Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = infectious pancreatic necrosis virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1732 KiB  
Article
Andrographolide and Fucoidan Induce a Synergistic Antiviral Response In Vitro Against Infectious Pancreatic Necrosis Virus
by Mateus Frazao, Daniela Espinoza, Sergio Canales-Muñoz, Catalina Millán-Hidalgo, Benjamín Ulloa-Sarmiento, Ivana Orellana, J. Andrés Rivas-Pardo, Mónica Imarai, Eva Vallejos-Vidal, Felipe E. Reyes-López, Daniela Toro-Ascuy and Sebastián Reyes-Cerpa
Molecules 2025, 30(11), 2443; https://doi.org/10.3390/molecules30112443 - 3 Jun 2025
Viewed by 810
Abstract
Andrographolide, fucoidan, or a combination of both compounds were evaluated to determine their effects on the antiviral response in the Atlantic salmon macrophage-like cell line (SHK-1) infected with infectious pancreatic necrosis virus (IPNV). We assessed the transcript expression levels of key molecules involved [...] Read more.
Andrographolide, fucoidan, or a combination of both compounds were evaluated to determine their effects on the antiviral response in the Atlantic salmon macrophage-like cell line (SHK-1) infected with infectious pancreatic necrosis virus (IPNV). We assessed the transcript expression levels of key molecules involved in the interferon (IFN)-dependent antiviral response, as well as the viral load in cells treated with these compounds. In non-infected cells, incubation with either fucoidan, andrographolide, or a mixture of both resulted in an increase in the transcript expression of IFNα1 and various interferon-stimulated genes (ISGs). In IPNV-infected cells, treatment with either fucoidan or andrographolide separately did not significantly enhance the antiviral response compared to that of infected cells that had not previously been treated with these compounds. In contrast, the combination of andrographolide and fucoidan led to a marked increase in the transcript expression of viperin and a significant reduction in viral load. Overall, combining andrographolide and fucoidan resulted in a greater reduction in IPNV viral load in infected cells than that noted when the compounds were administered individually. Our findings suggest that pre-incubation with this mixture promotes the establishment of a protective antiviral state against IPNV, likely mediated by an IFN-dependent response. Full article
Show Figures

Figure 1

11 pages, 2222 KiB  
Article
First Report of Bacterial Kidney Disease (BKD) Caused by Renibacterium salmoninarum in Chum Salmon (Oncorhynchus keta) Farmed in South Korea
by Kyoung-Hui Kong, In-Ha Gong, Sung-Ju Jung, Myung-Joo Oh, Myung-Hwa Jung, Hyun-Ja Han, Hyoung Jun Kim and Wi-Sik Kim
Microorganisms 2024, 12(11), 2329; https://doi.org/10.3390/microorganisms12112329 - 15 Nov 2024
Viewed by 1430
Abstract
In 2021, a prominent increase in mortality was observed in juvenile and subadult cultured chum salmon (Oncorhynchus keta) on a mariculture farm in Jeollanam-do Province, South Korea. The affected fish displayed distinct symptoms: pale gills, petechial hemorrhages in the muscles, and [...] Read more.
In 2021, a prominent increase in mortality was observed in juvenile and subadult cultured chum salmon (Oncorhynchus keta) on a mariculture farm in Jeollanam-do Province, South Korea. The affected fish displayed distinct symptoms: pale gills, petechial hemorrhages in the muscles, and white nodules on the kidneys. Infectious pancreatic necrosis virus (IPNV) was cultured from some fish samples using fish cell lines. Bacteria were isolated from various fish tissues using kidney disease medium-two (KDM-2) culture medium. By detecting and sequencing the 16S rRNA gene using DNA extracted from the kidneys of the infected fish via PCR, the isolated bacteria were identified as Renibacterium salmoninarum. Histopathological examination primarily focused on hematopoietic tissues of kidneys and revealed clear evidence of severe necrosis and granulomatous changes. Additionally, nuclei with peripherally displaced chromatin were abundant in the kidneys of affected fish. These findings suggest that mass mortality of chum salmon was caused by R. salmoninarum, which induced typical bacterial kidney disease (BKD) symptoms, without IPNV infection. This represents the first outbreak of BKD attributed to R. salmoninarum infection in farmed chum salmon in South Korea. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

11 pages, 3171 KiB  
Article
Evolution of an Extended Pathogenicity Motif in VP2 of Infectious Pancreatic Necrosis Virus Isolates from Farmed Rainbow Trout in Turkey
by Cuneyt Tamer, Kristina Ulrich, Nicholas Di Paola, Hanne Nur Kurucay, Harun Albayrak and Manfred Weidmann
Viruses 2024, 16(6), 994; https://doi.org/10.3390/v16060994 - 20 Jun 2024
Viewed by 1284
Abstract
Infectious pancreatic necrosis virus (IPNV) causes economic losses with a highly variable mortality rate worldwide, especially in rainbow trout. The virus has a double-stranded bi-partite RNA genome designated segment A and B. New complete genome sequences of nine rainbow trout isolates from Turkey [...] Read more.
Infectious pancreatic necrosis virus (IPNV) causes economic losses with a highly variable mortality rate worldwide, especially in rainbow trout. The virus has a double-stranded bi-partite RNA genome designated segment A and B. New complete genome sequences of nine rainbow trout isolates from Turkey were determined and subjected to phylogenetic analysis, identifying all as genotype 5 (serotype Sp). A time-dependent change in the extended pathogenicity motif of VP2 from P217T221A247 (PTA) to PTE P217T221E247 over a period of 10 years was identified. A wider analysis of 99 IPNV sequences from Turkey and Iran revealed the emergence of the motif PTE from 2007 to 2017, inducing significant morbidity in fry by 2013. In fact, displacement of the PTA motif, by the PTE motif in IPNV isolates appeared to be connected to a production peak of rainbow trout in 2013. An additional CAI analysis provided more evidence, indicating that rainbow trout culture in Turkey has an influence on the evolution of IPNV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 40741 KiB  
Article
Establishment of an In Vitro Model to Study Viral Infections of the Fish Intestinal Epithelium
by Guro Løkka, Amr A. A. Gamil, Øystein Evensen and Trond M. Kortner
Cells 2023, 12(11), 1531; https://doi.org/10.3390/cells12111531 - 1 Jun 2023
Cited by 10 | Viewed by 3772
Abstract
Viral infections are still a major concern for the aquaculture industry. For salmonid fish, even though breeding strategies and vaccine development have reduced disease outbreaks, viral diseases remain among the main challenges having a negative impact on the welfare of fish and causing [...] Read more.
Viral infections are still a major concern for the aquaculture industry. For salmonid fish, even though breeding strategies and vaccine development have reduced disease outbreaks, viral diseases remain among the main challenges having a negative impact on the welfare of fish and causing massive economic losses for the industry. The main entry port for viruses into the fish is through mucosal surfaces including that of the gastrointestinal tract. The contradictory functions of this surface, both creating a barrier towards the external environment and at the same time being responsible for the uptake of nutrients and ion/water regulation make it particularly vulnerable. The connection between dietary components and viral infections in fish has been poorly investigated and until now, a fish intestinal in vitro model to investigate virus–host interactions has been lacking. Here, we established the permissiveness of the rainbow trout intestinal cell line RTgutGC towards the important salmonid viruses—infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (subtype 3, SAV3) and infectious salmon anemia virus (ISAV)—and explored the infection mechanisms of the three different viruses in these cells at different virus to cell ratios. Cytopathic effect (CPE), virus replication in the RTgutGC cells, antiviral cell responses and viral effects on the barrier permeability of polarized cells were investigated. We found that all virus species infected and replicated in RTgutGC cells, although with different replication kinetics and ability to induce CPE and host responses. The onset and progression of CPE was more rapid at high multiplicity of infection (MOI) for IPNV and SAV3 while the opposite was true of ISAV. A positive correlation between the MOI used and the induction of antiviral responses was observed for IPNV while a negative correlation was detected for SAV3. Viral infections compromised barrier integrity at early time points prior to observations of CPE microscopically. Further, the replication of IPNV and ISAV had a more pronounced effect on barrier function than SAV3. The in vitro infection model established herein can thus provide a novel tool to generate knowledge about the infection pathways and mechanisms used to surpass the intestinal epithelium in salmonid fish, and to study how a virus can potentially compromise gut epithelial barrier functions. Full article
Show Figures

Graphical abstract

14 pages, 1672 KiB  
Article
Characterization of a Novel Infectious Pancreatic Necrosis Virus (IPNV) from Genogroup 6 Identified in Sea Trout (Salmo trutta) from Lake Vänern, Sweden
by B. David Persson, Jacob Günther Schmidt, Mikhayil Hakhverdyan, Mikael Leijon, Niels Jørgen Olesen and Charlotte Axén
Vet. Sci. 2023, 10(1), 58; https://doi.org/10.3390/vetsci10010058 - 14 Jan 2023
Cited by 3 | Viewed by 3190
Abstract
In November 2016, infectious pancreatic necrosis virus (IPNV) was isolated from a broodstock female of landlocked sea trout (Salmo trutta) in Lake Vänern in Sweden. VP2 gene sequencing placed the IPNV isolate in genogroup 6, for which pathogenicity is largely unknown. [...] Read more.
In November 2016, infectious pancreatic necrosis virus (IPNV) was isolated from a broodstock female of landlocked sea trout (Salmo trutta) in Lake Vänern in Sweden. VP2 gene sequencing placed the IPNV isolate in genogroup 6, for which pathogenicity is largely unknown. Lake Vänern hosts landlocked sea trout and salmon populations that are endangered, and thus the introduction of new pathogens poses a major threat. In this study we characterized the novel isolate by conducting an infection trial on three salmonid species present in Lake Vänern, whole genome sequencing of the isolate, and prevalence studies in the wild sea trout and salmon in Lake Vänern. During the infection trial, the pathogenicity of the Swedish isolate was compared to that of a pathogenic genogroup 5 isolate. Dead or moribund fish were collected, pooled, and analyzed by cell culture to identify infected individuals. In the trial, the Swedish isolate was detected in fewer sample pools in all three species compared to the genogroup 5 isolate. In addition, the prevalence studies showed a low prevalence (0.2–0.5%) of the virus in the feral salmonids in Lake Vänern. Together the data suggest that the novel Swedish IPNV genogroup 6 isolate is only mildly pathogenic to salmonids. Full article
(This article belongs to the Special Issue Fish Diseases and Immunity)
Show Figures

Figure 1

14 pages, 3558 KiB  
Article
Dynamic Distribution of Infectious Pancreatic Necrosis Virus (IPNV) Strains of Genogroups 1, 5, and 7 after Intraperitoneal Administration in Rainbow Trout (Oncorhynchus mykiss)
by Yizhi Shao, Guangming Ren, Jingzhuang Zhao, Tongyan Lu, Qi Liu and Liming Xu
Viruses 2022, 14(12), 2634; https://doi.org/10.3390/v14122634 - 25 Nov 2022
Cited by 3 | Viewed by 1938
Abstract
Infectious pancreatic necrosis virus (IPNV) is the causative agent of rainbow trout (Oncorhynchus mykiss) IPN and causes significant loss of fingerlings. The currently prevalent IPNV genogroups in China are genogroups 1 and 5. However, in this study, we isolated and identified [...] Read more.
Infectious pancreatic necrosis virus (IPNV) is the causative agent of rainbow trout (Oncorhynchus mykiss) IPN and causes significant loss of fingerlings. The currently prevalent IPNV genogroups in China are genogroups 1 and 5. However, in this study, we isolated and identified a novel IPNV, IPNV-P202019, which belonged to genogroup 7. Here, a total of 200 specific-pathogen-free rainbow trout (10 g average weight) were divided randomly into four groups to investigate the distribution of different IPNV strains (genogroups 1, 5, and 7) in 9 tissues of rainbow trout by means of intraperitoneal (ip) injection. Fish in each group were monitored after 3-, 7-, 14-, 21- and 28- days post-infection (dpi). The study showed no mortality in all groups. The distribution of IPNV genogroups 1 and 5 was similar in different tissues and had a higher number of viral loads after 3, 7, or 14 dpi. However, the distribution of IPNV genogroup 7 was detected particularly in the spleen, head kidney, and feces and had a lower number of viral loads. The results of this study provide valid data for the distribution of IPNV in rainbow trout tissues and showed that IPNV genogroups 1 and 5 were still the prevalent genogroups of IPNV in China. Although rainbow trout carried IPNV genogroup 7, the viral load was too low to be pathogenic. Full article
Show Figures

Figure 1

17 pages, 3634 KiB  
Article
Isolation of a New Infectious Pancreatic Necrosis Virus (IPNV) Variant from Genetically Resistant Farmed Atlantic Salmon (Salmo salar) during 2021–2022
by Marcos Godoy, Molly J. T. Kibenge, Marco Montes de Oca, Juan Pablo Pontigo, Yoandy Coca, Diego Caro, Karina Kusch, Rudy Suarez, Ian Burbulis and Frederick S. B. Kibenge
Pathogens 2022, 11(11), 1368; https://doi.org/10.3390/pathogens11111368 - 16 Nov 2022
Cited by 7 | Viewed by 5445
Abstract
Infectious pancreatic necrosis (IPN), caused by IPNV, affects several species of farmed fish, particularly Atlantic salmon, and is responsible for significant economic losses in salmon aquaculture globally. Despite the introduction of genetically resistant farmed Atlantic salmon and vaccination strategies in the Chilean salmon [...] Read more.
Infectious pancreatic necrosis (IPN), caused by IPNV, affects several species of farmed fish, particularly Atlantic salmon, and is responsible for significant economic losses in salmon aquaculture globally. Despite the introduction of genetically resistant farmed Atlantic salmon and vaccination strategies in the Chilean salmon industry since 2019, the number of IPN outbreaks has been increasing in farmed Atlantic salmon in the freshwater phase. This study examined gross and histopathological lesions of IPNV-affected fish, as well as the IPNV nucleotide sequence encoding the VP2 protein in clinical cases. The mortality reached 0.4% per day, and the cumulative mortality was from 0.4 to 3.5%. IPNV was isolated in the CHSE-214 cell line and was confirmed by RT-PCR, and VP2 sequence analysis. The analyzed viruses belong to IPNV genotype 5 and have 11 mutations in their VP2 protein. This is the first report of IPN outbreaks in farmed Atlantic salmon genetically resistant to IPNV in Chile. Similar outbreaks were previously reported in Scotland and Norway during 2018 and 2019, respectively. This study highlights the importance of maintaining a comprehensive surveillance program in conjunction with the use of farmed Atlantic salmon genetically resistant to IPNV. Full article
(This article belongs to the Special Issue Virulence Mechanisms, Detection and Control of Aquatic Animal Viruses)
Show Figures

Figure 1

12 pages, 1201 KiB  
Article
Antiviral Activity of Crude Polysaccharide Derived from Seaweed against IHNV and IPNV In Vitro
by Guangming Ren, Liming Xu, Jingzhuang Zhao, Yizhi Shao, Yujie Lin, Linfang Li, Qi Liu, Tongyan Lu and Qiya Zhang
Viruses 2022, 14(9), 2080; https://doi.org/10.3390/v14092080 - 19 Sep 2022
Cited by 17 | Viewed by 2897
Abstract
Both infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are the causative agents of acute and highly contagious diseases of juvenile salmonids, resulting in severe economic losses to these cold-water fish globally. There is an urgent need to explore antiviral [...] Read more.
Both infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are the causative agents of acute and highly contagious diseases of juvenile salmonids, resulting in severe economic losses to these cold-water fish globally. There is an urgent need to explore antiviral agents against IHNV and IPNV due to the lack of commercially available vaccines and antiviral drugs. More importantly, the co-infection of IHNV and IPNV is prevalent in nature, which not only aggravates extensive damage to the salmonids but also poses challenges to its prevention and control. The antiviral effects of a crude polysaccharide derived from seaweed (CSP) on IHNV and IPNV were evaluated in this study separately. Furthermore, the underlying antiviral mechanisms of CSP to IHNV and IPNV were analyzed, respectively. The results showed that CSP possessed excellent safety and good ability to inhibit IHNV, IPNV, and their co-infection. CSP preferred to act at the early stage of viral infection. The antiviral mechanism of CSP on IHNV is possibly involved in preventing viral attachment and release, while in IPNV, it is involved in suppressing viral attachment, entry, and release. Taken together, the results of this study shed new light on developing novel agents against viral infection in salmonid fish. Full article
Show Figures

Figure 1

14 pages, 4623 KiB  
Article
Early or Simultaneous Infection with Infectious Pancreatic Necrosis Virus Inhibits Infectious Hematopoietic Necrosis Virus Replication and Induces a Stronger Antiviral Response during Co-infection in Rainbow Trout (Oncorhynchus mykiss)
by Yizhi Shao, Jingzhuang Zhao, Guangming Ren, Tongyan Lu, Xiaoyu Chen and Liming Xu
Viruses 2022, 14(8), 1732; https://doi.org/10.3390/v14081732 - 6 Aug 2022
Cited by 10 | Viewed by 2458
Abstract
Infectious hematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) are the most common viral diseases of salmon in aquaculture worldwide. The co-infection of rainbow trout (Oncorhynchus mykiss) with IHN virus (IHNV) and IPN virus (IPNV) is known to occur. To determine [...] Read more.
Infectious hematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) are the most common viral diseases of salmon in aquaculture worldwide. The co-infection of rainbow trout (Oncorhynchus mykiss) with IHN virus (IHNV) and IPN virus (IPNV) is known to occur. To determine the influence of IPNV on IHNV in co-infection, rainbow trout were intraperitoneally (i.p.) injected with IPNV at different time intervals prior to, simultaneously to, or after IHNV infection. The replication of IHNV in the brain, gill, heart, liver, spleen, and head kidney was detected by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that when rainbow trout were i.p. injected with IPNV prior to, simultaneously to, or after IHNV on 2 day (d), IHNV replication was inhibited (p < 0.05) in all collected tissues. Nevertheless, when rainbow trout were i.p. injected with IPNV after IHNV on 7 d (H7P), IHNV replication was only inhibited (p < 0.05) in the liver 14 d post-IHNV infection. Moreover, stronger antiviral responses occurred in all challenge groups. Our results suggest that IPNV can inhibit IHNV replication before or simultaneously with IHNV infection, and induce a stronger antiviral response, and that this inhibition is most sensitive in the liver. Early i.p. injection of IPNV can significantly reduce the mortality of rainbow trout, compared with the group only injected with IHNV. Full article
Show Figures

Figure 1

19 pages, 9455 KiB  
Article
Comparison of Selected Immune Parameters in a Single Infection and Co-Infection with Infectious Pancreatic Necrosis Virus with Other Viruses in Rainbow Trout
by Joanna Maj-Paluch, Magdalena Wasiak, Łukasz Bocian and Michał Reichert
Pathogens 2022, 11(6), 658; https://doi.org/10.3390/pathogens11060658 - 8 Jun 2022
Cited by 1 | Viewed by 3051
Abstract
Infectious pancreatic necrosis virus (IPNV) often occurs in an aquatic environment in co-infection with other viruses. In this study, we wanted to investigate the effect of this virus on the course of co-infection with other viruses in rainbow trout. For co-infection we used [...] Read more.
Infectious pancreatic necrosis virus (IPNV) often occurs in an aquatic environment in co-infection with other viruses. In this study, we wanted to investigate the effect of this virus on the course of co-infection with other viruses in rainbow trout. For co-infection we used viral hemorrhagic septicemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV) and salmonid alphavirus (SAV) field strains and infected rainbow trout divided into eight groups; I; IPNV, II; IHNV, III; VHSV, I; SAV, V; IPNV+IHNV, VI; IPNV+VHSV, VII; IPNV+SAV, and the control group. We assessed apoptosis in white blood cells and used a real time RT-PCR to analyze RNA obtained from the internal organs of the fish. During single infection and co-infection the level of expression of immune genes such as interferon and toll-like receptor 3 (TLR-3) was assessed. The highest mortality during the experiment was observed in group III infected by VHSV. The average percentage of apoptotic cells was higher in groups without co-infection, especially in groups II and III. Interferon expression was higher in singly infected groups, the highest being in the heart in group III, while expression of the TLR-3 gene was generally raised in all tested organs in all groups. We found that co-infection with IPNV had a positive impact on the course of infection with the viruses listed because it lowered mortality, reduced apoptosis in co-infected cells, and positively affected fish health. Full article
(This article belongs to the Special Issue New Insights into Fish Pathogens in Aquaculture)
Show Figures

Figure 1

10 pages, 1237 KiB  
Article
Evaluation of the Antiviral Activity against Infectious Pancreatic Necrosis Virus (IPNV) of a Copper (I) Homoleptic Complex with a Coumarin as Ligand
by Daniela Gutiérrez, Almendra Benavides, Beatriz Valenzuela, Carolina Mascayano, Maialen Aldabaldetrecu, Angel Olguín, Juan Guerrero and Brenda Modak
Molecules 2022, 27(1), 32; https://doi.org/10.3390/molecules27010032 - 22 Dec 2021
Cited by 8 | Viewed by 3014
Abstract
The aquatic infectious pancreatic necrosis virus (IPNV) causes a severe disease in farmed salmonid fish that generates great economic losses in the aquaculture industry. In the search for new tools to control the disease, in this paper we show the results obtained from [...] Read more.
The aquatic infectious pancreatic necrosis virus (IPNV) causes a severe disease in farmed salmonid fish that generates great economic losses in the aquaculture industry. In the search for new tools to control the disease, in this paper we show the results obtained from the evaluation of the antiviral effect of [Cu(NN1)2](ClO4) Cu(I) complex, synthesized in our laboratory, where the NN1 ligand is a synthetic derivate of the natural compound coumarin. This complex demonstrated antiviral activity against IPNV at 5.0 and 15.0 µg/mL causing a decrease viral load 99.0% and 99.5%, respectively. The Molecular Docking studies carried out showed that the copper complex would interact with the VP2 protein, specifically in the S domain, altering the process of entry of the virus into the host cell. Full article
Show Figures

Graphical abstract

17 pages, 5359 KiB  
Article
Viral Infection Drives the Regulation of Feeding Behavior Related Genes in Salmo salar
by David Muñoz, Ricardo Fuentes, Beatriz Carnicero, Andrea Aguilar, Nataly Sanhueza, Sergio San-Martin, Cristian Agurto, Andrea Donoso, Leonardo E. Valdivia, Jesús M. Miguez, Lluis Tort and Sebastián Boltana
Int. J. Mol. Sci. 2021, 22(21), 11391; https://doi.org/10.3390/ijms222111391 - 21 Oct 2021
Cited by 5 | Viewed by 3427
Abstract
The feeding behavior in fish is a complex activity that relies on the ability of the brain to integrate multiple signals to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Upon stress cues including viral infection or mediators [...] Read more.
The feeding behavior in fish is a complex activity that relies on the ability of the brain to integrate multiple signals to produce appropriate responses in terms of food intake, energy expenditure, and metabolic activity. Upon stress cues including viral infection or mediators such as the proinflammatory cytokines, prostaglandins, and cortisol, both Pomc and Npy/Agrp neurons from the hypothalamus are stimulated, thus triggering a response that controls both energy storage and expenditure. However, how appetite modulators or neuro-immune cues link pathogenesis and energy homeostasis in fish remains poorly understood. Here, we provide the first evidence of a molecular linkage between inflammation and food intake in Salmon salar. We show that in vivo viral challenge with infectious pancreatic necrosis virus (IPNV) impacts food consumption by activating anorexic genes such as mc4r, crf, and pomcb and 5-HT in the brain of S. salar. At the molecular level, viral infection induces an overall reduction in lipid content in the liver, favoring the production of AA and EPA associated with the increment of elovl2 gene. In addition, infection upregulates leptin signaling and inhibits insulin signaling. These changes are accompanied by a robust inflammatory response represented by the increment of Il-1b, Il-6, Tnfa, and Pge2 as well as an increased cortisol level in vivo. Thus, we propose a model in which hypothalamic neurons respond to inflammatory cytokines and stress-related molecules and interact with appetite induction/inhibition. These findings provide evidence of crosstalk between pathogenesis-driven inflammation and hypothalamic–pituitary–adrenocortical axes in stress-induced food intake behavior in fish. Full article
(This article belongs to the Special Issue Molecular Mechanism of Thermoregulation in Ectotherms)
Show Figures

Figure 1

19 pages, 705 KiB  
Review
Protection of Teleost Fish against Infectious Diseases through Oral Administration of Vaccines: Update 2021
by Jarl Bøgwald and Roy A. Dalmo
Int. J. Mol. Sci. 2021, 22(20), 10932; https://doi.org/10.3390/ijms222010932 - 10 Oct 2021
Cited by 24 | Viewed by 5478
Abstract
Immersion and intraperitoneal injection are the two most common methods used for the vaccination of fish. Because both methods require that fish are handled and thereby stressed, oral administration of vaccines as feed supplements is desirable. In addition, in terms of revaccination (boosting) [...] Read more.
Immersion and intraperitoneal injection are the two most common methods used for the vaccination of fish. Because both methods require that fish are handled and thereby stressed, oral administration of vaccines as feed supplements is desirable. In addition, in terms of revaccination (boosting) of adult fish held in net pens, oral administration of vaccines is probably the only feasible method to obtain proper protection against diseases over long periods of time. Oral vaccination is considered a suitable method for mass immunization of large and stress-sensitive fish populations. Moreover, oral vaccines may preferably induce mucosal immunity, which is especially important to fish. Experimental oral vaccine formulations include both non-encapsulated and encapsulated antigens, viruses and bacteria. To develop an effective oral vaccine, the desired antigens must be protected against the harsh environments in the stomach and gut so they can remain intact when they reach the lower gut/intestine where they normally are absorbed and transported to immune cells. The most commonly used encapsulation method is the use of alginate microspheres that can effectively deliver vaccines to the intestine without degradation. Other encapsulation methods include chitosan encapsulation, poly D,L-lactide-co-glycolic acid and liposome encapsulation. Only a few commercial oral vaccines are available on the market, including those against infectious pancreatic necrosis virus (IPNV), Spring viremia carp virus (SVCV), infectious salmon anaemia virus (ISAV) and Piscirickettsia salmonis. This review highlights recent developments of oral vaccination in teleost fish. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

18 pages, 6007 KiB  
Article
Influence of Infectious Pancreatic Necrosis Virus and Yersinia ruckeri Co-Infection on a Non-Specific Immune System in Rainbow Trout (Oncorhynchus mykiss)
by Joanna Pajdak-Czaus, Patrycja Schulz, Elżbieta Terech-Majewska, Wojciech Szweda, Andrzej Krzysztof Siwicki and Aleksandra Platt-Samoraj
Animals 2021, 11(7), 1974; https://doi.org/10.3390/ani11071974 - 2 Jul 2021
Cited by 6 | Viewed by 3693
Abstract
Background: The IPNV is one of the most common viral pathogens of rainbow trout (Oncorhynchus mykiss), while Y. ruckeri infections are widespread among bacterial agents. The current study aimed to determine the influence of IPNV and Y. ruckeri co-infection on a [...] Read more.
Background: The IPNV is one of the most common viral pathogens of rainbow trout (Oncorhynchus mykiss), while Y. ruckeri infections are widespread among bacterial agents. The current study aimed to determine the influence of IPNV and Y. ruckeri co-infection on a non-specific immune response. Methods: Two experiments were conducted. The first experiment determined the changes in non-specific immunity parameters upon the simultaneous occurrence of IPNV and Y. ruckeri infection. In the second experiment, infection with the IPNV was performed two weeks before Y. ruckeri infection. The level of total protein, gamma globulins, the activity of lysozyme and ceruloplasmin, as well as the metabolic activity and potential killing activity of phagocytes were measured: 0, 24 h, 72 h, 7 days, 14 days, and 21 days after co-infection. Results: A differentiated effect on the parameters of the non-specific immune response was shown between single infections with the IPNV and Y. ruckeri as well as co-infection with these pathogens. Conclusions: The immune response in the course of a co-infection depended on the time between infections. IPNV infection causes lysozyme activity suppression, which may lead to secondary bacterial infections. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 2263 KiB  
Article
Molecular Evolution of Infectious Pancreatic Necrosis Virus in China
by Kaiyue Duan, Jingzhuang Zhao, Guangming Ren, Yizhi Shao, Tongyan Lu, Lipu Xu, Xin Tang, Wenwen Zhao and Liming Xu
Viruses 2021, 13(3), 488; https://doi.org/10.3390/v13030488 - 16 Mar 2021
Cited by 16 | Viewed by 3269
Abstract
Passive virus surveillance was performed in twenty-nine salmon and trout farms from seven provinces and districts in China during the period 2017–2020. A total of 25 infectious pancreatic necrosis virus (IPNV) isolates were obtained, mainly from rainbow trout (Oncorhynchus mykiss). The [...] Read more.
Passive virus surveillance was performed in twenty-nine salmon and trout farms from seven provinces and districts in China during the period 2017–2020. A total of 25 infectious pancreatic necrosis virus (IPNV) isolates were obtained, mainly from rainbow trout (Oncorhynchus mykiss). The molecular evolution of these Chinese IPNV isolates and the previously reported Chinese IPNV strains ChRtm213 and WZ2016 was analyzed, based on their VP2 gene coding region sequences (CDS). All 27 Chinese IPNV isolates clustered within genogroups I and V, with 24 of the IPNV isolates belonging to genogroup I (including ChRtm213 and WZ2016), and only three isolates clustering in genogroup V. The Chinese genogroup I IPNV isolates lacked diversity, composing six haplotypes with 41 polymorphic sites, and the identity of nucleotide and amino acid sequences among the entire VP2 gene CDS from these isolates was 97.44%–100% and 98.19%–100%, respectively. Divergence time analyses revealed that the Chinese genogroup I IPNV isolates likely diverged from Japanese IPNV isolates in 1985 (95% highest posterior density (HPD), 1965–1997), and diverged again in 2006 (95% HPD, 1996–2013) in China. Each of the three Chinese genogroup V IPNV isolates has a unique VP2 gene CDS, with a total of 21 polymorphic sites; the identity of nucleotide and amino acid sequences among all VP2 gene CDS from these isolates was 98.5%–99.5% and 98.6%–99.0%, respectively. The data demonstrate that genogroups I and V are more likely the currently prevalent Chinese IPNV genotypes. Full article
(This article belongs to the Special Issue Fish Virus)
Show Figures

Figure 1

Back to TopTop