Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = inertia emulation, frequency support

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1475 KiB  
Systematic Review
A Systematic Review of Grid-Forming Control Techniques for Modern Power Systems and Microgrids
by Paul Arévalo, Carlos Ramos and Agostinho Rocha
Energies 2025, 18(14), 3888; https://doi.org/10.3390/en18143888 - 21 Jul 2025
Viewed by 371
Abstract
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a [...] Read more.
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a non-synchronous grid introduces new challenges in stability, resilience, and synchronization, necessitating advanced control strategies. Among these, Grid-Forming (GFM) control techniques have emerged as an effective solution for ensuring stable operations in microgrids and large-scale power systems with high IBRs integration. This paper presents a systematic review of GFM control techniques, focusing on their principles and applications. Using the PRISMA 2020 methodology, 75 studies published between 2015 and 2025 were synthesized to evaluate the characteristics of GFM control strategies. The review organizes GFM strategies, evaluates their performance under varying operational scenarios, and emphasizes persistent challenges like grid stability, inertia emulation, and fault ride-through capabilities. Furthermore, this study examines real-world implementations of GFM technology in modern power grids. Notable projects include the UK’s National Grid Pathfinder Program, which integrates GFM inverters to enhance stability, and Australia’s Hornsdale Power Reserve, where battery energy storage with GFM capabilities supports grid frequency regulation. Full article
(This article belongs to the Topic Modern Power Systems and Units)
Show Figures

Figure 1

31 pages, 4854 KiB  
Article
Frequency Regulation Provided by Doubly Fed Induction Generator Based Variable-Speed Wind Turbines Using Inertial Emulation and Droop Control in Hybrid Wind–Diesel Power Systems
by Muhammad Asad and José Ángel Sánchez-Fernández
Appl. Sci. 2025, 15(10), 5633; https://doi.org/10.3390/app15105633 - 18 May 2025
Cited by 1 | Viewed by 527
Abstract
To modernize electrical power systems on isolated islands, countries around the world have increased their interest in combining green energy with conventional power plants. Wind energy (WE) is the most adopted renewable energy source due to its technical readiness, competitive cost, and environmentally [...] Read more.
To modernize electrical power systems on isolated islands, countries around the world have increased their interest in combining green energy with conventional power plants. Wind energy (WE) is the most adopted renewable energy source due to its technical readiness, competitive cost, and environmentally friendly characteristics. Despite this, a high penetration of WE in conventional power systems could affect their stability. Moreover, these isolated island power systems face frequency deviation issues when operating in hybrid generation mode. Generally, under contingency or transient conditions for hybrid isolated wind–diesel power systems (WDPSs), it is only the diesel generator that provides inertial support in frequency regulation (FR) because wind turbines are unable to provide inertia themselves. Frequency deviations can exceed the pre-defined grid code limits during severe windy conditions because the diesel generator’s inertial support is not always sufficient. To overcome this issue, we propose a control strategy named emulation inertial and proportional (EI&P) control for Variable-Speed Wind Turbines (VSWTs). VSWTs can also contribute to FR by releasing synthetic inertia during uncertainties. In addition, to enhance the effectiveness and smoothness of the blade pitch angle control of WTs, a pitch compensation (PC) control loop is proposed in this paper. The aim of this study was to provide optimal primary frequency regulations to hybrid wind–diesel power systems (WDPSs). Therefore, the hybrid WDPS on San Cristobal Island was considered in this study. To achieve such goals, we used the above-mentioned proposed controls (EI&P and PC) and optimally tuned them using the Student-Psychology-Based Algorithm (SPBA). The effectiveness of this algorithm is in its ability to provide the best optimum controller gain combinations of the proposed control loops. As a result, the FD in the WDPS on San Cristobal Island was reduced by 1.05 Hz, and other quality indices, such as the integral absolute error (IAE), integral square error (ISE), and controller quality index (Z), were improved by 159.65, 16.75, and 83.80%, respectively. Moreover, the proposed PC control, which was further simplified using exhaustive searches, resulted in a reduction in blade pitch angle control complexity. To validate the results, the proposed approach was tested under different sets of perturbations (sudden loss of wind generator and gradual increase in wind speed and their random behavior). Furthermore, hybrid systems were tested simultaneously under different real-world scenarios, like various sets of load or power imbalances, wind variations, and their combinations. The Simulink results showed a significant improvement in FR support by minimizing frequency deviations during transients. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

19 pages, 7074 KiB  
Article
Smart Transformer-Assisted Frequency Control Mechanism for RES Penetrated Power Systems Considering Metaheuristic-Based Secondary Controller
by Chakka Bapi Ayyappa Raju, Sanjoy Debbarma and Rayapudi Srinivasa Rao
Energies 2024, 17(23), 5883; https://doi.org/10.3390/en17235883 - 23 Nov 2024
Cited by 1 | Viewed by 679
Abstract
The gradual replacement of conventional generators with variable renewable energy sources (RES) will reduce their online frequency regulation (FR) resources and degrade their overall frequency control capabilities. Although various inertia emulation methods exist, shaping load consumption is considered a more effective strategy during [...] Read more.
The gradual replacement of conventional generators with variable renewable energy sources (RES) will reduce their online frequency regulation (FR) resources and degrade their overall frequency control capabilities. Although various inertia emulation methods exist, shaping load consumption is considered a more effective strategy during emergency conditions than under-frequency load shedding. Managing loads following frequency excursions can support grid stability owing to rapid power response. In this context, a Smart Transformer (ST)-based FR framework for a RES-penetrated power system is studied in this paper. The ST, with its distinctive features, effectively shapes the load profile through online load sensitivity identification-based control, aiding in the stabilization of grid frequency. This paper also proposes a tilt integral second-order double derivative (TIDD2) controller for a secondary loop whose parameters are optimized using the Learner Performance-based Behavior (LPB) algorithm. A thorough investigation reveals that the response from ST controlling the voltage-dependent load in the presence of TIDD2 controllers can greatly enhance system performance by damping oscillations and peak deviations. In addition, the performance of Proportional–Integral–Derivative and TIDD2 considering ST in the primary loop is compared to delineate the robustness of the LPB-based TIDD2 controller. It is found that the proposed control scheme offers greater controllability and flexibility, enhancing the system’s dynamic performance. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

15 pages, 4772 KiB  
Article
Multi-Timescale Control of Variable-Speed Wind Turbine for Inertia Provision
by Zixiao Xu, Yang Qi, Weilin Li and Yongheng Yang
Appl. Sci. 2022, 12(7), 3263; https://doi.org/10.3390/app12073263 - 23 Mar 2022
Cited by 4 | Viewed by 2295
Abstract
The increasing deployment of power converters has led to a significant reduction in the power system inertia and consequently resulted in frequency stability issues. To improve the robustness of the grid against frequency disturbances, it is becoming more expected in many countries that [...] Read more.
The increasing deployment of power converters has led to a significant reduction in the power system inertia and consequently resulted in frequency stability issues. To improve the robustness of the grid against frequency disturbances, it is becoming more expected in many countries that renewable energy generation, such as wind turbine power systems, should provide equivalent inertia support to the power system. This can be achieved through advanced control of power converters, in addition to adding extra energy storage devices, e.g., batteries. In wind turbine systems, although the ancillary service of inertia provision can be realized by coupling the rotor speed with the grid frequency, the rotor speed recovery process affects the inertia response if the controller is not properly designed or well-tuned. To address this issue, in this paper, we propose a multi-timescale control strategy for a doubly fed induction generator (DFIG) wind turbine system. Synthetic inertia control and speed recovery control are simultaneously incorporated into the controller of the rotor-side converter, whereas their dynamics are decoupled under different timescales to avoid control conflict. Extensive simulation results are provided, which validate the efficacy of the proposed inertia emulation scheme. Full article
(This article belongs to the Special Issue Advancing Grid-Connected Renewable Generation Systems 2021-2022)
Show Figures

Figure 1

18 pages, 4266 KiB  
Article
Data-Driven Virtual Inertia Control Method of Doubly Fed Wind Turbine
by Tai Li, Leqiu Wang, Yanbo Wang, Guohai Liu, Zhiyu Zhu, Yongwei Zhang, Li Zhao and Zhicheng Ji
Energies 2021, 14(17), 5572; https://doi.org/10.3390/en14175572 - 6 Sep 2021
Cited by 10 | Viewed by 2228
Abstract
This paper presents a data-driven virtual inertia control method for doubly fed induction generator (DFIG)-based wind turbine to provide inertia support in the presence of frequency events. The Markov parameters of the system are first obtained by monitoring the grid frequency and system [...] Read more.
This paper presents a data-driven virtual inertia control method for doubly fed induction generator (DFIG)-based wind turbine to provide inertia support in the presence of frequency events. The Markov parameters of the system are first obtained by monitoring the grid frequency and system operation state. Then, a data-driven state observer is developed to evaluate the state vector of the optimal controller. Furthermore, the optimal controller of the inertia emulation system is developed through the closed solution of the differential Riccati equation. Moreover, a differential Riccati equation with self-correction capability is developed to enhance the anti-noise ability to reject noise interference in frequency measurement process. Finally, the simulation verification was performed in Matlab/Simulink to validate the effectiveness of the proposed control strategy. Simulation results showed that the proposed virtual inertia controller can adaptively tune control parameters online to provide transient inertia supports for the power grid by releasing the kinetic energy, so as to improve the robustness and anti-interference ability of the control system of the wind power system. Full article
(This article belongs to the Special Issue Energy Efficiency, Low Carbon Resources and Renewable Technology)
Show Figures

Figure 1

21 pages, 5766 KiB  
Article
Contribution of Wind Farms to the Stability of Power Systems with High Penetration of Renewables
by Jesus Castro Martinez, Santiago Arnaltes, Jaime Alonso-Martinez and Jose Luis Rodriguez Amenedo
Energies 2021, 14(8), 2207; https://doi.org/10.3390/en14082207 - 15 Apr 2021
Cited by 10 | Viewed by 2068
Abstract
Power system inertia is being reduced because of the increasing penetration of renewable energies, most of which use power electronic interfaces with the grid. This paper analyses the contribution of inertia emulation and droop control to the power system stability. Although inertia emulation [...] Read more.
Power system inertia is being reduced because of the increasing penetration of renewable energies, most of which use power electronic interfaces with the grid. This paper analyses the contribution of inertia emulation and droop control to the power system stability. Although inertia emulation may appear the best option to mitigate frequency disturbances, a thorough analysis of the shortcomings that face real-time implementations shows the opposite. Measurement noise and response delay for inertia emulation hinder controller performance, while the inherently fast droop response of electronic converters provides better frequency support. System stability, expressed in terms of rate of change of frequency (ROCOF) and frequency nadir, is therefore improved with droop control, compared to inertia emulation. Full article
(This article belongs to the Special Issue Modeling and Control of Wind Energy Conversion Systems)
Show Figures

Figure 1

21 pages, 2588 KiB  
Article
Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms
by Hector Beltran, Sam Harrison, Agustí Egea-Àlvarez and Lie Xu
Energies 2020, 13(13), 3421; https://doi.org/10.3390/en13133421 - 2 Jul 2020
Cited by 25 | Viewed by 5725
Abstract
This paper provides the result of a techno-economic study of potential energy storage technologies deployable at wind farms to provide short-term ancillary services such as inertia response and frequency support. Two different scenarios are considered including a single energy storage system for the [...] Read more.
This paper provides the result of a techno-economic study of potential energy storage technologies deployable at wind farms to provide short-term ancillary services such as inertia response and frequency support. Two different scenarios are considered including a single energy storage system for the whole wind farm and individual energy storage for each wind turbine (located at either the dc or the ac side of its grid-side converter). Simulations are introduced to check the technical viability of the proposal with different control strategies. Power and energy capability requirements demanded by both specific services are defined for each studied case based on present and future grid code needs. Based on these requirements, the study compares a wide range of energy storage technologies in terms of present-day technical readiness and properties and identifies potential candidate solutions. These are flywheels, supercapacitors, and three chemistries out of the Li-ion battery family. Finally, the results of a techno-economic assessment (mainly based on weight, volume, lifetime, and industry-confirmed costings) detail the advantages and disadvantages of the proposed solutions for the different scenarios under consideration. The main conclusion is that none of the candidates are found to be clearly superior to the others over the whole range of scenarios. Commercially available solutions have to be tailored to the different requirements depending on the amount of inertia, maximum Rate of Change of Frequency and maximum frequency deviation to be allowed. Full article
Show Figures

Graphical abstract

14 pages, 1979 KiB  
Article
A Quantitative Study on the Requirement for Additional Inertia in the European Power System until 2050 and the Potential Role of Wind Power
by Christos Agathokleous and Jimmy Ehnberg
Energies 2020, 13(9), 2309; https://doi.org/10.3390/en13092309 - 6 May 2020
Cited by 18 | Viewed by 3434
Abstract
A significant amount of conventional power plants in the European power system is anticipated to be replaced by solar and wind power in the future. This may require alternative sources for inertia support. The purpose of the paper is to learn about the [...] Read more.
A significant amount of conventional power plants in the European power system is anticipated to be replaced by solar and wind power in the future. This may require alternative sources for inertia support. The purpose of the paper is to learn about the consequences on the frequency deviation after a fault in the European power system when more wind and solar are introduced and when wind is considered as a possible provider of inertia. This study quantifies the expected maximum requirement for additional inertia in the future European power system up to 2050. Furthermore, we investigated the possibility of wind power to meet this additional need by providing emulated inertia. The European power system of the EU-28 countries has been clustered to the five synchronous grids, UCTE, Nordic, UK, Baltic and Irish. The future European energy mix is simulated considering twelve different scenarios. Production units are dispatched according to their expected environmental impacts, which closely follow the minimum natural contribution of inertia, in descending order. The available capacity for all the types of production is considered the same as the installed. For all the simulated scenarios the worst case is examined, which means that a sudden disconnection of the largest production unit of the dispatched types is considered. Case study results reveal that, in most cases, additional inertia will be required but wind power may fully cover this need for up to 84% of all simulated horizons among all the scenarios on the UCTE grid, and for up to 98%, 86%, 99% and 86% on the Nordic, UK, Baltic and Irish grids, respectively. Full article
(This article belongs to the Special Issue 100% Renewable Energy Transition: Pathways and Implementation II)
Show Figures

Graphical abstract

22 pages, 2348 KiB  
Article
Virtual Inertia Control of Variable Speed Heat Pumps for the Provision of Frequency Support
by Ismail Ibrahim, Cathal O’Loughlin and Terence O’Donnell
Energies 2020, 13(8), 1863; https://doi.org/10.3390/en13081863 - 11 Apr 2020
Cited by 11 | Viewed by 3865
Abstract
The growth in the integration of converter interfaced renewable energy has reduced the system inertia, which threatens system stability due to high rate of change of frequency (RoCoF) and frequency nadir issues unless steps are taken to mitigate it. There is a need [...] Read more.
The growth in the integration of converter interfaced renewable energy has reduced the system inertia, which threatens system stability due to high rate of change of frequency (RoCoF) and frequency nadir issues unless steps are taken to mitigate it. There is a need to provide sufficient fast frequency response to maintain adequate inertia in the system. This paper investigates the capabilities of a variable speed heat pump to provide an emulated inertial response. This paper presents a virtual synchronous machine control for a variable speed heat pump that provides support for grid frequency regulation over the inertial response time frame. A small-signal model with the transfer function of the variable speed heat pump is developed to analyse the effectiveness and feasibility of providing virtual inertia at the device and grid level, respectively. Furthermore, the small-signal model is validated using hardware in the loop simulation. Finally, the aggregated frequency response and virtual inertia contribution by a population of the heat pumps are evaluated and quantified in an urban distribution system. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 4904 KiB  
Article
Virtual Inertia-Based Control Strategy of Two-Stage Photovoltaic Inverters for Frequency Support in Islanded Micro-Grid
by Xin Huang, Keyou Wang, Guojie Li and Hua Zhang
Electronics 2018, 7(11), 340; https://doi.org/10.3390/electronics7110340 - 21 Nov 2018
Cited by 25 | Viewed by 5498
Abstract
For an islanded micro-grid with a high penetration of photovoltaic (PV) power generators, the low inertia reserve and the maximum peak power tracking control may increase the difficulty of maintaining the system’s supply–demand balance, and cause frequency instability, especially when the available generation [...] Read more.
For an islanded micro-grid with a high penetration of photovoltaic (PV) power generators, the low inertia reserve and the maximum peak power tracking control may increase the difficulty of maintaining the system’s supply–demand balance, and cause frequency instability, especially when the available generation is excessive. This will require changes in the way the PV inverter is controlled. In this paper, a virtual inertia frequency control (VIFC) strategy is proposed to let the two-stage PV inverters emulate inertia and support the system frequency with a timely response (e.g., inertia response), and the required power for inertia emulation is obtained from both the DC-link capacitor and the PV reserved energy. As the rate of the system frequency change can be reduced with the inertia increase, the proposed method can mitigate the frequency contingency event before the superior-level coordination control is enabled for the frequency restoration. The simulation results demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Grid Connected Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 1027 KiB  
Article
On Small Signal Frequency Stability under Virtual Inertia and the Role of PLLs
by Sohail Khan, Benoit Bletterie, Adolfo Anta and Wolfgang Gawlik
Energies 2018, 11(9), 2372; https://doi.org/10.3390/en11092372 - 8 Sep 2018
Cited by 29 | Viewed by 4463
Abstract
This paper presents a methodology that aims at identifying virtual inertia (VI) gain limitations from virtual synchronous generators (VSGs) while maintaining the frequency stability considering the delay associated with the frequency measurement process. The phase-locked loop (PLL) is typically used for frequency estimation [...] Read more.
This paper presents a methodology that aims at identifying virtual inertia (VI) gain limitations from virtual synchronous generators (VSGs) while maintaining the frequency stability considering the delay associated with the frequency measurement process. The phase-locked loop (PLL) is typically used for frequency estimation that is used to calculate the rate of change of frequency (RoCoF) and it drives the VI loop. The PLL is generally accompanied by a low-pass filter that aims to suppress the impact of harmonics. This filter introduces a delay that when used with the VI control loop causes stability issues for high values of VI gain. A comparison of various PLL approaches suggests that certain variants tend to permit higher value of cut-off frequencies which can be utilized to increase the VI gain limit from VSG. This study presents a method by which the upper limit on VI gain can be quantified and related to the cut-off frequency of the PLL low pass filter that is indirectly representing the delay. It is performed using small signal frequency stability analysis on the frequency domain model of the grid with virtual inertia emulating VSG. The effective maximum VI gain from VSG is explored while satisfying the frequency measurement accuracy specification considering harmonics. The results show that the requirements of reaching a stable operation with sufficient stability margins can still be met with a faster PLL-based system and the potential increases in VI support from VSG can be quantified using the proposed method. The study has been first performed on a single machine single inverter bus (SMSIB) system and is generalized to the multi-machine and multi-inverter system. Full article
(This article belongs to the Special Issue Electric Power Systems Research 2018)
Show Figures

Figure 1

16 pages, 5265 KiB  
Article
VSG-Based Dynamic Frequency Support Control for Autonomous PV–Diesel Microgrids
by Rongliang Shi and Xing Zhang
Energies 2018, 11(7), 1814; https://doi.org/10.3390/en11071814 - 11 Jul 2018
Cited by 18 | Viewed by 3788
Abstract
This paper demonstrates the use of a novel virtual synchronous generator (VSG) to provide dynamic frequency support in an autonomous photovoltaic (PV)–diesel hybrid microgrid with an energy storage system (ESS). Due to the lack of enough rotating machines, PV fluctuation might give rise [...] Read more.
This paper demonstrates the use of a novel virtual synchronous generator (VSG) to provide dynamic frequency support in an autonomous photovoltaic (PV)–diesel hybrid microgrid with an energy storage system (ESS). Due to the lack of enough rotating machines, PV fluctuation might give rise to unacceptable frequency excursions in the microgrid. The VSG entails controlling the voltage-source inverter (VSI) to emulate a virtual inertial and a virtual damping via power injection from/to the ESS. The effect of the VSG on the frequency is investigated. The virtual inertia decreases the maximum frequency deviation (MFD) and the rate of change of frequency (RoCoF), but in exchange for raising the virtual inertia, the system is more oscillating. Meanwhile, raising the virtual damping brings reductions in the amplitude of the oscillations of frequency. However, the dynamic frequency support provided by them is lagging behind. In this regard, an improved VSG based on the differential feedforward of the diesel generator set (DGS) output current is proposed to further mitigate the MFD and the RoCoF. Simulations and experimental results from an autonomous microgrid consisted of a 400 kW DGS, and a 100 kVA VSG are provided to validate the discussion. Full article
(This article belongs to the Special Issue Power Quality in Microgrids Based on Distributed Generators)
Show Figures

Figure 1

21 pages, 9208 KiB  
Article
Synchronous Power Control of Grid-Connected Power Converters under Asymmetrical Grid Fault
by Weiyi Zhang, Joan Rocabert, J. Ignacio Candela and Pedro Rodriguez
Energies 2017, 10(7), 950; https://doi.org/10.3390/en10070950 - 8 Jul 2017
Cited by 29 | Viewed by 6768
Abstract
Control of grid-connected power converters is continuously developing to meet the grid codes, according to which the generation units should keep connected to the grid and further provide ancillary services, such as voltage and frequency support, negative sequence current injection, inertia emulation, etc. [...] Read more.
Control of grid-connected power converters is continuously developing to meet the grid codes, according to which the generation units should keep connected to the grid and further provide ancillary services, such as voltage and frequency support, negative sequence current injection, inertia emulation, etc. A virtual admittance controller is proposed in this paper for the objective of voltage support under asymmetrical grid faults. By using independent and selective admittances for positive and negative sequence current injection, the unbalanced voltage can be significantly compensated during asymmetrical faults. The controller is based on the generic control framework of the synchronous power controller (SPC), which is able to control a power converter with emulated and improved synchronous generator characteristics. Simulation and experimental results based on two paralleled 100 kW grid-connected power converters demonstrate the controller to be effective in supporting unbalanced voltage sags. Full article
(This article belongs to the Special Issue Grid-Connected Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 2056 KiB  
Article
Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks
by Fabio Bignucolo, Alberto Cerretti, Massimiliano Coppo, Andrea Savio and Roberto Turri
Energies 2017, 10(2), 156; https://doi.org/10.3390/en10020156 - 26 Jan 2017
Cited by 51 | Viewed by 6411
Abstract
The recent growing diffusion of dispersed generation in low voltage (LV) distribution networks is entailing new rules to make local generators participate in network stability. Consequently, national and international grid codes, which define the connection rules for stability and safety of electrical power [...] Read more.
The recent growing diffusion of dispersed generation in low voltage (LV) distribution networks is entailing new rules to make local generators participate in network stability. Consequently, national and international grid codes, which define the connection rules for stability and safety of electrical power systems, have been updated requiring distributed generators and electrical storage systems to supply stabilizing contributions. In this scenario, specific attention to the uncontrolled islanding issue has to be addressed since currently required anti-islanding protection systems, based on relays locally measuring voltage and frequency, could no longer be suitable. In this paper, the effects on the interface protection performance of different LV generators’ stabilizing functions are analysed. The study takes into account existing requirements, such as the generators’ active power regulation (according to the measured frequency) and reactive power regulation (depending on the local measured voltage). In addition, the paper focuses on other stabilizing features under discussion, derived from the medium voltage (MV) distribution network grid codes or proposed in the literature, such as fast voltage support (FVS) and inertia emulation. Stabilizing functions have been reproduced in the DIgSILENT PowerFactory 2016 software environment, making use of its native programming language. Later, they are tested both alone and together, aiming to obtain a comprehensive analysis on their impact on the anti-islanding protection effectiveness. Through dynamic simulations in several network scenarios the paper demonstrates the detrimental impact that such stabilizing regulations may have on loss-of-main protection effectiveness, leading to an increased risk of unintentional islanding. Full article
Show Figures

Figure 1

Back to TopTop