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Abstract: This paper presents a data-driven virtual inertia control method for doubly fed induction
generator (DFIG)-based wind turbine to provide inertia support in the presence of frequency events.
The Markov parameters of the system are first obtained by monitoring the grid frequency and system
operation state. Then, a data-driven state observer is developed to evaluate the state vector of the
optimal controller. Furthermore, the optimal controller of the inertia emulation system is developed
through the closed solution of the differential Riccati equation. Moreover, a differential Riccati
equation with self-correction capability is developed to enhance the anti-noise ability to reject noise
interference in frequency measurement process. Finally, the simulation verification was performed in
Matlab/Simulink to validate the effectiveness of the proposed control strategy. Simulation results
showed that the proposed virtual inertia controller can adaptively tune control parameters online to
provide transient inertia supports for the power grid by releasing the kinetic energy, so as to improve
the robustness and anti-interference ability of the control system of the wind power system.

Keywords: DFIG; virtual inertia; data-driven control; Markov parameters; self-correction; optimal
feedback controller

1. Introduction

The increasing penetration of wind power generation into the power system is be-
coming an important trend [1,2]. DFIG-based wind turbine is an important member of the
commercial wind turbine family. The DFIG-based wind turbine is decoupled from power
grid by back-to-back power converter, so that there exists no inherent response from wind
turbine in the presence of grid frequency event [3,4]. With the increasing penetration of
wind power generation, the impact of wind power system on the power system becomes
more and more evident. Therefore, grid codes throughout the world pose the requirements
for power regulation to support the frequency stability of the power grid [5,6].

Inertia emulation methods have been frequently proposed to support transient iner-
tia responses in previous work, which can be divided into energy storage-based inertia
emulation and rotor kinetic energy-based inertia emulation [7,8]. In [9], the authors pro-
vide the calculation method of the equivalent virtual inertia time constant reflecting the
effective energy storage of the DFIG and put forward the variable parameter virtual inertia
emulation method based on DFIG effective energy storage, so as to improve the ability of
DFIG to participate in system frequency regulation. In [10], a DFIG-based wind turbine
with hydrogen energy storage is proposed, where the hydrogen energy storage system
is adopted to provide inertia support for power grid so as to improve the stability of
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power grid. In [11], a control method based on removable virtual resistors cooperated with
reconfiguration of battery energy storage unit’s control structure is proposed. By installing
removable virtual resistors on the energy storage device, the inertia support ability of the
DFIG is further enhanced and the low-voltage ride through capability of wind turbine is
improved. The different virtual inertia control methods based on energy storage devices
adopted in [9–11] can provide effective inertia support for the power grid, but there still
exists several drawbacks. For instance, energy storage (ES) devices are expensive, and
the operation performance of ES devices is sensitive to the environment. Compared with
energy storage-based methods, the rotor kinetic energy-based inertia emulation method
can provide inertia support by controlling the rotational speed of wind turbine. An inertia
control method based on dynamic equations and adaptive fuzzy algorithm is proposed
in [12], which can adaptively adjust the inertia control gain within a wide wind speed range
to mitigate the transient frequency fluctuation of power system. However, the dynamic
response is relative slow. In [13], the relationship among virtual inertia, rotor speed, and
grid frequency change are analyzed, and a new virtual inertia emulation method is devel-
oped, where the MPPT curve can be switched to virtual inertia control curve according
to frequency deviation so as to release kinetic energy and provide inertia support for the
power grid. However, this method tends to increase the computational burdens of the
control system.

The data-driven virtual inertia emulation methods were developed to improve oper-
ation performance of inertia control strategies. In [14], the damping ratio of eigenvalues
is selected as the objective function, and a dynamic linearized mathematical model is
established to replace the control parameter optimization model. Moreover, the model
parameters are solved by offline data, which improves the small signal stability of the
system. In [15], an approximate dynamic programming method is proposed for online
parameters tuning of traditional PD virtual inertia controller, where the knowledge of sys-
tem model is not necessary. This method can realize the online optimal parameter tuning,
which enhances the control performance of DFIG for frequency regulation, although these
data-driven inertia control methods may address effectively transient frequency fluctuation.
However, due to the wind farm operating in a very complex external environment, there
exists measurement noise that will cause vibration of DFIG shell in the frequency measure-
ment phase. If the impact of measurement noise is not fully considered, this will cause the
algorithm to be susceptible to noise interference and decrease the anti-disturbance ability
of system. In [16], an integral stability analysis method for stochastic parameter DFIG
system considering virtual inertia control is proposed. On the basis of the traditional DFIG
virtual inertia control, the functional analytical relationship between stochastic parameters
and elements in the state matrix is derived, and the stochastic parameter interconnected
system model considering Wiener noise is established, which improves the identification
ability of the power system. However, the existing methods mainly focus on the influence
of measurement noise on the inertia support capability of wind turbines, but it fails to
reduce the computational burdens of the data-driven controller.

To improve the ability of DFIG to provide inertia support for grid, as well as to
reduce the impact of measurement noises on inertia control, this paper presents a data-
driven optimal control strategy for inertia emulation control. The proposed controller
consists of two complementary subsystems, the data-driven observer and the optimal
controller based on the system Markov parameters. The data-driven state observer is
constructed by monitoring the grid frequency and the operating status of DFIG to obtain
the Markov parameters of the system. In addition, the optimal controller based on the
Markov parameters of the system is developed by the closed solution of the differential
Riccati equation with self-tuning capability. The main contributions of this paper are
explained as follows.

• A novel data-driven virtual inertia emulation method is proposed, which is able to achieve
the better control performance compared with traditional inertia control strategies.
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• A data-driven state observer and an optimal controller based on system Markov
parameters are developed. In this proposed controller, only real-time input and output
data of the system is required to complete the relevant computations without using a
detailed mathematical model.

• In this work, the differential Riccati equation with self-correction ability is intro-
duced on the basis of the aforementioned optimal controller, which improves the
anti-disturbance ability of system.

The rest of this paper is organized as follows. The basic principle of DFIG and the
traditional virtual inertia control strategies are introduced in Section 2. In Section 3, the
data-driven inertia control strategy is developed. In Section 4, simulation verification is
performed to validate the proposed control method in Matlab/Simulink. The conclusions
are drawn in Section 5.

2. System Description and Problem Formulation
2.1. System Description

Figure 1 shows the diagram of the traditional DFIG-based wind turbine, which is
composed of doubly fed induction machine, rotor side converter, grid side converter, DFIG
controller, and power grid. The rotor side converter and grid side converter can decouple
DFIG from power grid and perform variable speed operation.

Figure 1. The diagram of DFIG-based wind turbine.

The power converter is enabled by control system to perform the following functions.
(1) To implement the maximum power point tracking when the wind speed is lower than
the rated wind speed. (2) To maintain the DC-link voltage of power converter. (3) To
provide the reactive power support in the presence of grid faults.

The mechanical power extracted from wind turbine can be represented as (1) [17,18].

Pm = 0.5πρR2Cp(λ, β)v3 (1)

where Pm is the mechanical power extracted from the wind energy by the wind turbines,
ρ = 1.22 kg/m3 is the air density in kilograms per cubic meter, R is the turbine radius, ω
is the turbine angular speed, v is the wind speed, λ is the blade top speed ratio, and the
λ = ωR/v. β is the blades pitch angle, and Cp(λ,β) is the power performance coefficient of
the turbine, wherein its value is related to the blades pitch angle and the blade top speed
ratio, which can be represented as (2): Cp(λ, β) = 0.5176( 116

λi
− 0.4β− 5)e−21/λi + 0.0068λ

λi = 1
1

λ+0.08β−
0.035
β3+1

(2)

In order to make the Cp(λ,β) reach the optimal value Cpmax(λ,β), the rotor speed of the
DFIG is controlled by wind power converter to capture the optimal tip speed ratio λopt.
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The wind turbine parameter values provided by the wind turbine supplier and related
documents [19] can be used to obtain the relationship between the wind energy utilization
coefficient, the tip speed ratio, and the pitch angle at the optimal operating point of the
wind turbine. In order to analyze the influence of virtual inertia on the wind turbine, this
paper mainly analyzed the influence of virtual inertia control on Cp and λ when the pitch
angle is near zero. Figure 2 shows the relationship curve between tip speed ratio and wind
energy utilization coefficient when β = 0◦. It can be seen that the maximum value of wind
energy utilization coefficient is Cpmax ≈ 0.48 when the blade tip speed ratio reaches the
maximum value, and the optimal value of blade tip speed ratio is λopt ≈ 8.1. At this time,
the wind energy utilization factor is the highest. When the gird load suddenly increases,
the system frequency will decrease. Then, the rotational speed of wind turbine is reduced
to release the kinetic energy of the rotor, where the wind turbine can be operated in region
1. At this time, the value of tip speed ratio λ will decrease. Therefore, Cp will decrease from
the highest value Cpmax to the left along the curve of the relationship tip speed ratio and
the wind energy utilization coefficient. On the other hand, when the gird load decreases,
the system frequency will increase. Then, the rotational speed can be increased to support
frequency regulation, where the wind turbine can be operated in region 2. At this time, the
value of tip speed ratio λ will increase. Therefore, Cp will decrease from the highest value
Cpmax to the right along the curve of the relationship tip speed ratio and the wind energy
utilization coefficient.

Figure 2. Relationship curve between tip speed ratio and wind energy utilization coefficient when
β = 0◦.

The model of the wind energy conversion system with DFIG is described as follows:
us = −Ris + pψs + jωsψs
ψs = −Lsis + Lmir
Te = npLm(isqird − isdirq)
Ps = usdisd + usqisq

(3)

where ψs is the stator flux, Ps is the stator active power, us is the stator voltage, is is the
stator current, and ir is the rotor current. p is the differential operator, Ls is the stator
inductance, Lm is the stator mutual inductance, ωs is the synchronous speed, and Rs is
the stator resistance. Te is the electromagnetic torque of the motor and np is the pole-pairs
number of the motor.
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2.2. PD Virtual Inertia Controller

The wind turbine has the ability to adaptively address frequency response if a fre-
quency power outer loop is added to the DFIG control system. Figure 3 shows the control
structure. The power outer loop includes two parts: the proportional part acts on the
dynamic frequency deviation (∆f ), and the differential part acts on the frequency deviation
change rate (d∆f/dt). In the initial stage when the power grid is out of balance, the system
frequency responds quickly, and the differential part plays a major role at this time. When
the system frequency drops or rises seriously, the proportional part will play a major role.
The active power compensated to DFIG can be given as (4).

Pc = Kd
d∆ f
dt

+ Kp∆ f (4)

where Pc is the inertia response reference of active power, Kd is the differential parameter,
Kp is the proportional parameter, ∆f is the frequency offset, and d∆f/dt is the frequency rate.

Figure 3. Additional power outer loop for inertial emulation control.

In order to improve the transient performance of the system frequency, the equivalent
inertia of the power system is increased by releasing the rotor energy storage and simulating
the inertia response of the synchronous generator. The inertia response of the power system
can be given as (5) [20].

∆P = 2H
d∆ f
dt

+ D∆ f (5)

where H is the inertia time constant, and D is the damping coefficient. Considering the
inertia response of the wind turbine, the traditional PD virtual inertia control is given as (6).

∆Pc = (2H + Kd)
d∆ f
dt

+
(

D + Kp
)
∆ f (6)

It is easy to perform the PD-based virtual inertia control strategy in practical operation.
However, the PD-based virtual inertia control strategy fails to provide more effective inertia
support according to specific conditions in actual wind power systems. In (5), the frequency
change rate measured from the power grid is susceptible to the effect of measurement
noises. These measurement noises are, in the majority, caused by aging and parameter
drift of measuring equipment and/or the difference of electromechanical characteristics
between different equipment, leading to the difference of frequency measurements [21].
Due to the existence of measurement noise in the process of grid frequency measurement,
the DFIG inertia emulation system has stronger uncertainty, and therefore it is urgent to
develop an accurate DFIG inertia emulation system and to address the frequency change
rate measurement noise so as to improve control effect of virtual inertia. To address the
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above problems, this paper presents a data-driven optimal control strategy for inertia
emulation control.

3. Data-Driven Virtual Inertia Control Method

In this section, a data-driven virtual inertia control method is developed to perform
inertia control. Figure 4 shows the diagram of data-driven inertia emulation controller,
which is composed of state observer and the optimal controller based on the system Markov
parameters. In this proposed inertia controller, a data-driven state observer based on the
Markov parameters of the system is established, which can effective solution to estimate
the state vector xc(k) of the optimal controller [22,23]. Then, the optimal controller of the
inertia emulation system is designed through the closed solution of the differential Riccati
equation with self-correction capability.

Figure 4. The diagram of data-driven inertia controller for DFIG-based wind turbine.

3.1. Description of the Optimal Problem

The power reference value Pref in the wind turbine control system are changed by
traditional virtual inertia control, which makes the DFIGs show controllable inertia re-
sponse characteristics when the system frequency fluctuates. In order to improve the inertia
control performance, a data-driven inertia control method is proposed in this paper. The
DFIG inertia emulation system at time k can be given in a state-space form as (7).{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(7)

where x(k) is the n-dimensional state vector, u(k) is the m-dimensional control input vector,
and y(k) is the l-dimensional measurement output vector. A, B, C are the parameter matrix.
Then, the LQ optimal control is used to solve the control function.

u(k) = f [u(0), u(1), · · · , u(k− 1), y(0), y(1), · · · , y(k− 1)] (8)

The performance index function is given as (9).

minJ = ε

{
y(N)TQy(N) +

N−1

∑
k = 0

y(k)TQy(k) + u(k)T Ru(k)

}
(9)

where Q is a positive semi-definite symmetric weight matrix and R is a positive definite
symmetric weight matrix.
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When the state space model is unknown, the Markov parameter Mi can be obtained
by using the online input and output data. In addition, the appropriate weights QW and
RW are selected to solve the optimal control function as shown in (8), which can be given
as (10).

u(k) = f [QW , RW , y(k− 1), u(k− 1), {Mi}] (10)

where u is input vector of the DFIG inertia emulation system that is the grid frequency
deviation ∆f, and it is also the output of the wind power control system. y is output vector
of the DFIG inertia emulation system that is the compensated active power ∆Pc, and it is
also the input of the wind power control system. QW is positive semi-definite symmetric
weight matrix, RW is positive definite symmetric weight matrix, Mi = CA(i−1)B; Mi is the
Markov parameter of the wind energy conversion system, where i = 1, 2, . . . , n.

The optimal control function is obtained by solving (11)

minJ = ε

{
∆ f (N)TQW∆ f (N) +

N−1

∑
k = 0

(
∆ f (k)TQW∆ f (k) + ∆Pc(k)

T RW∆Pc(k)
)}

(11)

to reach the minimum. Therefore, the DFIG inertia emulation system can make the fre-
quency f accurately track the rated value fN when the power supply load is unbalance so
as to provide the inertia support.

3.2. Data-Driven Algorithm

The state vector of the DFIG inertia emulation system for p(p > 0) times can be obtained
as (12). {

x(k + p) = Apx(k) + Bpup(k)
yp(k) = Opx(k) + Tpup(k)

(12)

where up(k) and yp(k) are respectively derived from u(k) and y(k), starting at first p-step
input and output data form a column vector as (13) and (14).

up(k) =
[

u1(k) · · · up(k + p− 1)
]T (13)

yp(k) =
[

y1(k) · · · yp(k + p− 1)
]T (14)

The matrix Bp in (12) is an n × pm controllability matrix, Op is a pl × n observability
matrix, and Tp is a pl × pm Toeplitz matrix of the system Markov parameters, where

Bp =
[

Ap−1B · · · AB B
]
, Op =


C

CA
...

CAp−1



Tp =



0 · · · · · · · · · 0

CB 0
. . .

...

CAB CB
. . . . . .

...
...

...
. . . . . .

...
CAp−2B CAp−3B · · · CB 0


Lemma 1. [24] Assuming that the observable system model, the controllable matrix Bp and
the diagonal constant matrix Tp are known; as long as pm ≥ n, there is a matrix M makes
Ap + MOp = 0 holds.
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Applying Lemma 1, (12) can be estimated by input and output as (15).{
x(k + p) =

(
Bp + MTp

)
up(k)−Myp(k)

yp(k + p) = P1up(k) + Tpup(k + p) + P2yp(k)
(15)

where
P1 = Op

(
Bp + MiTp

)
P2 = −OpMi

Mi = −Ai
pOp

+ ∂2Ω
∂u2

In order to obtain Markov parameters of the data-driven system, the input and output
data column vectors are formed into matrices Y and V in the form of (16) and (17), and the
relationship equation between the input and output data can be given as (18) [25].

Y =
[

yp(k + p) yp(k + p + 1) · · · yp(k + p + L)
]

(16)

V =

 up(k) up(k + 1) · · · up(k + L)
up(k + p) up(k + p + 1) · · · up(k + p + L)

yp(k) yp(k + 1) · · · yp(k + L)

 (17)

[
P1 Tp P2

]
= YVT

(
VVT

)+
(18)

P1, P2, and matrix Tp can be obtained by solving (18). When p = N + 1, the Markov
parameter Mi = CA(i−1)B of the DFIG inertia emulation system can be extracted from Tp.

Lemma 2. [26] The closed solution formula of the difference Riccati equation is given as (19).

X(k) = C(k)TQ(k)C(k)− C(k)TQ(k)S(k)·
(

R(k) + S(k)TQ(k)S(k)
)−1

S(k)TQ(k)C(k) (19)

where

C(k) =


CA
CA2

...
CAN−k

, S(k) =



0 · · · · · · · · · 0

CB 0
. . .

...

CAB CB
. . . . . .

...
...

...
. . . . . .

...
CAN−K−1B CAN−K−2B · · · CB 0


, S(N) = 0

R(k) = diag (R, R,· · · , R) and Q(k) = diag (Q, Q,· · · , Q) are both N − k + 1 dimensional matrices.

For the inertia emulation system with given Markov parameters, the closed solution
of the differential Riccati equation is introduced. Applying Lemma 2, the data-driven
controller is given as (20).

u(k) = Gw(k)xc(k) (20)

where Gw(k) is the gain of data-driven controller, and xc(k) is the state vector of data-driven
controller, which can be given as (21) and (22).

Gw(k) = −
(

RW + θ(k + 1)TΩ(k + 1) ·θ(k + 1))−1θ(k + 1)TΩ(k + 1) (21)

xc(k) = C(k + 1)Ax(k) = Opx(k) =


CA
CA2

...
CAN−k

x(k) (22)
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where
θ(k + 1) = C(k + 1)B =

[
M1 M2 · · · MN−k

]T

Ω(k + 1) = Q(k + 1)−Q(k + 1)S(k + 1)·
(

R(k + 1) + S(k + 1)TQ(k + 1)S(k + 1)
)−1
·S(k + 1)TQ(k + 1)

S(k + 1) =



0 · · · · · · · · · 0

M1 0
. . .

...

M2 M1
. . . . . .

...
...

...
. . . . . .

...
MN−k−1 MN−k−2 · · · M1 0


S(N) = 0, and R(k + 1) = diag (RW, RW,· · · , RW) and Q(k + 1) = diag (QW, QW,· · · , QW) are
both N − k dimensional matrices.

3.3. State Vector Estimation

In (22), the state vector xc(k) of the optimal controller based on data is related with A,
C, and the state variable x(k). In the case of unknown system model, this paper presents
a new method to construct a state observer to estimate xc(k), which can be estimated by
taking the state vector x(k) of (15) into (22) when p = N + 1.

x̂c(k) =
[

0l I(N−k)l
]
Op x̂(k)

=
[

0l I(N−k)l
](

P1up(k− p) + P2yp(k− p)
) (23)

xc(k) is the column vector of x̂c(k) from row l + 1 to row l(n − k + 1), so that the state
vector of the data-driven optimal controller can be estimated by the input and output
vectors and P1 and P2.

3.4. Self-Correction of the State Observer under Measurement Noise

To improve the robustness of control system with immunity to measurement noises
in practical operation, the control system with capability of anti-interference and noise
reduction is developed in this section. The measurement noise is emulated by adding
random noise signals, which is introduced into Riccati equation and the data-based state
observer. In addition, system frequency is measured by the phase-locked loop. Then, an
optimal controller with self-correction ability under correlated noise is developed. The
DFIG inertia emulation system with measurement noise can be given as (24).{

x(k + p) = Apx(k) + Bpup(k) + Γω0(k)
yp(k) = Opx(k) + Tpup(k) + v(k)

(24)

where ω0(k) and v(k) are the input noise and measurement noise, respectively, and Ap,
Op, and Γ are the state transition matrix, measurement matrix, and input noise matrix,
respectively, which contain the unknown parameter vector θ.

Assuming that ω0(k) and v(k) are the correlated white noises with zero mean, variances
Q0 and R, and correlated matrix S, then (25) can be obtained.

E
{[

ω0(k)
v(k)

][
ω0

T(k) vT(k)
]}

=

[
Q0 S
ST R

]
(25)

where E represents mathematical expectation, and T represents transpose.
When the θ is known, (24) can be represented as (26).

x(k + p) = Apx(k) + Bpup(k) + Γω0(k) + J
[
yp(k)−Opx(k)− Tpup(k)− v(k)

]
(26)
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where, take J = ΓSR−1, and define:

Φ = Ap −Op, ω(k) = Γω0(k)− Jv(k)

and (26) can be represented as (27).

x(k + p) = Φx(k) + Jyp(k) +
(

Bp − JTp
)
up(k) + ω(k) (27)

Then, white noise ω(k) is defined as (28).

ω(k) = ω0(k)− SR−1v(k) (28)

(27) is transformed into (29).

x(k + p) = Φx(k) + Jyp(k) +
(

Bp − JTp
)
up(k) + Γω(k) (29)

and the variance of ω(k) is Q = Q0-SR−1ST.
In this way, (22) is rewritten as (30).

x(k + p) =
(

Bp + MTp − JTp
)
up(k)− (J −M)yp(k) + Γω(k) + Mv(k) (30)

When p = N + 1, xc(k) can be obtained by taking (30) into (21).

x̂c(k) =
[

0l I(N−k)l
]
Op x̂(k)

=
[

0l I(N−k)l
][(

P1 − JTp
)
up(k− p) + (P2 + J)yp(k− p) + OpΓω(k)− P2v(k)

] (31)

3.5. Algorithm Flow of Markov Riccati Controller

Figure 5 shows the flowchart of the proposed data-driven inertia control algorithm.
When the data-driven controller is integrated into the DFIG inertia emulation system,
the input and output data are collected to construct matrix Y and V. In order to obtain
the accurate Markov parameters, the rows related to input vector in V must be linearly
independent. Therefore, when selecting the length L of the data, it is necessary to ensure
that the obtained data set is sufficient. The specific algorithm flow is given as follows.

(1) The matrix Y and V is formulated by system output data and control input data
collected in DFIG system according to (16) and (17).

(2) The P1, P2, and matrix TP are obtained by solving (18). Then, the Markov parameters
Mi (i = 1, 2,· · · , n) of DFIG inertia emulation system is obtained from TP by taking
p = N + 1.

(3) A set of data-based control gains Gw(k) is derived by substituting Mi into (21).
(4) The estimated value of state vector is obtained by substituting P1, P2, and related

input and output data into (31), and the state vector xc(k) of optimal controller is
obtained by taking the estimated value of state vector’s second row to (n − k + 1)l
row column vector.

(5) The control input u(k) is calculated according to (20).
(6) The new output data y(k) is obtained by taking the control input u(k) into wind power

system, and the next moment state vector xc(k + 1) could be estimated by substituting
the new control input u(k) and system output y(k) into Equation (31); then, the next
moment control input u(k + 1) is obtained, which is cycled in turn.



Energies 2021, 14, 5572 11 of 18

Figure 5. The flowchart of the proposed data-driven inertia control algorithm.

4. Simulation Verification

In order to validate the effectiveness of the proposed data-driven inertia control
method, we established a simulation model of a 1.5 MW DFIG-based wind turbine in
Matlab/Simulink. The parameters of the system model are given in Table 1. Considering
simulation time and accuracy of the model [27], we chose the length of the control horizon
as N = 8, p = N + 1 = 9, and L = 3p + 10 = 37. Moreover, considering the switching loss of
power converter, we chose the sampling period of PWM in power converter as T = 100
us [28,29]. Since the control bandwidth of the proposed data-driven controller is within the
control bandwidth of the DFIG power controller, it thus can be implemented in the existing
DFIG power controller with same sampling time. In addition, the dead band and filters
were installed in the data acquisition link of the data-driven controller, where they aimed
to filter out invalid signals.

The inertia emulation ability of wind turbine is important to provide inertia response
similar with synchronous generators to reduce the frequency change rate of the system in
the presence of frequency event. Therefore, under the condition of 11 m/s wind speed,
the simulation study investigated the transient inertia support capability of the proposed
control method under three different conditions, namely, system frequency decrease,
system frequency increase, and system frequency decrease with measurement noises. In
order to validate the advantages of the proposed method, we provided the comparative
analysis to investigate the frequency regulation performance among three control methods
under the same conditions.

NO Inertia Control: DFIG was operated without inertia emulation capability.
PD Inertia Control: DFIG was operated with PD-based inertia control to provide

transient inertia support.
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The proposed data-driven inertia control: DFIG was operated with the proposed
inertia controller to provide transient inertia support.

Table 1. Simulation parameters of DFIG-based wind turbine.

Parameter Value

Air density, ρ 1.22 kg/m3

DFIG rated voltage, Veref 575 V
DFIG rated power, Peref 1500 kW
Inertia of generator, Hg 0.685 s

Wind turbine inertia constant, HWT 4.32 s
Magnetizing inductance, Lm 2.9 (p.u.)

Stator self-inductance, Ls 0.18 (p.u.)
Rotor self-inductance, Lr 0.16 (p.u.)

Rated wind speed, vr 11 m/s
Sampling time of data driven controller, T 0.00001 s

QW 1
RW 0.0001
N 8
p 9
L 37

4.1. Case I: System Frequency Decrease

When the system frequency deviation is higher than 0.03 Hz, the proposed virtual
inertia control method is activated. The specific calculation process of the controller is
given as follows. According to the sampled data, we can obtain the Markov parameters of
the inertia emulation system.

{Mi}8
1 = {0.0142 0.0145 2.5696 0.0155 0.0211 − 0.0139 − 0.0091 7.9556}

According to step (3), a set of control gain Gw(k) (k = 1, 2,· · · , 8) is obtained as follows:

Gw(1) = [−88.8433 − 54.3848 44.8816 − 38.6886 − 60.5618 50.2962 − 2.9208 33.1088]
Gw(2) = [−82.7040 − 54.1597 21.0978 − 47.1021 − 25.7684 39.0785 12.7832]
Gw(3) = [−58.4073 − 53.7086 17.9921 − 28.2684 − 29.6122 43.0438]
Gw(4) = [−16.8306 − 33.7387 51.3757 − 22.0870 − 10.9116]
Gw(5) = [−37.0653 − 48.9030 52.2306 − 30.8350]
Gw(6) = [−54.9232 − 42.3938 33.4975]
Gw(7) = [−20.5507 − 8.0355]
Gw(8) = [−47.1136]

According to step (4), the first state vector is obtained as follows:

xc(1) = [0.0673 0.0577 0.0453 0.0425 0.0329 0.0188 0.0223 0.0320]T

According to step (5), Gw(k) and xc(k) are multiplied to obtain the control input ∆Pc:

∆Pc = {−0.8779 − 0.9564 − 0.7580 − 0.2048 − 0.4259 − 0.4624 − 0.1846 − 0.3171}

The next moment input is obtained by taking the calculated ∆Pc into the DFIG power
compensation system, and cycle in turn. The specific simulation results are shown in
Figure 6.

Figure 6a shows the comparative analysis of DFIG output active power under different
control methods when system frequency decreases. It can be seen that the output active
power of PD inertia control and the proposed data-driven inertia control was higher than
that of NO inertia control. The active power was increased by DFIG by reducing the
rotational speed.
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Figure 6. Simulation results of power system when frequency decreased.
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Figure 6b shows the comparative analysis of DFIG rotor speed under different control
methods when system frequency decreased. It can be seen that the rotational speed of
wind turbine was reduced, so as to release the rotational kinetic energy and provide inertia
support for power system.

Figure 6c shows the comparative analysis of DFIG reference active power under
different control strategies when system frequency decreased. It can be seen that the active
power reference of inertia control under the proposed data-driven inertia control and PD
inertia control was increased to provide inertia support for power system.

Simulation results showed that compared with PD inertia control, the proposed data-
driven inertia control method was able to activate more kinetic energy, which thus provided
effective inertia supports for the power grid.

4.2. Case II: System Frequency Increase

When the system frequency deviation is higher than 0.03 Hz, the data-driven virtual
inertia controller is activated. Figure 7 shows the simulation results regarding this case.

Figure 7a shows the comparison of DFIG output active power under different control
methods when system frequency increased. It can be seen that the output active power of
PD inertia control and the proposed data-driven inertia control was lower than that of NO
inertia control.

Figure 7b shows the comparison of DFIG rotor speed under different control methods
when system frequency increased. It can be seen that compared with PD inertia control,
the use of proposed data-driven inertia control can effectively increase the rotor speed of
DFIG, thereby suppressing the output power of DFIG and providing inertia support for
the power system.

Figure 7c shows the comparison of DFIG reference active power under different
control strategies when system frequency increased. It can be seen that the reference active
power of the inertia control under the proposed data-driven inertia control and PD inertia
control were reduced after system frequency increased, which in turn affected the DFIG
rotor speed and provided inertia support for the power system.

Simulation results showed that when system frequency increased, the proposed data-
driven inertia control method can contribute to transient frequency stability by increasing
rotational speed of wind turbine.

Figure 7. Cont.
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Figure 7. Simulation results of power system when frequency increased.

4.3. Case III: System Frequency Decrease with Measurement Noise

The aim of this case was to investigate the anti-interference ability of inertia emulation
controller with measurement noises, thus NO inertia control strategies were not related
with this issue. To emulate the measurement noise, we added a noise signal with a random
fluctuation range of ±0.02 to the measured frequency feedback signal to simulate the noise
amplification effect of frequency sampling in the DFIG system. When the system frequency
deviation is higher than 0.03 Hz, the data-driven virtual inertia control method is activated.
Figure 8 shows the simulation results.

Figure 8a shows that the comparison of system frequency under different control
methods in the presence of noise and system frequency decreases. It can be seen that
the performance of the PD inertia control was significantly affected by measurement
noise, which caused the system frequency fluctuation from 50 to 49.82 Hz with obvious
glitches. When the control method was the proposed data-driven inertia control, the system
frequency drop was relatively improved compared with PD inertia control, and it was
decreased from 50 to 49.85 Hz with slightly smaller glitches. After the data-driven virtual
inertia control method was adopted, the lowest point of frequency drop was only 0.02 Hz
lower than the case without noise signal.
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Figure 8. Simulation results of power system when frequency decreased with measurement noise.
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Figure 8b shows the comparison of DFIG output active power under different control
methods in the presence of noise and system frequency decreases. When the system had
measurement noise, the inertial response speed and active power output of PD inertia
control appeared to be weakened.

Figure 8c shows the comparison of DFIG rotor speed under different control methods
in the presence of noise and system frequency decreases.

Simulation results showed that when system frequency decreased with measurement
noise, compared with the traditional PD inertia control, the proposed data-driven inertia
control method can provide effective inertia support to the power grid in the presence
of measurement noise. Moreover, the rotational speed of wind turbine and active power
output were merely affected by measurement noise.

5. Conclusions

This paper presents a novel data-driven virtual inertia emulation method to provide
the transient inertia supports for power grid in the presence of frequency events. In this
proposed inertia controller, a data-driven state observer based on the Markov parameters
of the system was established. Then, the optimal controller of the inertia emulation
system through the closed solution of the differential Riccati equation with self-correction
capability was developed. Compared with traditional inertia emulation methods, the
proposed method is able to adaptively adjust the active power output of DFIG through the
real-time input and output data of the system. Moreover, the developed controller has good
robustness, allowing it to reject the effects of measurement noise. The simulation results
show that the proposed data-driven inertia emulation method can effectively provide
the transient inertia support for power grid under different operation conditions, which
further contributes to the stability and security of the power grid in the presence of
frequency events.
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