Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,492)

Search Parameters:
Keywords = infiltration characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 13735 KiB  
Article
Immunohistopathological Analysis of Spongiosis Formation in Atopic Dermatitis Compared with Other Skin Diseases
by Ryoji Tanei and Yasuko Hasegawa
Dermatopathology 2025, 12(3), 23; https://doi.org/10.3390/dermatopathology12030023 - 1 Aug 2025
Abstract
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis [...] Read more.
Whether the spongiotic reaction caused by the interaction of keratinocytes, T-lymphocytes, inflammatory dendritic epidermal cells (IDECs), and Langerhans cells (LCs) observed in atopic dermatitis (AD) represents a common feature of spongiosis in various skin diseases remains unclear. We analyzed the characteristics of spongiosis in AD compared with those in other eczematous dermatitis and inflammatory skin diseases by using immunohistochemical methods. Infiltration of IDECs (CD11c+ cells and/or CD206+ cells) and T-lymphocytes, accompanied by degenerated keratinocytes and aggregated LCs (CD207+ cells), was frequently observed as a common feature of spongiosis in multiple conditions. However, IDECs expressing IgE were identified exclusively in IgE-mediated AD. Aggregation of IDECs was predominantly observed in the spongiosis of adaptive immune-mediated eczematous disorders, such as AD and allergic contact dermatitis. These IDEC aggregations constituted the major components of the epidermal dendritic cell clusters seen in AD and other eczematous or eczematoid dermatoses, and may serve as a useful distinguishing marker from Pautrier collections seen in cutaneous T-cell lymphoma. These findings suggest that IDECs, in cooperation with other immune cells, may play a pivotal role in spongiosis formation in AD and various skin diseases, although the underlying immunopathological mechanisms differ among these conditions. Full article
Show Figures

Figure 1

22 pages, 2591 KiB  
Article
Could Hydroinfiltrators Made with Biochar Modify the Soil Microbiome? A Strategy of Soil Nature-Based Solution for Smart Agriculture
by Azahara Navarro, Ana del Moral, Gabriel Delgado, Jesús Párraga, José Ángel Rufián, Raúl Rojano and Juan Manuel Martín-García
Appl. Sci. 2025, 15(15), 8503; https://doi.org/10.3390/app15158503 (registering DOI) - 31 Jul 2025
Abstract
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged [...] Read more.
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged as a promising agricultural amendment, as it helps to optimise moisture retention and improve soil structure, key aspects for boosting crop yields. There is growing interest in microorganisms’ plant-growth-promoting activity (PGP) by carrying out different activities considered growth promoters. The aim of the present study is to evaluate the use of a biochar hydroinfiltrator as a promoter of microbial activity when it is used in soil. Metagenomic analysis of soils with and without the device reveals that genera Bacillus and Sphingomonas became particularly enriched in soils with hydroinfiltrators. Also, in order to understand the interaction between the uses of biochar together with bacteria PGP, an in vitro test was carried out. Two microorganisms, previously selected for their characteristics as plant growth promoters, were inoculated in soils with and without biochar and they grew better after 15 to 30 days of inoculation, showing major CFU counts. This combined strategy—biochar hydroinfiltrator and PGP bacteria—offers an innovative, eco-friendly approach to sustainable agriculture, particularly under drought stress. Full article
Show Figures

Figure 1

26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 (registering DOI) - 31 Jul 2025
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

8 pages, 9195 KiB  
Case Report
Fatal Case of Viral Pneumonia Associated with Metapneumovirus Infection in a Patient with a Burdened Medical History
by Parandzem Khachatryan, Naira Karalyan, Hasmik Petunts, Sona Hakobyan, Hranush Avagyan, Zarine Ter-Pogossyan and Zaven Karalyan
Microorganisms 2025, 13(8), 1790; https://doi.org/10.3390/microorganisms13081790 - 31 Jul 2025
Viewed by 39
Abstract
Background: Human metapneumovirus (hMPV) is a respiratory pathogen that causes illness ranging from mild upper respiratory tract infections to severe pneumonia, particularly in individuals with comorbidities. Fatal cases of hMPV-induced hemorrhagic pneumonia are rare and likely under-reported. Diagnosis is often delayed due to [...] Read more.
Background: Human metapneumovirus (hMPV) is a respiratory pathogen that causes illness ranging from mild upper respiratory tract infections to severe pneumonia, particularly in individuals with comorbidities. Fatal cases of hMPV-induced hemorrhagic pneumonia are rare and likely under-reported. Diagnosis is often delayed due to overlapping symptoms with other respiratory viruses and the rapid progression of the disease. Case presentation: We report the case of a 55-year-old man with a complex medical history, including liver cirrhosis and diabetes mellitus, who developed acute viral pneumonia. Initial symptoms appeared three days before a sudden clinical deterioration marked by shortness of breath, hemoptysis, and respiratory failure. A nasopharyngeal swab taken on the third day of illness tested positive for hMPV by qRT-PCR. The patient died the following day. Postmortem molecular testing confirmed hMPV in lung tissue and alveolar contents. Autopsy revealed bilateral hemorrhagic pneumonia with regional lymphadenopathy. Histopathological examination showed alveolar hemorrhage, multinucleated cells, neutrophilic infiltration, activated autophagy in macrophages, and numerous cytoplasmic eosinophilic viral inclusions. Conclusions: This is the first documented case of fatal hMPV pneumonia in Armenia. It highlights the potential severity of hMPV in adults with chronic health conditions and emphasizes the need for timely molecular diagnostics. Postmortem identification of characteristic viral inclusions may serve as a cost-effective histopathological marker of hMPV-associated lung pathology. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

22 pages, 4087 KiB  
Article
Intranasal Administration of Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Has Therapeutic Effect in Experimental Autoimmune Encephalomyelitis
by Barbara Rossi, Federica Virla, Gabriele Angelini, Ilaria Scambi, Alessandro Bani, Giulia Marostica, Mauro Caprioli, Daniela Anni, Roberto Furlan, Pasquina Marzola, Raffaella Mariotti, Gabriela Constantin, Bruno Bonetti and Ermanna Turano
Cells 2025, 14(15), 1172; https://doi.org/10.3390/cells14151172 - 30 Jul 2025
Viewed by 240
Abstract
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of [...] Read more.
Adipose stem cells (ASCs) are a subset of mesenchymal stem cells with validated immunomodulatory and regenerative capabilities that make them attractive tools for treating neurodegenerative disorders, such as multiple sclerosis (MS). Several studies conducted on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, have clearly shown a therapeutic effect of ASCs. However, controversial data on their efficacy were obtained from I- and II-phase clinical trials in MS patients, highlighting standardization issues and limited data on long-term safety. In this context, ASC-derived extracellular vesicles from (ASC-EVs) represent a safer, more reproducible alternative for EAE and MS treatment. Moreover, their physical characteristics lend themselves to a non-invasive, efficient, and easy handling of intranasal delivery. Using an in vitro setting, we first verified ASC-EVs’ ability to cross the human nasal epithelium under an inflammatory milieu. Magnetic resonance corroborated these data in vivo in intranasally treated MOG35-55-induced EAE mice, showing a preferential accumulation of ASC-EVs in brain-inflamed lesions compared to a stochastic distribution in healthy control mice. Moreover, intranasal treatment of ASC-EVs at the EAE onset led to a long-term therapeutic effect using two different experimental protocols. A marked reduction in T cell infiltration, demyelination, axonal damage, and cytokine production were correlated to EAE amelioration in ASC-EV-treated mice compared to control mice, highlighting the immunomodulatory and neuroprotective roles exerted by ASC-EVs during EAE progression. Overall, our study paves the way for promising clinical applications of self-administered ASC-EV intranasal treatment in CNS disorders, including MS. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

28 pages, 6803 KiB  
Article
Structural Heterogeneity of Biochar Modulates’ Soil Hydraulic Properties and Nutrient Migration
by Guohui Li, Yayong Chen, Xiaopeng Chen, Beibei Zhou, Manli Duan, Hongyan Zhu and Guomin Shao
Agronomy 2025, 15(8), 1830; https://doi.org/10.3390/agronomy15081830 - 28 Jul 2025
Viewed by 169
Abstract
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of [...] Read more.
Biochar application is a well-recognized strategy to enhance agricultural soil fertility, but its structural heterogeneity leads to inconsistent outcomes in soil improvement, particularly in water and nutrient transport dynamics. In order to ensure the beneficial effects of biochar-amended agricultural soils in terms of water retention and fertilizer fixation, in this paper, we aim to elucidate the effect of the structural heterogeneity of biochar on the hydraulic properties and nutrient transport of agricultural soils. This study compares biochars at millimeter (BMP), micrometer (BUP), and nanometer (BNP) scales using CT scanning, and investigates the effects of different application rates (0.0–2.0%) on soil’s hydraulic properties and nutrient transport using soil column experiments and CDE analyses. The results show that biochar generally decreased soil saturated hydraulic conductivity (SSHC), except for the application of 2.0% BMP, which increased it. Biochar enhanced soil saturated water content (SSWC) and water holding capacity (WHC), with the 2.0% BMP treatment achieving the highest values (SSHC: 49.34 cm/d; SSWC: 0.40 g/g; WHC: 0.25 g/g). BUPs and BNPs inhibited water infiltration due to pore-blocking, while 2.0% BMP promoted infiltration. Convective dispersion equation analysis (CDE) indicated that BUPs and BNPs reduced water and nutrient transport, with 2.0% BMP showing optimal performance. Statistical analyses revealed that biochar’s structural heterogeneity significantly affected soil water repellency, its hydraulic properties, and solute transport (p < 0.05). Smaller particles enhanced water retention and nutrient fixation, while larger particles improved WHC at appropriate rates. These findings provide valuable insights for optimizing biochar application to improve soil functions and support sustainable agriculture. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

11 pages, 971 KiB  
Case Report
Gastric Candidiasis in Five Horses: A Case Series
by Patricia Neira-Egea, Clara Alamar Malvoisin, María de la Cuesta-Torrado, Claudia Bautista-Erler, Valentina Vitale, Sandra Jolly and Carla Cesarini
Microorganisms 2025, 13(8), 1746; https://doi.org/10.3390/microorganisms13081746 - 25 Jul 2025
Viewed by 262
Abstract
Candida spp. are ubiquitous yeasts that are part of most mammals’ microbiota and can become opportunistic pathogens under predisposing conditions. Interestingly, recent studies in human medicine report an increased abundance of Candida spp. in association with inflammatory bowel disease (IBD). Gastrointestinal candidiasis has [...] Read more.
Candida spp. are ubiquitous yeasts that are part of most mammals’ microbiota and can become opportunistic pathogens under predisposing conditions. Interestingly, recent studies in human medicine report an increased abundance of Candida spp. in association with inflammatory bowel disease (IBD). Gastrointestinal candidiasis has been primarily reported in neonatal foals, but not in adult horses. The aim of this study is to describe the morphological, histopathological, and microbiological features of gastric lesions associated with Candida infiltration in five horses referred to two tertiary hospitals for different reasons. Clinical features, findings from gastroscopy, gastric, and duodenal biopsies, as well as fungal and bacterial cultures obtained from gastric lesions will be reported. Macroscopically, gastric lesions showed a characteristic yellow/white pseudo-membranous appearance, similar to lesions reported in foals. The presence of Candida spp. was confirmed by positive culture and/or histopathological evidence of fungal infiltration on the gastric epithelium. Three out of five horses showed histopathological changes in duodenal biopsies, potentially suggesting IBD. These results demonstrate that gastric candidiasis can occur in adult horses. Further research is needed to elucidate the pathogenesis, predisposing factors, and clinical relevance of Candida spp. infections in the equine stomach, as well as their potential impact on gastrointestinal health and overall performance. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

21 pages, 3365 KiB  
Article
Integrating Regenerative Medicine in Chronic Wound Management: A Single-Center Experience
by Stefania-Mihaela Riza, Andrei-Ludovic Porosnicu, Patricia-Alina Cepi, Sorin Viorel Parasca and Ruxandra-Diana Sinescu
Biomedicines 2025, 13(8), 1827; https://doi.org/10.3390/biomedicines13081827 - 25 Jul 2025
Viewed by 236
Abstract
Background: Chronic wounds represent a persistent clinical challenge and impose a considerable burden on healthcare systems. These lesions often require multidisciplinary management due to underlying factors such as microbial colonization, impaired immunity, and vascular insufficiencies. Regenerative therapies, particularly autologous approaches, have emerged [...] Read more.
Background: Chronic wounds represent a persistent clinical challenge and impose a considerable burden on healthcare systems. These lesions often require multidisciplinary management due to underlying factors such as microbial colonization, impaired immunity, and vascular insufficiencies. Regenerative therapies, particularly autologous approaches, have emerged as promising strategies to enhance wound healing. Adipose tissue-derived stem cells (ADSCs) and platelet-rich plasma (PRP) may improve outcomes through paracrine effects and growth factor release. Methods: A prospective observational study was conducted on 31 patients with chronic wounds that were unresponsive to conservative treatment for over six weeks. Clinical and photographic evaluations were employed to monitor healing. All patients underwent surgical debridement, with adjunctive interventions—negative pressure wound therapy, grafting, or flaps—applied as needed. PRP infiltration and/or autologous adipose tissue transfer were administered based on wound characteristics. Wound area reduction was the primary outcome measure. Results: The cohort included 17 males and 14 females (mean age: 59 years). Etiologies included venous insufficiency (39%), diabetes mellitus (25%), arterial insufficiency (16%), and trauma (16%). Most lesions (84%) were located on the lower limbs. All patients received PRP therapy; five underwent combined PRP and fat grafting. Over the study period, 64% of the patients exhibited >80% wound area reduction, with complete healing in 48.3% and a mean healing time of 49 days. Conclusions: PRP therapy proved to be a safe, effective, and adaptable treatment, promoting substantial healing in chronic wounds. Autologous adipose tissue transfer did not confer additional benefit. PRP may warrant inclusion in national treatment protocols. Full article
(This article belongs to the Special Issue Wound Healing: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 219
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
24 pages, 1654 KiB  
Review
Acute Respiratory Distress Syndrome: Pathophysiological Insights, Subphenotypes, and Clinical Implications—A Comprehensive Review
by Mairi Ziaka and Aristomenis Exadaktylos
J. Clin. Med. 2025, 14(15), 5184; https://doi.org/10.3390/jcm14155184 - 22 Jul 2025
Viewed by 661
Abstract
Increased epithelial and endothelial permeability, along with dysregulated inflammatory responses, are key aspects of acute respiratory distress syndrome (ARDS) pathophysiology, which not only impact the lungs but also contribute to detrimental organ crosstalk with distant organs, ultimately leading to multiple organ dysfunction syndrome [...] Read more.
Increased epithelial and endothelial permeability, along with dysregulated inflammatory responses, are key aspects of acute respiratory distress syndrome (ARDS) pathophysiology, which not only impact the lungs but also contribute to detrimental organ crosstalk with distant organs, ultimately leading to multiple organ dysfunction syndrome (MODS)—the primary cause of morbidity and mortality in patients with lung injury (LI) and ARDS. It is predominantly manifested by hypoxemic respiratory failure and bilateral pulmonary infiltrates, which cannot be fully attributed to cardiac failure or hypervolemia, but rather to alveolo-capillary barrier dysfunction, dysregulated systemic and pulmonary inflammation, immune system abnormalities, and mechanical stimuli-related responses. However, these pathological features are not uniform among patients with ARDS, as distinct subphenotypes with unique biological, clinical, physiological, and radiographic characteristics have been increasingly recognized in recent decades. The severity of ARDS, clinical outcomes, mortality, and efficacy of applied therapeutic measures appear significant depending on the respective phenotype. Acknowledging the heterogeneity of ARDS and defining distinct subphenotypes could significantly modify therapeutic strategies, enabling more precise and targeted treatments. To address these issues, a comprehensive literature search was conducted in PubMed using predefined keywords related to ARDS pathophysiology, subphenotypes, and personalized therapeutic approaches. Optimizing the identification and characterization of discrete ARDS subphenotypes—based on clinical, biological, physiological, and radiographic criteria—will deepen our understanding of ARDS pathophysiology, promote targeted recruitment in prospective clinical studies to define patient clusters with heterogeneous therapeutic responses, and support the shift toward individualized treatment strategies. Full article
(This article belongs to the Special Issue Ventilation in Critical Care Medicine: 2nd Edition)
Show Figures

Figure 1

14 pages, 1827 KiB  
Article
Unique Biological Characteristics of Patients with High Gleason Score and Localized/Locally Advanced Prostate Cancer Using an In Silico Translational Approach
by Shiori Miyachi, Masanori Oshi, Takeshi Sasaki, Itaru Endo, Kazuhide Makiyama and Takahiro Inoue
Curr. Oncol. 2025, 32(7), 409; https://doi.org/10.3390/curroncol32070409 - 18 Jul 2025
Viewed by 308
Abstract
Gleason score (GS) is one of the best predictors of prostate cancer (PCa) aggressiveness; however, its biological features need to be elucidated. This study aimed to explore the biological characteristics of localized/locally advanced PCa stratified using in silico GS analysis. Biological features were [...] Read more.
Gleason score (GS) is one of the best predictors of prostate cancer (PCa) aggressiveness; however, its biological features need to be elucidated. This study aimed to explore the biological characteristics of localized/locally advanced PCa stratified using in silico GS analysis. Biological features were analyzed using gene set variation analysis and the xCell algorithm with mRNA expression in two independent public databases: The Cancer Genome Atlas (TCGA) (n = 493; radical prostatectomy cohort) and GSE116918 (n = 248; radiation therapy cohort). GS levels were positively correlated with the activity levels of cell proliferation-related gene sets, including E2F targets, the G2M checkpoint, the mitotic spindle, and MYC targets v1 and v2 in both cohorts. Furthermore, GS levels were positively associated with the activity levels of immune-related gene sets and infiltrating fractions of immune cells, including CD4+ memory T cells, dendritic cells, M1 macrophages, and Th2 cells, in both cohorts. Notably, GS levels were positively associated with the score levels of homologous recombination defects, intratumor heterogeneity, fraction genome alteration, neoantigens, and mutation rates in the TCGA cohort. In conclusion, PCa with high GS levels was associated with cancer cell proliferation, immune cell infiltration, and high mutation rates, which may reflect worse clinical outcomes. Full article
(This article belongs to the Section Genitourinary Oncology)
Show Figures

Figure 1

17 pages, 2951 KiB  
Article
Long-Term Rainfall–Runoff Relationships During Fallow Seasons in a Humid Region
by Rui Peng, Gary Feng, Ying Ouyang, Guihong Bi and John Brooks
Climate 2025, 13(7), 149; https://doi.org/10.3390/cli13070149 - 16 Jul 2025
Viewed by 580
Abstract
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various [...] Read more.
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various rainfall events during fallow seasons in Mississippi by applying the DRAINMOD model. The analysis revealed that the average rainfall during the fallow season was 760 mm over the past 100 years, accounting for 65% of the annual total. In dry, normal, and wet fallow seasons, the average rainfall was 528, 751, and 1010 mm, respectively, corresponding to runoff of 227, 388, and 602 mm. Runoff frequency increased with wetter weather conditions, rising from 16 events in dry seasons to 23 in normal seasons and 30 in wet seasons. Over the past century, runoff dynamics were predominantly regulated by high-intensity rainfall events during the fallow season. Very heavy rainfall events (mean frequency = 11 events) generated 215 mm of runoff and accounted for 53% of the total runoff, while extreme rainfall events (mean frequency = 2 events) contributed 135 mm of runoff, making up 34% of the total runoff. Water table depth played a critical role in shaping spring runoff dynamics. As the water table decreased from 46 mm in March to 80 mm in May, the soil pore space increased from 5 mm in March to 14 mm in May. This increased soil infiltration and water storage capacity, leading to a steady decline in runoff. The study found that the mean daily runoff frequency dropped from 13.5% in March to 7.6% in May, while monthly runoff decreased from 74 to 38 mm. Increased extreme rainfall (R95p) in April contributed over 45% of the total runoff and resulted in the highest daily mean runoff of 20 mm, compared to 18 mm in March and 16 mm in May. The results from this century-long historical weather data could be used to enhance field-scale water resource management, predict potential runoff risks, and optimize planting windows in the humid east-central Mississippi. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

19 pages, 5038 KiB  
Article
A Novel Hypoxia-Immune Signature for Gastric Cancer Prognosis and Immunotherapy: Insights from Bulk and Single-Cell RNA-Seq
by Mai Hanh Nguyen, Hoang Dang Khoa Ta, Doan Phuong Quy Nguyen, Viet Huan Le and Nguyen Quoc Khanh Le
Curr. Issues Mol. Biol. 2025, 47(7), 552; https://doi.org/10.3390/cimb47070552 - 16 Jul 2025
Viewed by 328
Abstract
Background: Hypoxia and immune components significantly shape the tumor microenvironment and influence prognosis and immunotherapy response in gastric cancer (GC). This study aimed to develop hypoxia- and immune-related gene signatures for prognostic evaluation in GC. Methods: Transcriptomic data from TCGA-STAD were [...] Read more.
Background: Hypoxia and immune components significantly shape the tumor microenvironment and influence prognosis and immunotherapy response in gastric cancer (GC). This study aimed to develop hypoxia- and immune-related gene signatures for prognostic evaluation in GC. Methods: Transcriptomic data from TCGA-STAD were integrated with hypoxia- and immune-related genes from InnateDB and MSigDB. A prognostic gene signature was constructed using Cox regression analyses and validated on an independent GSE84437 cohort and single-cell RNA dataset. We further analyzed immune cell infiltration, molecular characteristics of different risk groups, and their association with immunotherapy response. Single-cell RNA-seq data from the TISCH database were used to explore gene expression patterns across cell types. Results: Five genes (TGFB3, INHA, SERPINE1, GPC3, SRPX) were identified. The risk score effectively stratified patients by prognosis, with the high-risk group showing lower overall survival and lower T-cell expression. The gene signature had an association with immune suppression, ARID1A mutation, EMT features, and poorer response to immunotherapy. Gene signature, especially SRPX was enriched in fibroblasts. Conclusions: We developed a robust hypoxia- and immune-related gene signature that predicts prognosis and may help guide immunotherapy strategies for GC patients. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era, 2nd Edition)
Show Figures

Figure 1

47 pages, 1236 KiB  
Review
Cancer Vaccination and Immune-Based Approaches in Pancreatic Cancer
by Matthew Bloom, Ali Raza Shaikh, Zhengyang Sun, Babar Bashir and Adam E. Snook
Cancers 2025, 17(14), 2356; https://doi.org/10.3390/cancers17142356 - 15 Jul 2025
Viewed by 631
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high recurrence rates even after curative resection and adjuvant chemotherapy. Although immunotherapeutic approaches, such as immune checkpoint blockade (ICB), have revolutionized the treatment of some solid tumor malignancies, this has not been the case [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with high recurrence rates even after curative resection and adjuvant chemotherapy. Although immunotherapeutic approaches, such as immune checkpoint blockade (ICB), have revolutionized the treatment of some solid tumor malignancies, this has not been the case for PDAC. Several characteristics of PDAC, including its distinctive desmoplastic tumor microenvironment (TME), intratumor heterogeneity, and poor antigenicity and immune cell infiltration, contribute to its dismal immunotherapeutic landscape. Cancer vaccines offer one approach to overcoming these barriers, particularly in the resectable or borderline resectable settings, where tumor burden is low and immunosuppression is less pronounced. Various vaccination platforms have been tested in the clinical setting, from off-the-shelf peptide-based vaccines (e.g., AMPLFIFY-201 study, where over 80% of participants exhibited T-cell and biomarker responses) to personalized neoantigen mRNA vaccine approaches (e.g., autogene cevumeran, with significant responders experiencing longer median recurrence-free survival (RFS)). The key considerations for enhancing the efficacy of vaccination include combinations with chemotherapy, radiotherapy, and/or ICBs, as well as selecting appropriate immunomodulators or adjuvants. Recent results suggest that with continued mechanistic advancement and novel therapeutic development, cancer vaccines may finally be poised for clinical success in PDAC. Full article
Show Figures

Figure 1

13 pages, 1249 KiB  
Article
Pinelands: Impacts of Different Long-Term Land Uses on Soil Physical Properties in Red Ferrosols
by Ana Carolina de Mattos e Avila, Jackson Adriano Albuquerque and Gunnar Kirchhof
Land 2025, 14(7), 1471; https://doi.org/10.3390/land14071471 - 15 Jul 2025
Viewed by 306
Abstract
Century-long land-use practices have a profound impact on soil physical and chemical properties, with direct implications for soil health and agricultural sustainability. This study aimed to assess the effects of four contrasting land uses—remnant vegetation, pasture, cultivated areas, and loafing areas—on the physical [...] Read more.
Century-long land-use practices have a profound impact on soil physical and chemical properties, with direct implications for soil health and agricultural sustainability. This study aimed to assess the effects of four contrasting land uses—remnant vegetation, pasture, cultivated areas, and loafing areas—on the physical and chemical properties of Red Ferrosols in the Toowoomba region, Queensland, Australia. Soil samples were collected from upper and lower slope positions for each land use. Physical properties, including bulk density, porosity, water retention, and permeability, as well as chemical properties such as organic carbon, nitrogen, phosphorus, and potassium, were analysed. The results showed that remnant vegetation preserved the most favourable soil conditions, with lower bulk density, higher porosity, and greater water retention. Cultivated areas exhibited significant soil degradation, marked by compaction, reduced infiltration, and depleted organic matter. Loafing areas displayed localised nutrient enrichment but higher compaction due to livestock trampling. Pastures maintained intermediate conditions, retaining some beneficial soil characteristics. These findings emphasise the critical need for sustainable land management strategies to protect soil structure and function, supporting the long-term productivity and resilience of Red Ferrosols. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

Back to TopTop