Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,057)

Search Parameters:
Keywords = influence of electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 - 1 Aug 2025
Viewed by 168
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 207
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

18 pages, 4344 KiB  
Article
Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification
by Yidong Hu, Fan Yang, Jianguo Li and Qiaodan Hu
Crystals 2025, 15(8), 707; https://doi.org/10.3390/cryst15080707 - 31 Jul 2025
Viewed by 181
Abstract
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like [...] Read more.
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like microstructure, which can be hardly obtained by conventional sintering. At optimal nominal lithium content and cooling rate, the solidified LLTO ceramic achieved a high total conductivity of 2.5 × 10−4 S·cm−1 at room temperature, along with excellent mechanical properties such as a high Young’s modulus of 240 GPa and a high hardness of 16.7 GPa. Results from this work suggest that aerodynamic levitation rapid solidification is an effective processing method to manipulate the microstructure of LLTO ceramics to minimize the GBs’ contribution to the total conductivity, which may be expanded to prepare other oxide-type lithium electrolytes. Full article
Show Figures

Figure 1

14 pages, 2314 KiB  
Article
The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 - 31 Jul 2025
Viewed by 111
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

16 pages, 1504 KiB  
Review
Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties
by George W. Thompson and Mohammad J. Mahtabi
Appl. Sci. 2025, 15(15), 8500; https://doi.org/10.3390/app15158500 (registering DOI) - 31 Jul 2025
Viewed by 133
Abstract
This paper reviews the fundamental principles and techniques of nickel electrodeposition, with a particular focus on metallizing polymeric substrates. It outlines the electrochemical mechanisms involved in depositing nickel from an acidic Watts bath, detailing the roles of key electrolyte components—i.e., nickel sulfate, nickel [...] Read more.
This paper reviews the fundamental principles and techniques of nickel electrodeposition, with a particular focus on metallizing polymeric substrates. It outlines the electrochemical mechanisms involved in depositing nickel from an acidic Watts bath, detailing the roles of key electrolyte components—i.e., nickel sulfate, nickel chloride, and boric acid—and the influence of process parameters, such as current density, temperature, and pH, on deposit quality (density and surface condition) and mechanical properties. In addressing the unique challenges posed by non-conductive polymers, this review compares emerging methods like silver conductive paint, highlighting differences in deposition time, surface resistivity, and environmental impact. Additionally, this paper examines how process parameters affect the as-deposited microstructure, adhesion, and overall mechanical properties (such as hardness, ductility, and tensile strength), while identifying critical issues such as low deposition density and substrate degradation. These insights provide a structured background for optimizing electroplating processes for applications in electronics, automotive, aerospace, and biomedical sectors, and suggest future research directions to enhance deposition uniformity, sustainability, and process control. Full article
Show Figures

Figure 1

18 pages, 6570 KiB  
Article
Deposition Process and Interface Performance of Aluminum–Steel Joints Prepared Using CMT Technology
by Jie Zhang, Hao Du, Xinyue Wang, Yinglong Zhang, Jipeng Zhao, Penglin Zhang, Jiankang Huang and Ding Fan
Metals 2025, 15(8), 844; https://doi.org/10.3390/met15080844 - 29 Jul 2025
Viewed by 272
Abstract
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of [...] Read more.
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of equipment. Achieving high-quality joining between the aluminum alloy and steel has become a key process in the preparation of the anode assembly. To join the guide rods and steel claws, this work uses Cold Metal Transfer (CMT) technology to clad aluminum on the steel surface and employs machine vision to detect surface forming defects in the cladding layer. The influence of different currents on the interfacial microstructure and mechanical properties of aluminum alloy cladding on the steel surface was investigated. The results show that increasing the cladding current leads to an increase in the width of the fusion line and grain size and the formation of layered Fe2Al5 intermetallic compounds (IMCs) at the interface. As the current increases from 90 A to 110 A, the thickness of the Al-Fe IMC layer increases from 1.46 μm to 2.06 μm. When the current reaches 110 A, the thickness of the interfacial brittle phase is the largest, at 2 ± 0.5 μm. The interfacial region where aluminum and steel are fused has the highest hardness, and the tensile strength first increases and then decreases with the current. The highest tensile strength is 120.45 MPa at 100 A. All the fracture surfaces exhibit a brittle fracture. Full article
Show Figures

Figure 1

27 pages, 4829 KiB  
Article
Quantitative Analysis of Ginger Maturity and Pulsed Electric Field Thresholds: Effects on Microstructure and Juice’s Nutritional Profile
by Zhong Han, Pan He, Yu-Huan Geng, Muhammad Faisal Manzoor, Xin-An Zeng, Suqlain Hassan and Muhammad Talha Afraz
Foods 2025, 14(15), 2637; https://doi.org/10.3390/foods14152637 - 28 Jul 2025
Viewed by 416
Abstract
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect [...] Read more.
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect on juice yield and bioactive compound extraction was systematically evaluated. At 2.5 kV/cm, old ginger exhibited a pronounced dielectric breakdown effect due to enhanced electrolyte content and cell wall lignification, resulting in a higher degree of cell disintegration (0.65) compared with fresh ginger (0.44). This translated into a significantly improved juice yield of 90.85% for old ginger, surpassing the 84.16% limit observed in fresh ginger. HPLC analysis revealed that the extraction efficiency of 6-gingerol and 6-shogaol increased from 1739.16 to 2233.60 µg/g and 310.31 to 339.63 µg/g, respectively, in old ginger after PEF treatment, while fresh ginger showed increases from 1257.88 to 1824.05 µg/g and 166.43 to 213.52 µg/g, respectively. Total phenolic content (TPC) and total flavonoid content (TFC) also increased in both tissues, with OG-2.5 reaching 789.57 µg GAE/mL and 336.49 µg RE/mL, compared with 738.19 µg GAE/mL and 329.62 µg RE/mL in FG-2.5. Antioxidant capacity, as measured by ABTS•+ and DPPH inhibition, improved more markedly in OG-2.5 (37.8% and 18.7%, respectively) than in FG-2.5. Moreover, volatile compound concentrations increased by 177.9% in OG-2.5 and 137.0% in FG-2.5 compared with their respective controls, indicating differential aroma intensification and compound transformation. Structural characterization by SEM and FT-IR further corroborated enhanced cellular disruption and biochemical release in mature tissue. Collectively, these results reveal a maturity-dependent mechanism of electro-permeabilization in plant tissues, offering new insights into optimizing non-thermal processing for functional food production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

19 pages, 5968 KiB  
Article
Investigation of Electrical Discharge Processes During Electrolytic–Plasma Nitrocarburizing
by Bauyrzhan Rakhadilov, Laila Sulyubayeva, Almasbek Maulit and Temirlan Alimbekuly
Materials 2025, 18(14), 3381; https://doi.org/10.3390/ma18143381 - 18 Jul 2025
Viewed by 373
Abstract
In this study, the process of electrolytic–plasma nitrocarburizing (EPNC) of 20-grade steel was investigated using various electrolytes and temperature regimes. At the first stage, optical spectral analysis of plasma emission during EPNC was carried out with spectral registration in the range of 275–850 [...] Read more.
In this study, the process of electrolytic–plasma nitrocarburizing (EPNC) of 20-grade steel was investigated using various electrolytes and temperature regimes. At the first stage, optical spectral analysis of plasma emission during EPNC was carried out with spectral registration in the range of 275–850 nm, which allowed the identification of active components (Hα, CN, Fe I, O I lines, etc.) and the calculation of electron density. Additionally, the EPNC process was recorded using a high-speed camera (1500 frames per second), which made it possible to visually evaluate the dynamics of arc and glow discharges under varying electrolyte compositions. At the next stage, the influence of temperature regimes (650 °C, 750 °C, and 850 °C) on the formation of the hardened layer was studied. Using SEM and EDS methods, the morphology, phase zones, and the distribution of chemical elements were determined. Microhardness measurements along the depth and friction tests were carried out. It was found that a temperature of 750 °C provides the best balance between the uniformity of chemical composition, high microhardness (~800 HV), and a minimal coefficient of friction (~0.48). The obtained results confirm the potential of the selected EPNC regime for improving the performance characteristics of 20-grade steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 1314 KiB  
Review
Electrochemical and Electroless Deposition of High-Entropy Alloy Thin Films: A Review of Plating Conditions, Properties, and Applications
by Ewa Rudnik
Appl. Sci. 2025, 15(14), 8009; https://doi.org/10.3390/app15148009 - 18 Jul 2025
Viewed by 355
Abstract
High-entropy alloys (HEAs) represent a breakthrough class of materials characterized by a unique combination of properties derived from their multielement compositions. This review explores the current advancements in both electrochemical and electroless deposition techniques for synthesizing HEA thin films. This paper discusses the [...] Read more.
High-entropy alloys (HEAs) represent a breakthrough class of materials characterized by a unique combination of properties derived from their multielement compositions. This review explores the current advancements in both electrochemical and electroless deposition techniques for synthesizing HEA thin films. This paper discusses the crucial plating conditions using aqueous or organic electrolytes and various current/potential modes that influence the formation, quality, and properties of these complex alloy coatings. Particular attention is given to their emerging applications in areas such as catalysis, protective coatings, microelectronics, and liquids’ separation. A comparison of electrochemical versus electroless methods reveals insights into the advantages and limitations of each technique for research and industrial use. This comprehensive review aims to guide further innovation in the development and application of HEA coatings. Full article
Show Figures

Figure 1

15 pages, 1845 KiB  
Article
Comparing the SEI Formation on Copper and Amorphous Carbon: A Study with Combined Operando Methods
by Michael Stich, Christian Leppin, Falk Thorsten Krauss, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Bernhard Roling and Andreas Bund
Batteries 2025, 11(7), 273; https://doi.org/10.3390/batteries11070273 - 18 Jul 2025
Viewed by 277
Abstract
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce [...] Read more.
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce artifacts or misinterpretations as they do not investigate the SEI in its unaltered state immersed in liquid battery electrolyte. Thus, in this work, we focus on using the non-destructive combination of electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and impedance spectroscopy (EIS) in the same electrochemical cell. EQCM-D can not only probe the solidified products of the SEI but also allows for the monitoring of viscoelastic layers and viscosity changes of the electrolyte at the interphase during the SEI formation. EIS complements those results by providing electrochemical properties of the formed interphase. Our results highlight substantial differences in the physical and electrochemical properties between the SEI formed on copper and on amorphous carbon and show how formation parameters and the additive vinylene carbonate (VC) influence their growth. The EQCM-D results show consistently that much thicker SEIs are formed on carbon substrates in comparison to copper substrates. Full article
(This article belongs to the Special Issue Electrocrystallization in Rechargeable Batteries)
Show Figures

Figure 1

18 pages, 4231 KiB  
Article
Effect Mechanism of Phosphorus-Containing Flame Retardants with Different Phosphorus Valence States on the Safety and Electrochemical Performance of Lithium-Ion Batteries
by Peng Xi, Fengling Sun, Xiaoyu Tang, Xiaoping Fan, Guangpei Cong, Ziyang Lu and Qiming Zhuo
Processes 2025, 13(7), 2248; https://doi.org/10.3390/pr13072248 - 14 Jul 2025
Viewed by 314
Abstract
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional [...] Read more.
With the widespread application of lithium-ion batteries (LIBs), safety performance has become a critical factor limiting the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolytes of LIBs are extremely flammable. Adding flame retardants to conventional electrolytes is an effective method to improve battery safety. In this paper, trimethyl phosphate (TMP) and trimethyl phosphite (TMPi) were used as research objects, and the flame-retardant test and differential scanning calorimetry (DSC) of the electrolytes configured by them were first carried out. The self-extinguishing time of the electrolyte with 5% TMP and TMPi is significantly reduced, achieving a flame-retardant effect. Secondly, the electrochemical performance of LiFePO4|Li half-cells after adding different volume ratios of TMP and TMPi was studied. Compared with TMPi5, the peak potential difference between the oxidation peak and the reduction peak of the LiFePO4|Li half-cell with TMP5 added is reduced, the battery polarization is reduced, the discharge specific capacity after 300 cycles is large, the capacity retention rate is as high as 99.6%, the discharge specific capacity is larger at different current rates, and the electrode resistance is smaller. TMPi5 causes the discharge-specific capacity to attenuate, which is more obvious at high current rates. LiFePO4|Li half-cells with 5% volume ratio of flame retardant have the best electrochemical performance. Finally, the influence mechanism of the phosphorus valence state on battery safety and electrochemical performance was compared and studied. After 300 cycles, the surface of the LiFePO4 electrode with 5% TMP added had a smoother and more uniform CEI film and higher phosphorus (P) and fluorine (F) content, which was beneficial to the improvement of electrochemical performance. The cross-section of the LiFePO4 electrode showed slight collapse and cracks, which slowed down the attenuation of battery capacity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 5743 KiB  
Article
Impact of Low-Pressure in High-Altitude Area on the Aging Characteristics of NCM523/Graphite Pouch Cells
by Xiantao Chen, Zhi Wang, Jian Wang, Yichao Lin and Jian Li
Batteries 2025, 11(7), 261; https://doi.org/10.3390/batteries11070261 - 13 Jul 2025
Viewed by 377
Abstract
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, [...] Read more.
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, the influences and mechanisms of high-altitude and low-pressure environment (50 kPa) on the cycling performance of commercial pouch LIBs were systematically studied. The results showed that low air pressure caused a sharp decrease in battery capacity to 46.6% after 200 cycles, with a significant increase in charge transfer impedance by 70%, and the contribution rate of active lithium loss reached 74%. Low air pressure led to irreversible deformation of the battery, resulting in the expansion of the gap between the electrodes, poor electrolyte infiltration, and reduction of the effective lithium insertion area, which in turn induced multiple synergistic accelerated decay mechanisms, including obstructed lithium-ion transmission, reduced interfacial reaction efficiency, increased active lithium consumption, changes in heat generation structure, and a significant increase in heat generation. After applying external force, the deformation of the electrode was effectively suppressed, and the cycle capacity retention rate increased to 87.6%, which significantly alleviated the performance degradation of LIBs in low pressure environment. This work provides a key theoretical basis and engineering solutions for the design of power batteries in high-altitude areas. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire: 2nd Edition)
Show Figures

Figure 1

11 pages, 1703 KiB  
Article
Influence of Electrolytic Hydrogen Charging and Effusion Aging on the Rotating Bending Fatigue Resistance of SAE 52100 Steel
by Johannes Wild, Stefan Wagner, Astrid Pundt and Stefan Guth
Corros. Mater. Degrad. 2025, 6(3), 30; https://doi.org/10.3390/cmd6030030 - 9 Jul 2025
Viewed by 217
Abstract
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel [...] Read more.
Hydrogen embrittlement (HE) can significantly degrade the mechanical properties of steels. This phenomenon is particularly relevant for high-strength steels where large elastic stresses lead to detrimental localized concentrations of hydrogen at defects. In this study, unnotched rotating bending specimens of the bearing steel SAE 52100 (100Cr6) quenched and tempered at 180 °C and 400 °C were electrochemically charged with hydrogen. Charged and non-charged specimens then underwent rotating bending fatigue testing, either immediately after charging or after aging at room temperature up to 72 h. The hydrogen-charged specimens annealed at 180 °C showed a sizeable drop in fatigue limit and fatigue lifetime compared to the non-charged specimens with cracks mainly originating from near-surface non-metallic inclusions. In comparison, the specimens annealed at 400 °C exhibited a moderate drop in fatigue limit and lifetime due to hydrogen charging with cracks originating mostly from the surface. Aging had only insignificant effects on the fatigue lifetime. Notably, annealing of charged samples for 2 h at 180 °C restored their lifetime to that of non-charged specimens. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

24 pages, 1344 KiB  
Article
Field Evaluation of Liver Ultrasound Measurements and Biochemical and Metabolic Parameters During the Transition Period in Dairy Cows
by Giorgia Taio, Anastasia Lisuzzo, Silvia Bordin, Matteo Gianesella, Igino Andrighetto, Giorgio Marchesini and Enrico Fiore
Animals 2025, 15(14), 2013; https://doi.org/10.3390/ani15142013 - 8 Jul 2025
Viewed by 277
Abstract
Ketosis and fatty liver syndrome are metabolic disorders apparent in dairy cows during the transition period. The study focused on examining how varying levels of milk production in dairy cows might reflect or influence specific blood biochemical markers and liver health as assessed [...] Read more.
Ketosis and fatty liver syndrome are metabolic disorders apparent in dairy cows during the transition period. The study focused on examining how varying levels of milk production in dairy cows might reflect or influence specific blood biochemical markers and liver health as assessed through ultrasonography. A total of 65 Holstein-Friesian cows from six farms were evaluated at three time points as follows: 7 days before expected calving and at 7 and 21 ± 3 days postpartum. Each evaluation included the body condition score (BCS), blood sampling for biochemical analysis, and liver ultrasonography. Based on average farm milk yield, cows were divided into three production groups as follows: GR1 (38.4 ± 6.45 L/day, n = 23), GR2 (42.9 ± 2.77 L/day, n = 24), and GR3 (45.69 ± 7.49 L/day, n = 18). Parameters assessed included liver lipid content and ultrasonographic measurements such as portal vein diameter and depth, liver depth, and liver angle. Significant time-dependent changes were observed in liver size, fat metabolism, and electrolyte balance, especially postpartum. However, no significant differences emerged among the production groups, indicating that these changes likely represent physiological adaptations to lactation. These findings support the use of blood analysis and ultrasonography as practical, minimally invasive tools for routine metabolic health monitoring in dairy cows during the transition period. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

26 pages, 10819 KiB  
Review
Recent Advances in Thermochemical Water Splitting for Hydrogen Production Using Mixed Ionic-Electronic Conducting Membrane Reactors
by Jingjun Li, Qing Yang, Jie Liu, Qiangchao Sun and Hongwei Cheng
Membranes 2025, 15(7), 203; https://doi.org/10.3390/membranes15070203 - 4 Jul 2025
Viewed by 878
Abstract
Under the accelerating global energy restructuring and the deepening carbon neutrality strategy, hydrogen energy has emerged with increasing strategic value as a zero-carbon secondary energy carrier. Water electrolysis technology based on renewable energy is regarded as an ideal pathway for large-scale green hydrogen [...] Read more.
Under the accelerating global energy restructuring and the deepening carbon neutrality strategy, hydrogen energy has emerged with increasing strategic value as a zero-carbon secondary energy carrier. Water electrolysis technology based on renewable energy is regarded as an ideal pathway for large-scale green hydrogen production. However, polymer electrolyte membrane (PEM) conventional water electrolysis faces dual constraints in economic feasibility and scalability due to its high electrical energy consumption and reliance on noble metal catalysts. The mixed ionic-electronic conducting oxygen transport membrane (MIEC–OTM) reactor technology offers an innovative solution to this energy efficiency-cost paradox due to its thermo-electrochemical synergistic energy conversion mechanism and process integration. This not only overcomes the thermodynamic equilibrium limitations in traditional electrolysis but also reduces electrical energy demand by effectively coupling with medium- to high-temperature heat sources such as industrial waste heat and solar thermal energy. Therefore, this review, grounded in the physicochemical mechanisms of oxygen transport membrane reactors, systematically examines the influence of key factors, including membrane material design, catalytic interface optimization, and parameter synergy, on hydrogen production efficiency. Furthermore, it proposes a roadmap and breakthrough directions for industrial applications, focusing on enhancing intrinsic material stability, designing multi-field coupled reactors, and optimizing system energy efficiency. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

Back to TopTop