Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,076)

Search Parameters:
Keywords = infilling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2641 KiB  
Article
Seismic Assessment of Informally Designed 2-Floor RC Houses: Lessons from the 2020 Southern Puerto Rico Earthquake Sequence
by Lautaro Peralta and Luis A. Montejo
Eng 2025, 6(8), 176; https://doi.org/10.3390/eng6080176 - 1 Aug 2025
Viewed by 536
Abstract
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history [...] Read more.
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history analyses were performed using fiber-based distributed plasticity models for RC frames and nonlinear macro-elements for second-floor masonry infills, which introduced a significant inter-story stiffness imbalance. A bi-directional seismic input was applied using spectrally matched, near-fault pulse-like ground motions. The findings for the as-built structures showed that stiffness mismatches between stories, along with substantial strength and stiffness differences between orthogonal axes, resulted in concentrated plastic deformations and displacement-driven failures in the first story—consistent with damage observed during the 2020 earthquakes. Retrofitting the first floor with RC shear walls notably improved the performance, doubling the lateral load capacity and enhancing the overall stiffness. However, the retrofitted structures still exhibited a concentration of inelastic action—albeit with lower demands—shifted to the second floor, indicating potential for further optimization. Full article
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 - 31 Jul 2025
Viewed by 111
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

31 pages, 11619 KiB  
Article
Experimental Verification of Innovative, Low-Cost Method for Upgrading of Seismic Resistance of Masonry Infilled Rc Frames
by Jordan Bojadjiev, Roberta Apostolska, Golubka Necevska Cvetanovska, Damir Varevac and Julijana Bojadjieva
Appl. Sci. 2025, 15(15), 8520; https://doi.org/10.3390/app15158520 (registering DOI) - 31 Jul 2025
Viewed by 102
Abstract
For the past few decades, during each disastrous earthquake, severe damage and poor seismic performance of masonry infilled RC frames, including many newly designed ones, have been reported extensively. Inherent problems related to analysis and design methods for tight-fit infilled frame structures have [...] Read more.
For the past few decades, during each disastrous earthquake, severe damage and poor seismic performance of masonry infilled RC frames, including many newly designed ones, have been reported extensively. Inherent problems related to analysis and design methods for tight-fit infilled frame structures have not yet been solved and are recognized as being far from satisfactory in terms of completeness and reliability. The primary objective of this research was to propose and test an innovative method that can effectively mitigate undesirable interaction damage to masonry infilled RC frame structures. This proposed technical solution consists of connection of the infill panel to the bounding columns with steel reinforcement connections deployed in mortar layers and anchored to the columns. This is practical, cheap and easy to implement without any specific technology, which is especially important for developing countries. A three story, two bay RC building model with the proposed connection implemented on the infill walls was designed and tested on the shake table at IZIIS in Skopje, N. Macedonia. The test results and design guidelines/recommendations from the proposed research are also expected to benefit the infrastructural development in other countries threatened by earthquakes, preferably in the Balkan and the Mediterranean region. Full article
Show Figures

Figure 1

25 pages, 6179 KiB  
Article
The Impact of Different Parallel Strategies on the Performance of Kriging-Based Efficient Global Optimization Algorithms
by Hang Fu, Qingyu Wang, Takuji Nakashima, Rahul Bale and Makoto Tsubokura
Appl. Sci. 2025, 15(15), 8465; https://doi.org/10.3390/app15158465 (registering DOI) - 30 Jul 2025
Viewed by 129
Abstract
A parallel efficient global optimization (EGO) algorithm with a pseudo expected improvement (PEI) multi-point sampling criterion, proposed in recent years, is developed to adapt the capabilities of modern parallel computing power. However, a comprehensive and clear discussion on the impact of different point-filling [...] Read more.
A parallel efficient global optimization (EGO) algorithm with a pseudo expected improvement (PEI) multi-point sampling criterion, proposed in recent years, is developed to adapt the capabilities of modern parallel computing power. However, a comprehensive and clear discussion on the impact of different point-filling strategies on the optimization performance of the parallel EGO algorithm is still lacking, limiting its theoretical reference for practical applications and technological advancements. To address this gap, this study comprehensively investigates the optimization performance of the parallel EGO algorithm based on the PEI multi-point sampling criterion by analyzing the impact of different point-filling strategies under kriging surrogate models of varying fidelity. Therefore, nine benchmark test functions with different optimization problem characteristics were selected as optimization test objects, and the results were systematically analyzed from the perspectives of convergence performance, optimization efficiency, and algorithmic diversity. The analysis results indicate that the higher-fidelity kriging surrogate model enhances the stability of the parallel EGO algorithm in terms of convergence performance, optimization efficiency, and algorithmic diversity. Full article
Show Figures

Figure 1

23 pages, 1998 KiB  
Article
Hybrid Experimental–Machine Learning Study on the Mechanical Behavior of Polymer Composite Structures Fabricated via FDM
by Osman Ulkir and Sezgin Ersoy
Polymers 2025, 17(15), 2012; https://doi.org/10.3390/polym17152012 - 23 Jul 2025
Viewed by 286
Abstract
This study explores the mechanical behavior of polymer and composite specimens fabricated using fused deposition modeling (FDM), focusing on three material configurations: acrylonitrile butadiene styrene (ABS), carbon fiber-reinforced polyphthalamide (PPA/Cf), and a sandwich-structured composite. A systematic experimental plan was developed using the Box–Behnken [...] Read more.
This study explores the mechanical behavior of polymer and composite specimens fabricated using fused deposition modeling (FDM), focusing on three material configurations: acrylonitrile butadiene styrene (ABS), carbon fiber-reinforced polyphthalamide (PPA/Cf), and a sandwich-structured composite. A systematic experimental plan was developed using the Box–Behnken design (BBD) to investigate the effects of material type (MT), infill pattern (IP), and printing direction (PD) on tensile and flexural strength. Experimental results showed that the PPA/Cf material with a “Cross” IP printed “Flat” yielded the highest mechanical performance, achieving a tensile strength of 75.8 MPa and a flexural strength of 102.3 MPa. In contrast, the lowest values were observed in ABS parts with a “Grid” pattern and “Upright” orientation, recording 37.8 MPa tensile and 49.5 MPa flexural strength. Analysis of variance (ANOVA) results confirmed that all three factors significantly influenced both outputs (p < 0.001), with MT being the most dominant factor. Machine learning (ML) algorithms, Bayesian linear regression (BLR), and Gaussian process regression (GPR) were employed to predict mechanical performance. GPR achieved the best overall accuracy with R2 = 0.9935 and MAPE = 11.14% for tensile strength and R2 = 0.9925 and MAPE = 12.96% for flexural strength. Comparatively, the traditional BBD yielded slightly lower performance with MAPE = 13.02% and R2 = 0.9895 for tensile strength. Validation tests conducted on three unseen configurations clearly demonstrated the generalization capability of the models. Based on actual vs. predicted values, the GPR yielded the lowest average prediction errors, with MAPE values of 0.54% for tensile and 0.45% for flexural strength. In comparison, BLR achieved 0.79% and 0.60%, while BBD showed significantly higher errors at 1.76% and 1.32%, respectively. Full article
Show Figures

Figure 1

20 pages, 7090 KiB  
Article
The Influence of Hard Protection Structures on Shoreline Evolution in Riohacha, Colombia
by Marta Fernández-Hernández, Luis Iglesias, Jairo Escobar, José Joaquín Ortega, Jhonny Isaac Pérez-Montiel, Carlos Paredes and Ricardo Castedo
Appl. Sci. 2025, 15(14), 8119; https://doi.org/10.3390/app15148119 - 21 Jul 2025
Viewed by 571
Abstract
Over the past 50 years, coastal erosion has become an increasingly critical issue worldwide, and Colombia’s Caribbean coast is no exception. In urban areas, this challenge is further complicated by hard protection structures, which, while often implemented as immediate solutions, can disrupt sediment [...] Read more.
Over the past 50 years, coastal erosion has become an increasingly critical issue worldwide, and Colombia’s Caribbean coast is no exception. In urban areas, this challenge is further complicated by hard protection structures, which, while often implemented as immediate solutions, can disrupt sediment transport and trigger unintended long-term consequences. This study examines shoreline changes in Riohacha, the capital of La Guajira Department, over a 35-year period (1987–2022), focusing on the impacts of coastal protection structures—specifically, the construction of seven groins and a seawall between 2006 and 2009—on coastal dynamics. Using twelve images (photographs and satellite) and the Digital Shoreline Analysis System (DSAS), the evolution of both beaches and cliffs has been analyzed. The results reveal a dramatic shift in shoreline behavior: erosion rates of approximately 0.5 m/year prior to the interventions transitioned to accretion rates of up to 11 m/year within the groin field, where rapid infill occurred. However, this sediment retention has exacerbated erosion in downstream cliff areas, with retreat rates reaching 1.8 ± 0.2 m/year. To anticipate future coastal evolution, predictive models were applied through 2045, providing insights into potential risks for infrastructure and urban development. These findings highlight the need for a strategic, long-term approach to coastal management that considers both the benefits and unintended consequences of engineering interventions. Full article
Show Figures

Figure 1

19 pages, 2559 KiB  
Article
Development of Patient-Specific Lattice Structured Femoral Stems Based on Finite Element Analysis and Machine Learning
by Rashwan Alkentar, Sándor Manó, Dávid Huri and Tamás Mankovits
Crystals 2025, 15(7), 650; https://doi.org/10.3390/cryst15070650 - 15 Jul 2025
Viewed by 344
Abstract
Hip implant optimization is increasingly receiving attention due to the development of manufacturing technology and artificial intelligence interaction in the current research. This study investigates the development of hip implant stem design with the application of lattice structures, and the utilization of the [...] Read more.
Hip implant optimization is increasingly receiving attention due to the development of manufacturing technology and artificial intelligence interaction in the current research. This study investigates the development of hip implant stem design with the application of lattice structures, and the utilization of the MATLAB regression learner app in finding the best predictive regression model to calculate the mechanical behavior of the implant’s stem based on some of the design parameters. Many cases of latticed hip implants (using 3D lattice infill type) were designed in the ANSYS software, and then 3D printed to undergo simulations and lab experiments. A surrogate model of the implant was used in the finite element analysis (FEA) instead of the geometrically latticed model to save computation time. The model was then generalized and used to calculate the mechanical behavior of new variables of hip implant stem and a database was generated for surgeon so they can choose the lattice parameters for desirable mechanical behavior. This study shows that neural networks algorithms showed the highest accuracy with predicting the mechanical behavior reaching a percentage above 90%. Patients’ weight and shell thickness were proven to be the most affecting factors on the implant’s mechanical behavior. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

19 pages, 6821 KiB  
Article
Effects of Process Parameters on Tensile Properties of 3D-Printed PLA Parts Fabricated with the FDM Method
by Seçil Ekşi and Cetin Karakaya
Polymers 2025, 17(14), 1934; https://doi.org/10.3390/polym17141934 - 14 Jul 2025
Viewed by 501
Abstract
This study investigates the influence of key fused deposition modeling (FDM) process parameters, namely, print speed, infill percentage, layer thickness, and layer width, on the tensile properties of PLA specimens produced using 3D printing technology. A Taguchi L9 orthogonal array was employed to [...] Read more.
This study investigates the influence of key fused deposition modeling (FDM) process parameters, namely, print speed, infill percentage, layer thickness, and layer width, on the tensile properties of PLA specimens produced using 3D printing technology. A Taguchi L9 orthogonal array was employed to design the experiments efficiently, enabling the systematic evaluation of parameter effects with fewer tests. Tensile strength and elongation at break were measured for each parameter combination, and statistical analyses, including the signal-to-noise (S/N) ratio and analysis of variance (ANOVA), were conducted to identify the most significant factors. The results showed that infill percentage significantly affected tensile strength, while layer thickness was the dominant factor influencing elongation. The highest tensile strength (47.84 MPa) was achieved with the parameter combination of 600 mm/s print speed, 100% infill percentage, 0.4 mm layer thickness, and 0.4 mm layer width. A linear regression model was developed to predict tensile strength with an R2 value of 83.14%, and probability plots confirmed the normal distribution of the experimental data. This study provides practical insights into optimizing FDM process parameters to enhance the mechanical performance of PLA components, supporting their use in structural and functional applications. Full article
Show Figures

Figure 1

26 pages, 5588 KiB  
Article
A Methodology for Lacquer Gilding Restoration of Sandstone Sculptures: A Multidisciplinary Approach Combining Material Characterization and Environmental Adaptation
by Haijun Bu and Jianrui Zha
Coatings 2025, 15(7), 819; https://doi.org/10.3390/coatings15070819 - 14 Jul 2025
Viewed by 342
Abstract
The restoration of gold leaf on sandstone sculptures requires structural stability, aesthetic considerations, and compliance with the principles of cultural heritage preservation. A primary issue is achieving visual and material compatibility between newly restored and original areas. Based on the “Diagnosis–Analysis–Selection–Restoration” methodology, the [...] Read more.
The restoration of gold leaf on sandstone sculptures requires structural stability, aesthetic considerations, and compliance with the principles of cultural heritage preservation. A primary issue is achieving visual and material compatibility between newly restored and original areas. Based on the “Diagnosis–Analysis–Selection–Restoration” methodology, the research team developed a targeted restoration approach for gilded stone sculptures, using the Shakyamuni sculpture at Erfo Temple in Chongqing as a case study. Assessment of the current situation revealed that over 70% of the sculpture’s surface exhibited gold leaf delamination. The composition and structure of the gold-sizing lacquer, lacquer plaster filler, ground layers, and pigments were investigated using SEM-EDS, XRD, Raman spectroscopy, and THM-Py-GC/MS techniques. The results confirmed that the sculpture featured a typical multilayer gilding structure with clear evidence of historical restorations. Considering both material performance and interfacial compatibility, an NHL2/SiO2/SF016 composite emulsion and traditional lacquer plaster were selected as the optimal materials for reattachment and infill, respectively. A scientific restoration protocol was developed, encompassing gentle cleaning, targeted reattachment and reinforcement, and region-specific repair methods. Principal Component Analysis (PCA) was used to evaluate the influence of temperature and humidity on the curing behavior of lacquer layers. Additionally, a non-invasive gold leaf color-matching technique was developed by controlling the surface roughness of the gold-sizing lacquer, effectively avoiding the damage caused by traditional color-matching methods. Full article
(This article belongs to the Special Issue New Trends in Conservation and Restoration of Cultural Heritage)
Show Figures

Figure 1

29 pages, 2673 KiB  
Article
Process Parameters Optimization and Mechanical Properties of Additively Manufactured Ankle–Foot Orthoses Based on Polypropylene
by Sahar Swesi, Mohamed Yousfi, Nicolas Tardif and Abder Banoune
Polymers 2025, 17(14), 1921; https://doi.org/10.3390/polym17141921 - 11 Jul 2025
Viewed by 436
Abstract
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent [...] Read more.
Nowadays, Fused Filament Fabrication (FFF) 3D printing offers promising opportunities for the customized manufacturing of ankle–foot orthoses (AFOs) targeted towards rehabilitation purposes. Polypropylene (PP) represents an ideal candidate in orthotic applications due to its light weight and superior mechanical properties, offering an excellent balance between flexibility, chemical resistance, biocompatibility, and long-term durability. However, Additive Manufacturing (AM) of AFOs based on PP remains a major challenge due to its limited bed adhesion and high shrinkage, especially for making large parts such as AFOs. The primary innovation of the present study lies in the optimization of FFF 3D printing parameters for the fabrication of functional, patient-specific orthoses using PP, a material still underutilized in the AM of medical devices. Firstly, a thorough thermomechanical characterization was conducted, allowing the implementation of a (thermo-)elastic material model for the used PP filament. Thereafter, a Taguchi design of experiments (DOE) was established to study the influence of several printing parameters (extrusion temperature, printing speed, layer thickness, infill density, infill pattern, and part orientation) on the mechanical properties of 3D-printed specimens. Three-point bending tests were conducted to evaluate the strength and stiffness of the samples, while additional tensile tests were performed on the 3D-printed orthoses using a home-made innovative device to validate the optimal configurations. The results showed that the maximum flexural modulus of 3D-printed specimens was achieved when the printing speed was around 50 mm/s. The most significant parameter for mechanical performance and reduction in printing time was shown to be infill density, contributing 73.2% to maximum stress and 75.2% to Interlaminar Shear Strength (ILSS). Finally, the applicability of the finite element method (FEM) to simulate the FFF process-induced deflections, part distortion (warpage), and residual stresses in 3D-printed orthoses was investigated using a numerical simulation tool (Digimat-AM®). The combination of Taguchi DOE with Digimat-AM for polypropylene AFOs highlighted that the 90° orientation appeared to be the most suitable configuration, as it minimizes deformation and von Mises stress, ensuring improved quality and robustness of the printed orthoses. The findings from this study contribute by providing a reliable method for printing PP parts with improved mechanical performance, thereby opening new opportunities for its use in medical-grade additive manufacturing. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

25 pages, 5819 KiB  
Article
Future Development and Water Quality for the Pensacola and Perdido Bay Estuary Program: Applications for Urban Development Planning
by Tricia Kyzar, Michael Volk, Dan Farrah, Paul Owens and Thomas Hoctor
Land 2025, 14(7), 1446; https://doi.org/10.3390/land14071446 - 11 Jul 2025
Cited by 1 | Viewed by 380
Abstract
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these [...] Read more.
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these new residents, 801 km2 of wetlands were converted to developed uses between 1996 and 2016. These conversions present a significant threat to Florida’s unique ecosystems and highlight the need to prioritize conservation and water resource protection, both for the natural and human services that wetland and upland landscapes provide. To better understand the relationship between future development and water resources, we used future development and event mean concentration (EMC) models for Escambia and Santa Rosa counties in Florida (USA) to assess impacts from development patterns on water quality/runoff and water resource protection priorities. This study found that if future development densities increased by 30%, reductions of 7713 acres for developed land, 17,768 acre feet of stormwater volume, ~88k lb/yr total nitrogen, and ~15k lb/yr total phosphorus could be achieved. It also found that urban infill, redevelopment, and stormwater management are essential and complementary tools to broader growth management strategies for reducing sprawl while also addressing urban stormwater impacts. Full article
Show Figures

Figure 1

19 pages, 7553 KiB  
Article
Effect of Mass Reduction of 3D-Printed PLA on Load Transfer Capacity—A Circular Economy Perspective
by Aneta Liber-Kneć and Sylwia Łagan
Materials 2025, 18(14), 3262; https://doi.org/10.3390/ma18143262 - 10 Jul 2025
Viewed by 495
Abstract
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA [...] Read more.
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA specimens were printed with infill densities of 100%, 75%, and 25%. Mechanical tests, including tensile and compression tests, and one-hour stress-relaxation at 2% strain were conducted. The digital image correlation method was used to obtain the strain fields on the samples’ surface under tensile loading. Mechanical properties, including the elastic modulus, strength values, and Poisson’s ratio, were assessed. Hydrolytic degradation effects over one month were also evaluated. (3) Results: Lowering the PLA infill density reduced the ultimate tensile strength (from 60.04 ± 2.24 MPa to 26.24 ± 0.77 MPa), Young’s modulus (from 2645.05 ± 204.15 MPa to 1245.41 ± 83.79 MPa), compressive strength (from 26.59 ± 0.80 MPa to 21.83 ± 1.01 MPa), and Poisson’s ratio (from 0.32 to 0.30). A 40% mass reduction (form 100% to 25% infill density) resulted in a 56% decrease in tensile strength and a 53% decrease in Young’s modulus. A 31% mass reduction was observed for compression samples. Stress relaxation decreased significantly from 100% to 75% density, with further reductions having minimal impact. Hydrated samples showed no mechanical changes compared to baseline specimens. (4) Conclusions: Optimizing infill density in 3D-printed PLA parts helps to balance mechanical performance with material efficiency. The best mechanical properties are typically achieved with an infill density of 100%, but results show that decreasing the mass of the part by a reduction in infill density from 75% to 25% does not significantly affect the ability to transfer tensile and compression loads. PLA’s biodegradability makes it a viable alternative to stable polymers. By minimizing material waste and enabling the efficient use of resources, additive manufacturing aligns with the principles of a closed-loop economy, supporting sustainable development. Full article
(This article belongs to the Special Issue Recent Researches in Polymer and Plastic Processing)
Show Figures

Figure 1

22 pages, 3012 KiB  
Article
Investigation of Color and Mechanical Properties of Parts Printed on 3D Printers After Salt Spray Testing
by İsmet Onur Ünal, Oğuz Koçar, Vahap Neccaroğlu, Erhan Baysal and Nergizhan Anaç
Polymers 2025, 17(14), 1902; https://doi.org/10.3390/polym17141902 - 9 Jul 2025
Viewed by 463
Abstract
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics [...] Read more.
The use of plastic materials in the maritime industry is increasing day by day. Plastics are particularly preferred in watercraft due to their lightweight, resistance to water-related damage (such as mold and wear), optical clarity, and high corrosion resistance. In recent years, plastics produced by 3D printing have gained prominence in applications traditionally dominated by conventional plastic materials. Therefore, producing marine-grade materials—such as acrylonitrile butadiene styrene (ABS), which has long been used in the maritime sector—through 3D printing, and understanding their long-term performance, has become increasingly important. In this study, the mechanical behavior, surface roughness, and color changes of ABS+ materials in three different colors (yellow, green, and blue) and with three different infill ratios (50%, 75%, and 100%) were investigated after a salt spray test. Following the salt spray exposure, tensile and bending tests, hardness measurements, surface roughness analyses, and color measurements were conducted and compared with reference samples. The results were evaluated based on filament color and infill ratio. This study underscores the importance of color selection—along with mechanical strength—when designing 3D-printed materials for long-term use in saltwater environments. Full article
(This article belongs to the Special Issue Polymer Processing: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 835
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

24 pages, 11857 KiB  
Article
Influence of Infill Pattern on Ballistic Resistance Capabilities of 3D-Printed Polymeric Structures
by Muhamed Bisić, Adi Pandžić, Merim Jusufbegović, Mujo Ćerimović and Predrag Elek
Polymers 2025, 17(13), 1854; https://doi.org/10.3390/polym17131854 - 2 Jul 2025
Viewed by 526
Abstract
Recent technological advances have expanded the use of 3D-printed polymer components across industries, including a growing interest in military applications. The effective defensive use of such materials depends on a thorough understanding of polymer properties, printing techniques, structural design, and influencing parameters. This [...] Read more.
Recent technological advances have expanded the use of 3D-printed polymer components across industries, including a growing interest in military applications. The effective defensive use of such materials depends on a thorough understanding of polymer properties, printing techniques, structural design, and influencing parameters. This paper analyzes the ballistic resistance of 3D-printed polymer structures against 9 × 19 mm projectiles. Cuboid targets with different infill patterns—cubic, grid, honeycomb, and gyroid—were fabricated and tested experimentally using live ammunition. Post-impact, CT scans were used to non-destructively measure projectile penetration depths. The honeycomb infill demonstrated superior bullet-stopping performance. Additionally, mechanical properties were experimentally determined and applied in FEM simulations, confirming the ability of commercial software to predict projectile–target interaction in complex geometries. A simplified analytical model also produced satisfactory agreement with experimental observations. The results contribute to a better understanding of impact behavior in 3D-printed polymer structures, supporting their potential application in defense systems. Full article
(This article belongs to the Special Issue Polymeric Materials in 3D Printing)
Show Figures

Figure 1

Back to TopTop