Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,836)

Search Parameters:
Keywords = influencer content strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1214 KB  
Article
Primary Fermentation in Wine Production Influence on Phenolic Retention and Valorization Potential of Berry Skin By-Products
by Audrone Ispiryan and Elvyra Jarienė
Plants 2026, 15(2), 296; https://doi.org/10.3390/plants15020296 - 19 Jan 2026
Abstract
Berry skins are rich in phenolic compounds but are commonly discarded as low-value waste during berry wine production. The present study evaluated how primary alcoholic fermentation affects the retention and transformation of phenolics in berry skins of blackcurrant (Ribes nigrum L.), black [...] Read more.
Berry skins are rich in phenolic compounds but are commonly discarded as low-value waste during berry wine production. The present study evaluated how primary alcoholic fermentation affects the retention and transformation of phenolics in berry skins of blackcurrant (Ribes nigrum L.), black chokeberry (Aronia melanocarpa L.), lingonberry (Vaccinium vitis-idaea L.), rowanberry (Sorbus aucuparia L.), and cranberry (Vaccinium macrocarpon L.). Non-fermented and fermented skin fractions were analysed using Folin–Ciocalteu and HPLC to determine total and individual phenolic profiles. Primary fermentation induced significant species-dependent changes in phenolic composition. Blackcurrant, lingonberry, and rowanberry skins exhibited substantial decreases in total phenolics (−66%, −26%, and −57%, respectively), driven by strong losses of flavan-3-ols and hydroxycinnamic acids. In contrast, cranberry and chokeberry skins showed net increases in phenolic content (+47% and +18%, respectively), associated with the release of bound phenolics and the appearance of new low-molecular-weight phenolic acids such as gallic acid. Across all species, fermentation enhanced biotransformation into simpler phenolics while reducing major native anthocyanins and catechins. These results demonstrate that the influence of primary fermentation on berry skins is not uniform but dictated by their inherent phenolic architecture. Berries rich in polymeric or conjugated phenolics benefit from fermentation through increased phenolic extractability. The findings provide a comparative basis for optimizing fermentation and post-processing strategies to enhance the valorization potential of berry by-products in food and nutraceutical applications. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 9095 KB  
Article
Radial Growth Patterns Across the Growing Season in Response to Microclimate in Silvopastoral Systems of Nothofagus antarctica Forests
by Julián Rodríguez-Souilla, Juan Manuel Cellini, María Vanessa Lencinas, Lucía Bottan, Jimena Elizabeth Chaves, Fidel Alejandro Roig and Guillermo Martínez Pastur
Forests 2026, 17(1), 129; https://doi.org/10.3390/f17010129 - 17 Jan 2026
Viewed by 135
Abstract
Silvopastoral systems in Patagonia (Argentina) aim to synergize forest and grassland productivity through thinning interventions in native forests of Antarctic beech (Nothofagus antarctica (G.Forst.) Oerst.), locally known as ñire, modifying ecosystem dynamics. This study aimed to determine how thinning strategies modify microclimatic [...] Read more.
Silvopastoral systems in Patagonia (Argentina) aim to synergize forest and grassland productivity through thinning interventions in native forests of Antarctic beech (Nothofagus antarctica (G.Forst.) Oerst.), locally known as ñire, modifying ecosystem dynamics. This study aimed to determine how thinning strategies modify microclimatic conditions (air and soil temperatures, precipitation, soil water content) and modulate the intra-annual radial growth patterns in N. antarctica trees within subpolar deciduous forests of Tierra del Fuego, Argentina. We established three treatments: unmanaged mature forest (UF), thinning under crown cover influence (UC), and thinning outside crown cover influence (OC). Microclimate and radial growth were continuously monitored using high-precision dendrometers and associated data loggers during the 2021–2022 and 2023–2024 growing seasons. Data were analyzed using Generalized Linear Mixed Models and Principal Component Analysis. OC treatment consistently exhibited the highest total annual radial growth, averaging 1.44 mm yr−1, which was substantially greater than the observed in both the UC (0.56 mm yr−1) and UF (0.83 mm yr−1) across the two seasons. An advanced growth dynamic, with cambial activity starting approximately five days earlier than in UF and UC, was detected. Air temperature was a primary positive driver of daily growth (GLMM Estimates > 0.029, p < 0.001 for all treatments), while soil water content (SWC) was significantly higher in OC (mean 25.4%) compared to UF (22.3%) and UC (15.9%). These findings showed that OC, characterized by higher soil moisture, likely facilitated the trees’ ability to capitalize on warm temperature days. This accelerates and extends the period of radial growth, offering a direct strategy to enhance productivity in these silvopastoral systems, essential for long-term forest sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

13 pages, 1377 KB  
Article
Can Vending Machines Promote Healthy Eating? Evidence from a Hospital Intervention
by Urška Rozman, Anja Kac, Miha Lavrič and Sonja Šostar Turk
Nutrients 2026, 18(2), 293; https://doi.org/10.3390/nu18020293 - 16 Jan 2026
Viewed by 169
Abstract
Background/Objectives: Vending machines in hospitals offer convenient access to snacks and beverages for employees, visitors, and patients. However, their contents are typically energy-dense and nutritionally poor, which can potentially reinforce unhealthy eating habits. This study aimed to evaluate the impact of introducing healthier [...] Read more.
Background/Objectives: Vending machines in hospitals offer convenient access to snacks and beverages for employees, visitors, and patients. However, their contents are typically energy-dense and nutritionally poor, which can potentially reinforce unhealthy eating habits. This study aimed to evaluate the impact of introducing healthier vending machine options on purchasing behaviour and consumer perceptions in a hospital setting. Methods: An interventional study was conducted at a university clinical centre in Slovenia. Sales data were collected from a standard vending machine and a pilot machine stocked with healthier products over two 14-day periods. Additionally, a consumer survey assessed factors influencing purchasing decisions and opinions on the healthier offerings. Results: The proportion of healthy items purchased increased from 22% to 39% in the pilot vending machine, indicating a positive shift toward healthier choices. However, total sales declined by 18.81%, suggesting consumer hesitation toward the new product mix. Survey results identified price, ingredients, and visual appeal as the primary factors influencing purchase decisions. Conclusions: The introduction of healthier vending machine options can promote better food choices in hospital environments, though challenges remain regarding consumer acceptance and sales performance. Expanding the variety of healthy items and adopting more competitive pricing strategies may enhance uptake. Further long-term research is needed to assess the sustainability of such interventions and their broader impact on hospital food environments. Full article
Show Figures

Figure 1

19 pages, 5439 KB  
Article
Decoupling Additive and Non-Additive Genetic Effects to Optimize Breeding Strategies for Apple Phenology and Fruit Quality
by Pablo Asprelli, Guido Cipriani and Gloria De Mori
Horticulturae 2026, 12(1), 93; https://doi.org/10.3390/horticulturae12010093 - 16 Jan 2026
Viewed by 112
Abstract
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were [...] Read more.
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were obtained by crossing six apple varieties selected as pollen receptors and four apple genotypes resistant to scab selected as pollen donors. Data related to bud burst date, flowering date, harvest date, lengths of the periods between bud burst and flowering and from flowering to harvest (developmental period), fruit equatorial and polar diameter, fruit polar/diameter ratio, soluble solid content (SSC) and flesh firmness were analysed as a genetic partial diallel design. The study’s ANOVA on 24 fruit families across two years revealed significant genotype–environment interactions affecting flowering date, harvest date, and developmental periods, with some variables like fruit weight and soluble solids showing consistent variation. During each year, temperature influenced phenological phases, with earlier budbreak and flowering in warmer, less variable conditions in 2019. Analysis of genetic effects indicated high heritability for phenological traits and moderate heritability for fruit morphology and quality, with parental genetic contributions varying over years. Principal component and Procrustes analyses identified key variable groupings and parent profiles, highlighting genotypes such as ‘Granny Smith’, ‘McIntosh’, and ‘HM100’ with consistent additive effects, and certain families with notable heterotic performance. Overall, genetic and environmental interactions significantly shape phenological and fruit quality traits, guiding breeding strategies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

18 pages, 5328 KB  
Article
Responses of Leaf Nutrient Dynamics, Soil Nutrients, and Microbial Community Composition to Different Trichosanthes kirilowii Maxim. Varieties
by Fengyun Xiang, Tianya Liu, Mengchen Yang, Zheng Zhang, Qian Yang and Jifu Li
Horticulturae 2026, 12(1), 91; https://doi.org/10.3390/horticulturae12010091 - 15 Jan 2026
Viewed by 95
Abstract
To investigate the effects of different Trichosanthes kirilowii Maxim. varieties on leaf nutrients, soil nutrients, and microbial community composition, this study selected Yuelou No. 3 and Huiji No. 2, two major cultivars from the primary production area of Shishou City. The two varieties [...] Read more.
To investigate the effects of different Trichosanthes kirilowii Maxim. varieties on leaf nutrients, soil nutrients, and microbial community composition, this study selected Yuelou No. 3 and Huiji No. 2, two major cultivars from the primary production area of Shishou City. The two varieties were cultivated at different locations under standardized agronomic management practices, and a systematic comparative analysis was carried out over a 10-month sampling period from March to December 2024. The analysis encompassed their leaf nutrients (total nitrogen, total phosphorus, total potassium, and relative chlorophyll content), soil nutrients (organic matter, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium), and microbial community characteristics. The results revealed significant varietal differences in leaf nutrient content: the average total phosphorus content of Yuelou No. 3 (0.44%) was higher than that of Huiji No. 2 (0.39%), while Huiji No. 2 exhibited higher total nitrogen (3.73%), total potassium (3.86%), and SPAD (44.72). Leaf nutrient content in both varieties followed a pattern of nitrogen > potassium > phosphorus, with peak phosphorus and potassium demand occurring earlier in Yuelou No. 3. Additionally, Yuelou No. 3 contained higher organic matter (12.73 g/kg) and alkali-hydrolyzable nitrogen (103.02 mg/kg), while Huiji No. 2 showed enhanced soil pH (7.02), available phosphorus (6.96 mg/kg), and available potassium (180.00 mg/kg). Soil available nutrient dynamics displayed a pattern of slow change during the early stage, a rapid increase during the middle stage, and stabilization in the later stage. Microbial analysis revealed no significant differences in alpha diversity between the two varieties, although Yuelou No. 3 showed marginally higher diversity indices during early to mid-growth stages. In contrast, beta diversity showed significant separation in PCoA space. Proteobacteria, Acidobacteria, and Ascomycota were the dominant microbial phyla. Dominant genera included Kaistobacter, Mortierella, and Neocosmospora, among others, with variety-specific relative abundances. Redundancy analysis further supported the variety-specific influence of soil physicochemical properties on microbial community structure, with available phosphorus, available potassium, and alkali-hydrolyzable nitrogen identified as key factors shaping community composition. This study provides a theoretical basis for understanding the impact of different Trichosanthes kirilowii Maxim. varieties on soil–plant–microbe interactions and suggests potential directions for future research on fertilization and management strategies tailored to varietal differences. Full article
Show Figures

Figure 1

33 pages, 6779 KB  
Article
Effects of Elevated CO2 on Yield and Nutritional Quality of Kale and Spinach: A Meta-Analysis
by Jiata U. Ekele, Joseph O. Obaje, Susanne R. K. Zajitschek, Richard J. Webster, Fatima Perez de Heredia, Katie E. Lane, Abdulmannan Fadel and Rachael C. Symonds
Biology 2026, 15(2), 152; https://doi.org/10.3390/biology15020152 - 15 Jan 2026
Viewed by 168
Abstract
Elevated atmospheric CO2 is known to alter plant physiology, yet its specific effects on nutrient-rich leafy vegetables remain insufficiently quantified. This study aimed to examine how eCO2 influences yield and nutritional quality in kale (Brassica oleracea) and spinach ( [...] Read more.
Elevated atmospheric CO2 is known to alter plant physiology, yet its specific effects on nutrient-rich leafy vegetables remain insufficiently quantified. This study aimed to examine how eCO2 influences yield and nutritional quality in kale (Brassica oleracea) and spinach (Spinacia oleracea) through the first meta-analysis focused exclusively on these crops. Following the Collaboration for Environmental Evidence (CEE) guidelines, we systematically reviewed eligible studies and conducted a random-effects meta-analysis to evaluate overall and subgroup responses based on CO2 concentration, crop type and exposure duration. Effect sizes were calculated using Hedges’ g with 95% confidence intervals. The analysis showed that eCO2 significantly increased biomass in spinach (g = 1.21) and kale (g = 0.97). However, protein content declined in both crops (spinach: g = −0.76; kale: g = −0.61), and mineral concentrations, particularly calcium and magnesium, were reduced, with spinach exhibiting stronger nutrient losses overall. The variability in response across different CO2 concentrations and exposure times further underscores the complexity of eCO2 effects. These results highlight a trade-off between productivity and nutritional quality under future CO2 conditions. Addressing this challenge will require strategies such as targeted breeding programmes, biofortification, precision agriculture and improved sustainable agricultural practices to maintain nutrient density. This research provides critical evidence for policymakers and scientists to design sustainable food systems that safeguard public health in a changing climate. Full article
Show Figures

Figure 1

17 pages, 426 KB  
Article
Comparing Extraction Techniques and Varieties in Grape Stems: A Chemical Assessment of Antioxidant Phenolics
by Gloria Domínguez-Rodríguez, Juan Antonio Nieto, Susana Santoyo and Laura Jaime
Appl. Sci. 2026, 16(2), 877; https://doi.org/10.3390/app16020877 - 14 Jan 2026
Viewed by 102
Abstract
Grape stems are undervalued winemaking by-products that constitute a promising source of bioactive phenolics with notable antioxidant potential and diverse industrial applications, including food preservation, cosmetics, and pharmaceuticals. Effective valorisation of this resource requires not only efficient extraction strategies, but also the strategic [...] Read more.
Grape stems are undervalued winemaking by-products that constitute a promising source of bioactive phenolics with notable antioxidant potential and diverse industrial applications, including food preservation, cosmetics, and pharmaceuticals. Effective valorisation of this resource requires not only efficient extraction strategies, but also the strategic selection of grape stem varieties to tailor phenolic profiles for specific high-value uses. In this study, a comparative assessment of three extraction techniques, pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), and conventional solid–liquid extraction (SLE), across six grape stem varieties was conducted. By integrating spectrophotometric analyses of total phenolics and antioxidant capacity with HPLC-DAD profiling of individual phenolic compounds, the combined influence of extraction method and varietal composition on phenolic recovery was demonstrated. PLE and UAE significantly enhanced both yield and antioxidant capacity relative to SLE, with PLE providing the broadest spectrum of phenolic compounds. Varietal differences were also pronounced; e.g., Cabernet Sauvignon stems yielded higher antioxidant phenolic compound content, particularly under UAE, reinforcing the importance of aligning extraction technique and stem variety with the intended functional application. Full article
Show Figures

Figure 1

19 pages, 1143 KB  
Article
Utilisation of Woody Waste from Wine Production for Energy Purposes Depending on the Place of Cultivation
by Magdalena Kapłan, Grzegorz Maj, Kamila E. Klimek, Richard Danko, Mojmir Baroň and Radek Sotolář
Agriculture 2026, 16(2), 212; https://doi.org/10.3390/agriculture16020212 - 14 Jan 2026
Viewed by 165
Abstract
Orchard crops generate substantial quantities of diverse biomass each year, with grapevines being among the most economically significant species worldwide. Considering the scale of this biomass, there is a growing need to explore rational strategies for its utilisation, for example, for energy production [...] Read more.
Orchard crops generate substantial quantities of diverse biomass each year, with grapevines being among the most economically significant species worldwide. Considering the scale of this biomass, there is a growing need to explore rational strategies for its utilisation, for example, for energy production or other value-added applications. Such approaches may contribute to improving resource efficiency and reducing the environmental burden associated with agricultural waste. The aim of this study was to examine the energy potential of woody post-production waste from wine processing, with particular emphasis on grape stems of four cultivars—Chardonnay, Riesling, Merlot, and Zweigelt—grown in two contrasting climatic regions: south-eastern Poland and Moravia (Czech Republic). The results demonstrated that both the grape variety and cultivation site significantly influenced the majority of bunch biometric traits, including bunch and berry weight, berry number, and stem dimensions. A moderately warm climate promoted the development of larger and heavier bunches as well as more robust stems across all examined cultivars. Energy analyses indicated that Zweigelt stems produced under moderately warm conditions and Chardonnay stems from a temperate climate exhibited the most favourable combustion properties. Nonetheless, certain constraints were identified, such as increased ash (12.20%) and moisture content (11.51%) in Chardonnay grown in warmer conditions, and elevated CO and CO2 emissions observed for Zweigelt (1333.26 kg·mg−1). Overall, the findings confirm that grape stems constitute a promising local source of bioenergy, with their energy performance determined predominantly by varietal characteristics and climatic factors. Their utilisation aligns with circular-economy principles and may help reduce the environmental impacts associated with traditional viticultural waste management. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 6393 KB  
Article
Deep Plowing Increases Subsoil Carbon Accrual Through Enhancing Macroaggregate Protection in a Mollisol with Two Different Tillage Regimes
by Jiuhui Chen, Zhicheng Bao, Yulong Yang, Jingkun Lu, Baoyu Chen, Xingmin Zhao, Hongbin Wang, Fangming Liu, Dongmei Wang, Chenyu Zhao, Li Wang, Hongjun Wang and Biao Sui
Agronomy 2026, 16(2), 198; https://doi.org/10.3390/agronomy16020198 - 14 Jan 2026
Viewed by 177
Abstract
Soil organic carbon (SOC) is a core component of farmland fertility, and its content is significantly influenced by tillage practices. To clarify the effects of alternate tillage on soil organic carbon sequestration and soil aggregate stability, a tillage experiment was initiated in 2017. [...] Read more.
Soil organic carbon (SOC) is a core component of farmland fertility, and its content is significantly influenced by tillage practices. To clarify the effects of alternate tillage on soil organic carbon sequestration and soil aggregate stability, a tillage experiment was initiated in 2017. The study focused on the distribution of soil aggregates across different particle sizes and their organic carbon contents under four tillage treatments: (1) rotary tillage for two consecutive years after initial deep plowing (RT_DP); (2) no-tillage for two consecutive years after initial deep plowing (NT_DP); (3) continuous rotary tillage (RT); and (4) continuous no-tillage (NT). Compared with continuous rotary tillage (RT), RT_DP increased the crop yield by 14.78%, NT decreased the yield by 10.59%, and NT_DP increased the yield by 3.40%. In the topsoil, soil organic carbon (SOC) content increased by 21.57% under RT_DP, 24.47% under NT, and 21.57% under NT_DP. In the subsoil, SOC content increased by 36.91% under RT_DP, 24.80% under NT, and 42.52% under NT_DP. Compared with the RT treatment, practices such as RT_DP increased the SOC content and the proportion of macroaggregates. No significant differences were observed among all treatments in the topsoil. However, in the subsoil, RT_DP significantly increased the SOC content (by 36.91%), SOC content within >0.25 mm aggregates (by 35.75%), and the proportion of >0.25 mm aggregates (by 1.28%), relative to RT. Compared with NT, NT_DP also increased these three indices by 14.2%, 13.38%, and 0.32%, respectively. In the topsoil, the NT_DP treatment resulted in higher mean weight diameter (MWD) stability than the other treatments. In the subsoil, the NT treatment showed the highest MWD and geometric mean diameter (GMD) values, while both RT_DP and NT_DP had significantly higher MWD and GMD than RT. In the deeper soil layer, the NT treatment exhibited the highest aggregate stability. Further analysis indicated that the positive effects of alternate tillage (NT_DP and RT_DP) on aggregate distribution, aggregate stability, and subsoil SOC sequestration were mainly due to improvements in the soil’s nutrient availability, bulk density, porosity, and water content. The optimization of these soil properties further enhanced soil enzyme activity and ultimately promoted the stabilization and accumulation of SOC. In conclusion, incorporating deep plowing into rotational tillage can effectively promote SOC accumulation, especially in the subsoil of maize farmland, and enhance the physical protection of SOC. This study provides a practical tillage strategy for increasing the maize yield and enhancing soil organic carbon sequestration. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

27 pages, 975 KB  
Article
The Effect of eWOM Sources on Purchase Intention: The Moderating Role of Gender
by Ibrahim Saif and Reema Nofal
J. Theor. Appl. Electron. Commer. Res. 2026, 21(1), 37; https://doi.org/10.3390/jtaer21010037 - 14 Jan 2026
Viewed by 191
Abstract
The electronic word of mouth (eWOM) has emerged as a communication tool that significantly influences consumers’ attitudes and purchasing behavior in the online market. Research indicates that the effect of eWOM sources, such as (strong ties, weak ties, and influencers) varies in terms [...] Read more.
The electronic word of mouth (eWOM) has emerged as a communication tool that significantly influences consumers’ attitudes and purchasing behavior in the online market. Research indicates that the effect of eWOM sources, such as (strong ties, weak ties, and influencers) varies in terms of perceived value components (price, quality, emotional, and social value) and purchase intention, particularly with regard to gender. This study, which is based on the SOR framework; examines the role of eWOM as a stimulus affecting student responses and considers the mediating role of perceived value components and the moderate effect of gender. A sample of 901 students from Westbank universities was analyzed using Smart PLS software. The findings reveal that strong ties and influencer eWOM are positively associated with perceived value components and purchase intention, while weak tie eWOM does not directly correlate with purchase intention. Mediation analyses show that perceived quality and social value act as mediators of purchase intent towards eWOM sources, while emotional value specifically mediates strong relationships and influencers. Notably, price value exerts only a mediating effect on purchase intention when communicated through influencers, highlighting the unique role of the influencer in shaping price perceptions and its broad impact on all components of perceived value. Gender differences were observed in students’ responses to eWOM content; particularly in terms of price, quality, and emotional appeal but not in terms of social factors. The outcomes of this study underscore the significance of considering both the source of the message and the characteristics of the audience when formulating targeted marketing strategies. Full article
(This article belongs to the Topic Digital Marketing Dynamics: From Browsing to Buying)
Show Figures

Figure 1

11 pages, 586 KB  
Article
Activated Carbon from Wet Blue Leather Waste for Dye Removal
by Cezar A. de Aguiar Arpini, Carolina E. Demaman Oro, Rogério Marcos Dallago and Marcus V. Tres
Processes 2026, 14(2), 281; https://doi.org/10.3390/pr14020281 - 13 Jan 2026
Viewed by 97
Abstract
The valorization of wet blue leather waste represents an important strategy for both environmental management and the development of sustainable adsorbent materials. In this study, activated carbons were produced from wet blue leather residue and characterized in terms of surface area and chromium [...] Read more.
The valorization of wet blue leather waste represents an important strategy for both environmental management and the development of sustainable adsorbent materials. In this study, activated carbons were produced from wet blue leather residue and characterized in terms of surface area and chromium content. Pyrolysis at 700 °C yielded activated carbons with surface areas exceeding 500 m2·g−1, directly associated with the chromium content of the material. The results indicate that chromium embedded in the leather matrix acts as an effective chemical activator, enhancing the porous structure. Adsorption experiments demonstrated that both pH and methylene blue concentration positively influenced adsorption capacity, whereas temperature exhibited a negative effect. The maximum adsorption capacity reached 20.2 mg g−1. These results show the potential of wet blue leather waste-derived activated carbon as a low-cost and efficient adsorbent for dye removal from aqueous systems. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

21 pages, 2238 KB  
Article
Sustainable Approach to Vine Fertilisation: Impact of the Use of Wine Industry Waste, Compost and Vermicompost, on the Analytical and Volatile Composition of Wines
by Fernando Sánchez-Suárez, Maria del Valle Palenzuela, Victor Manuel Ramos-Muñoz, Antonio Rosal and Rafael A. Peinado
Agriculture 2026, 16(2), 200; https://doi.org/10.3390/agriculture16020200 - 13 Jan 2026
Viewed by 131
Abstract
This study examined how different fertilisation strategies (mineral, compost, vermicompost and non-fertilised control) influence vine nutrient status, must composition and wine chemical characteristics over two consecutive seasons (2024–2025) in two semi-arid Mediterranean vineyards, one deficit-irrigated and other rainfed. Compost and vermicompost were produced [...] Read more.
This study examined how different fertilisation strategies (mineral, compost, vermicompost and non-fertilised control) influence vine nutrient status, must composition and wine chemical characteristics over two consecutive seasons (2024–2025) in two semi-arid Mediterranean vineyards, one deficit-irrigated and other rainfed. Compost and vermicompost were produced from winery residues, in line with a circular management approach. Organic fertilisation improved vine nitrogen and potassium levels, particularly at veraison, with cumulative effects observed over time. Musts from fertilised vines (mineral, compost and vermicompost) exhibited higher levels of yeast-assimilable nitrogen (YAN) and pH, as well as lower titratable acidity, compared to the control group (without fertilization). Wines obtained from these treatments exhibited higher ethanol content and modified acidity parameters, with compositional changes being more evident in the rainfed vineyard. Analysis of volatile compounds revealed that organic fertilisers, particularly vermicompost, promoted the formation of esters, higher alcohols, and terpenes linked to grape metabolism and fermentation. These results demonstrate that organic amendments derived from winery waste can serve as efficient nutrient sources, thereby enhancing the nutritional balance of vines and the composition of wines, while also promoting sustainable and circular practices in viticulture. Full article
Show Figures

Figure 1

26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Viewed by 100
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

18 pages, 6750 KB  
Article
Impact of Different Extraction Methods on the Physicochemical Characteristics and Bioactivity of Polysaccharides from Baobab (Adansonia suarezensis) Fruit Pulp
by Huimin Cui, Shang Gao, Jiahui Shi, Yinghui Pan, Pengzhi Hong, Jiannong Lu and Chunxia Zhou
Foods 2026, 15(2), 273; https://doi.org/10.3390/foods15020273 - 12 Jan 2026
Viewed by 144
Abstract
Polysaccharides from baobab (Adansonia suarezensis) fruit pulp (ASPs) hold significant potential for pharmaceutical and functional food applications due to their bioactivities. This study systematically evaluated the effects of six extraction methods—hot water (ASP-HW), acid (ASP-AC), alkaline (ASP-AL), and their ultrasound-assisted counterparts [...] Read more.
Polysaccharides from baobab (Adansonia suarezensis) fruit pulp (ASPs) hold significant potential for pharmaceutical and functional food applications due to their bioactivities. This study systematically evaluated the effects of six extraction methods—hot water (ASP-HW), acid (ASP-AC), alkaline (ASP-AL), and their ultrasound-assisted counterparts (ASP-HWU, ASP-ACU, ASP-ALU)—on the yield, chemical composition, structural properties, and biological activities of ASPs. The results demonstrated that the extraction solvent critically influenced key properties: alkaline-based methods (ASP-AL, ASP-ALU) achieved the highest yields (up to 62.47%) and yielded polysaccharides with lower molecular weights (approximately 19,600–19,813 Da) and smaller particle sizes (around 140–147 nm). All ASPs were identified as acidic pectic polysaccharides, composed of galacturonic acid, xylose, galactose, and arabinose. Notably, ASP-AC, ASP-ACU, ASP-AL, and ASP-ALU exhibited a triple-helix conformation, which was absent in hot water-extracted polysaccharides. Bioactivity assessments revealed that ASP-AL and ASP-ALU possessed superior antioxidant capacities, demonstrating the lowest IC50 values for DPPH radical scavenging (113.67–116.67 μg/mL) and ABTS radical scavenging (79.33–79.67 μg/mL), as well as potent α-glucosidase inhibitory activity (IC50: 0.146–0.206 mg/mL), outperforming other extracts and the positive control acarbose. Correlation analysis indicated that enhanced bioactivity was associated with lower molecular weight and reduced uronic acid content. These findings underscore that alkaline extraction is an efficient strategy for obtaining highly bioactive polysaccharides from Adansonia suarezensis fruit pulp, providing a valuable theoretical foundation for their utilization in developing nutraceuticals and functional foods. Full article
Show Figures

Graphical abstract

31 pages, 5855 KB  
Article
Integrated Characterization by EDS and Roughness as a Diagnostic Tool for Dental Enamel Degradation: An In Vitro Study
by Cosmin Bogdan Licsăndroiu, Mihaela Jana Țuculină, Petre Costin Mărășescu, Felicia Ileana Mărășescu, Cosmin Mihai Mirițoiu, Raluca Ionela Olaru Gheorghe, Bogdan Dimitriu, Maria Cristina Bezna, Elena Verona Licsăndroiu, Mihaela Stan, Cristian-Marius Bacanu and Ionela Teodora Dascălu
Bioengineering 2026, 13(1), 85; https://doi.org/10.3390/bioengineering13010085 - 12 Jan 2026
Viewed by 250
Abstract
In fixed orthodontic treatment, brackets are orthodontic attachments bonded to the tooth enamel, and their placement and removal may affect the underlying enamel surface. Enamel degradation is a critical factor for oral health, as it reduces the mechanical strength of teeth and increases [...] Read more.
In fixed orthodontic treatment, brackets are orthodontic attachments bonded to the tooth enamel, and their placement and removal may affect the underlying enamel surface. Enamel degradation is a critical factor for oral health, as it reduces the mechanical strength of teeth and increases susceptibility to caries and erosion. Accurate diagnosis of enamel changes is therefore essential for the evaluation of preventive and restorative treatments. In this study, enamel degradation was investigated via two integrated methods: energy-dispersive X-ray spectroscopy (EDS) and surface roughness measurement. The experimental protocol was performed in three stages: before bracket bonding, after bracket removal, and after applying a remineralization treatment. The experimental design included a repeated-measures structure, with stage (baseline, post-debonding, post-remineralization) as the within-tooth factor and bracket type (sapphire vs. metallic) as the between-tooth factor. Given the violation of the variance homogeneity assumption, group comparisons were ultimately performed using Welch ANOVA followed by Games–Howell post hoc tests, with Bonferroni-adjusted values used for pairwise comparisons. The presence of orthodontic brackets can influence enamel mineralization because the bonding and debonding procedures modify the enamel surface microtopography. These procedures can generate microcracks and surface irregularities, which may affect mineral exchange between enamel and the surrounding environment. In our study, bracket removal led to a significant decrease in the mean atomic percentages of Ca (from 32.65% to 16.37% for sapphire) and P (from 16.35% to 8.60% for sapphire), accompanied by a sharp increase in surface roughness. After remineralization, Ca and P levels increased, while roughness decreased. However, neither the mineral content nor the surface topography fully returned to the initial values, indicating that remineralization achieved only a partial recovery of enamel integrity. These findings highlight that the integrated EDS approach and roughness analysis offer a promising descriptive framework for assessing enamel degradation and monitoring the effectiveness of remineralization therapies. The generated mathematical model provides a powerful descriptive framework for the in vitro data obtained, correlating roughness with mineral composition and treatment stage. However, such a high goodness-of-fit (R2 > 0.98) should be interpreted cautiously due to the risk of overfitting. Therefore, rigorous external validation is mandatory before this model can be considered a reliable predictive tool. It also highlights the importance of enamel remineralization therapies after orthodontic treatment, but also the importance of choosing personalized treatment strategies adapted to the enamel type. Full article
(This article belongs to the Special Issue Biomaterials and Technology for Oral and Dental Health)
Show Figures

Graphical abstract

Back to TopTop