convolutional neural network, abbreviated as SFDGNet, is constructed in this paper for LiDAR point clouds of complex scenes. In the context of this paper, sparse features refer to feature representations in which only a small number of activation units or channels exhibit significant responses during the forward pass of the model. First, a sparse feature regularization method was used to motivate the network model to learn the sparsified feature weight matrix. Next, a split edge convolution module, abbreviated as SEConv, was designed to extract the local features of the point cloud from multiple neighborhoods by dividing the input feature channels, and to effectively learn sparse features to avoid feature redundancy. Finally, a multi-neighborhood feature fusion strategy was developed that combines the attention mechanism to fuse the local features of different neighborhoods and obtain global features with fine-grained information. Taking S3DIS and ScanNet v2 datasets, we evaluated the feasibility and effectiveness of SFDGNet by comparing it with six typical semantic segmentation models. Compared with the benchmark model DGCNN, SFDGNet improved overall accuracy (OA), mean accuracy (mAcc), mean intersection over union (mIoU), and sparsity by 1.8%, 3.7%, 3.5%, and 85.5% on the S3DIS dataset, respectively. The mIoU on the ScanNet v2 validation set, mIoU on the test set, and sparsity were improved by 3.2%, 7.0%, and 54.5%, respectively. Full article
(This article belongs to the Special Issue Remote Sensing for 2D/3D Mapping)
Show Figures

Graphical abstract

42 pages, 5913 KiB  
Review
Recent Advances in Flexible Sensors for Neural Interfaces: Multimodal Sensing, Signal Integration, and Closed-Loop Feedback
by Siyi Yang, Xiujuan Qiao, Junlong Ma, Zhihao Yang, Xiliang Luo and Zhanhong Du
Biosensors 2025, 15(7), 424; https://doi.org/10.3390/bios15070424 - 2 Jul 2025
Cited by 1 | Viewed by 1029
Abstract
The rapid advancement of flexible sensor technology has profoundly transformed neural interface research, enabling multimodal information acquisition, real-time neurochemical and electrophysiological signal monitoring, and adaptive closed-loop regulation. This review systematically summarizes recent developments in flexible materials and microstructural designs optimized for enhanced biocompatibility, [...] Read more.
The rapid advancement of flexible sensor technology has profoundly transformed neural interface research, enabling multimodal information acquisition, real-time neurochemical and electrophysiological signal monitoring, and adaptive closed-loop regulation. This review systematically summarizes recent developments in flexible materials and microstructural designs optimized for enhanced biocompatibility, mechanical compliance, and sensing performance. We highlight the progress in integrated sensing systems capable of simultaneously capturing electrophysiological, mechanical, and neurochemical signals. The integration of carbon-based nanomaterials, metallic composites, and conductive polymers with innovative structural engineering is analyzed, emphasizing their potential in overcoming traditional rigid interface limitations. Furthermore, strategies for multimodal signal fusion, including electrochemical, optical, and mechanical co-sensing, are discussed in depth. Finally, we explore future perspectives involving the convergence of machine learning, miniaturized power systems, and intelligent responsive materials, aiming at the translation of flexible neural interfaces from laboratory research to practical clinical interventions and therapeutic applications. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

27 pages, 13245 KiB  
Article
LHRF-YOLO: A Lightweight Model with Hybrid Receptive Field for Forest Fire Detection
by Yifan Ma, Weifeng Shan, Yanwei Sui, Mengyu Wang and Maofa Wang
Forests 2025, 16(7), 1095; https://doi.org/10.3390/f16071095 - 2 Jul 2025
Viewed by 338
Abstract
Timely and accurate detection of forest fires is crucial for protecting forest ecosystems. However, traditional monitoring methods face significant challenges in effectively detecting forest fires, primarily due to the dynamic spread of flames and smoke, irregular morphologies, and the semi-transparent nature of smoke, [...] Read more.
Timely and accurate detection of forest fires is crucial for protecting forest ecosystems. However, traditional monitoring methods face significant challenges in effectively detecting forest fires, primarily due to the dynamic spread of flames and smoke, irregular morphologies, and the semi-transparent nature of smoke, which make it extremely difficult to extract key visual features. Additionally, deploying these detection systems to edge devices with limited computational resources remains challenging. To address these issues, this paper proposes a lightweight hybrid receptive field model (LHRF-YOLO), which leverages deep learning to overcome the shortcomings of traditional monitoring methods for fire detection on edge devices. Firstly, a hybrid receptive field extraction module is designed by integrating the 2D selective scan mechanism with a residual multi-branch structure. This significantly enhances the model’s contextual understanding of the entire image scene while maintaining low computational complexity. Second, a dynamic enhanced downsampling module is proposed, which employs feature reorganization and channel-wise dynamic weighting strategies to minimize the loss of critical details, such as fine smoke textures, while reducing image resolution. Furthermore, a scale weighted Fusion module is introduced to optimize multi-scale feature fusion through adaptive weight allocation, addressing the issues of information dilution and imbalance caused by traditional fusion methods. Finally, the Mish activation function replaces the SiLU activation function to improve the model’s ability to capture flame edges and faint smoke textures. Experimental results on the self-constructed Fire-SmokeDataset demonstrate that LHRF-YOLO achieves significant model compression while further improving accuracy compared to the baseline model YOLOv11. The parameter count is reduced to only 2.25M (a 12.8% reduction), computational complexity to 5.4 GFLOPs (a 14.3% decrease), and mAP50 is increased to 87.6%, surpassing the baseline model. Additionally, LHRF-YOLO exhibits leading generalization performance on the cross-scenario M4SFWD dataset. The proposed method balances performance and resource efficiency, providing a feasible solution for real-time and efficient fire detection on resource-constrained edge devices with significant research value. Full article
(This article belongs to the Special Issue Forest Fires Prediction and Detection—2nd Edition)
Show Figures

Figure 1

19 pages, 3044 KiB  
Review
Deep Learning-Based Sound Source Localization: A Review
by Kunbo Xu, Zekai Zong, Dongjun Liu, Ran Wang and Liang Yu
Appl. Sci. 2025, 15(13), 7419; https://doi.org/10.3390/app15137419 - 2 Jul 2025
Viewed by 551
Abstract
As a fundamental technology in environmental perception, sound source localization (SSL) plays a critical role in public safety, marine exploration, and smart home systems. However, traditional methods such as beamforming and time-delay estimation rely on manually designed physical models and idealized assumptions, which [...] Read more.
As a fundamental technology in environmental perception, sound source localization (SSL) plays a critical role in public safety, marine exploration, and smart home systems. However, traditional methods such as beamforming and time-delay estimation rely on manually designed physical models and idealized assumptions, which struggle to meet practical demands in dynamic and complex scenarios. Recent advancements in deep learning have revolutionized SSL by leveraging its end-to-end feature adaptability, cross-scenario generalization capabilities, and data-driven modeling, significantly enhancing localization robustness and accuracy in challenging environments. This review systematically examines the progress of deep learning-based SSL across three critical domains: marine environments, indoor reverberant spaces, and unmanned aerial vehicle (UAV) monitoring. In marine scenarios, complex-valued convolutional networks combined with adversarial transfer learning mitigate environmental mismatch and multipath interference through phase information fusion and domain adaptation strategies. For indoor high-reverberation conditions, attention mechanisms and multimodal fusion architectures achieve precise localization under low signal-to-noise ratios by adaptively weighting critical acoustic features. In UAV surveillance, lightweight models integrated with spatiotemporal Transformers address dynamic modeling of non-stationary noise spectra and edge computing efficiency constraints. Despite these advancements, current approaches face three core challenges: the insufficient integration of physical principles, prohibitive data annotation costs, and the trade-off between real-time performance and accuracy. Future research should prioritize physics-informed modeling to embed acoustic propagation mechanisms, unsupervised domain adaptation to reduce reliance on labeled data, and sensor-algorithm co-design to optimize hardware-software synergy. These directions aim to propel SSL toward intelligent systems characterized by high precision, strong robustness, and low power consumption. This work provides both theoretical foundations and technical references for algorithm selection and practical implementation in complex real-world scenarios. Full article
Show Figures

Figure 1

20 pages, 547 KiB  
Article
Fine-Grained Semantics-Enhanced Graph Neural Network Model for Person-Job Fit
by Xia Xue, Jingwen Wang, Bo Ma, Jing Ren, Wujie Zhang, Shuling Gao, Miao Tian, Yue Chang, Chunhong Wang and Hongyu Wang
Entropy 2025, 27(7), 703; https://doi.org/10.3390/e27070703 - 30 Jun 2025
Viewed by 394
Abstract
Online recruitment platforms are transforming talent acquisition paradigms, where a precise person-job fit plays a pivotal role in intelligent recruitment systems. However, current methodologies predominantly rely on coarse-grained semantic analysis, failing to address the textual structural dependencies and noise inherent in resumes and [...] Read more.
Online recruitment platforms are transforming talent acquisition paradigms, where a precise person-job fit plays a pivotal role in intelligent recruitment systems. However, current methodologies predominantly rely on coarse-grained semantic analysis, failing to address the textual structural dependencies and noise inherent in resumes and job descriptions. To bridge this gap, the novel fine-grained semantics-enhanced graph neural network for person-job fit (FSEGNN-PJF) framework is proposed. First, graph topologies are constructed by modeling word co-occurrence relationships through pointwise mutual information and sliding windows, followed by graph attention networks to learn graph structural semantics. Second, to mitigate textual noise and focus on critical features, a differential transformer and self-attention mechanism are introduced to semantically encode resumes and job requirements. Then, a novel fine-grained semantic matching strategy is designed, using the enhanced feature fusion strategy to fuse the semantic features of resumes and job positions. Extensive experiments on real-world recruitment datasets demonstrate the effectiveness and robustness of FSEGNN-PJF. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

Back to TopTop