Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,381)

Search Parameters:
Keywords = industry maturity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4268 KiB  
Review
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches
by Alessandro Calogero Scalia and Ziba Najmi
Antibiotics 2025, 14(8), 802; https://doi.org/10.3390/antibiotics14080802 - 6 Aug 2025
Abstract
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms [...] Read more.
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms contribute to water contamination, pipeline corrosion, and biofouling. Clinically, biofilm-associated infections are responsible for approximately 80% of all microbial infections, including endocarditis, osteomyelitis, cystic fibrosis, and chronic sinusitis. A particularly critical concern is their colonization of medical devices, where biofilms can lead to chronic infections, implant failure, and increased mortality. Implantable devices, such as orthopedic implants, cardiac pacemakers, cochlear implants, urinary catheters, and hernia meshes, are highly susceptible to microbial attachment and biofilm development. These infections are often recalcitrant to conventional antibiotics and frequently necessitate surgical revision. In the United States, over 500,000 biofilm-related implant infections occur annually, with prosthetic joint infections alone projected to incur revision surgery costs exceeding USD 500 million per year—a figure expected to rise to USD 1.62 billion by 2030. To address these challenges, surface modification of medical devices has emerged as a promising strategy to prevent bacterial adhesion and biofilm formation. This review focuses on recent advances in chemical surface functionalization using non-antibiotic agents, such as enzymes, chelating agents, quorum sensing quenching factors, biosurfactants, oxidizing compounds and nanoparticles, designed to enhance antifouling and mature biofilm eradication properties. These approaches aim not only to prevent device-associated infections but also to reduce dependence on antibiotics and mitigate the development of antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial and Antibiofilm Properties of Biomaterial)
Show Figures

Graphical abstract

22 pages, 322 KiB  
Article
The Impact of Green Finance on Energy Transition Under Climate Change
by Zhengwei Ma and Xiangli Jiang
Sustainability 2025, 17(15), 7112; https://doi.org/10.3390/su17157112 - 6 Aug 2025
Abstract
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure [...] Read more.
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure and the upgrading of energy efficiency, this study investigates the impact and mechanisms of green finance on energy transition across 30 provinces (municipalities and autonomous regions) in China, with the exception of Tibet. In addition, the impact of climate change is incorporated into the analytical framework. Empirical results demonstrate that green finance development significantly accelerates energy transition, a conclusion robust to rigorous validation. Analysis of the mechanism shows that green finance promotes energy transition through the facilitation of technological innovation and the upgrade of industrial structures. Moreover, empirical evidence reveals that climate change undermines the promotional influence of sustainable finance on energy system transformation. The magnitude of this suppression varies nonlinearly across provincial jurisdictions with differing energy transition progress. Regional heterogeneity analyses further uncover marked discrepancies in climate–finance interactions, demonstrating amplified effects in coastal economic hubs, underdeveloped western provinces, and regions with mature eco-financial markets. According to these findings, actionable policy suggestions are put forward to strengthen green finance and accelerate energy transition. Full article
(This article belongs to the Special Issue Analysis of Energy Systems from the Perspective of Sustainability)
27 pages, 4690 KiB  
Article
Research and Development of Test Automation Maturity Model Building and Assessment Methods for E2E Testing
by Daiju Kato, Ayane Mogi, Hiroshi Ishikawa and Yasufumi Takama
Software 2025, 4(3), 19; https://doi.org/10.3390/software4030019 - 5 Aug 2025
Abstract
Background: While several test-automation maturity models (e.g., CMMI, TMMi, TAIM) exist, none explicitly integrate ISO 9001-based quality management systems (QMS), leaving a gap for organizations that must align E2E test automation with formal quality assurance. Objective: This study proposes a test-automation maturity model [...] Read more.
Background: While several test-automation maturity models (e.g., CMMI, TMMi, TAIM) exist, none explicitly integrate ISO 9001-based quality management systems (QMS), leaving a gap for organizations that must align E2E test automation with formal quality assurance. Objective: This study proposes a test-automation maturity model (TAMM) that bridges E2E automation capability with ISO 9001/ISO 9004 self-assessment principles, and evaluates its reliability and practical impact in industry. Methods: TAMM comprises eight maturity dimensions, 39 requirements, and 429 checklist items. Three independent assessors applied the checklist to three software teams; inter-rater reliability was ensured via consensus review (Cohen’s κ = 0.75). Short-term remediation actions based on the checklist were implemented over six months and re-assessed. Synergy with the organization’s ISO 9001 QMS was analyzed using ISO 9004 self-check scores. Results: Within 6 months of remediation, mean TAMM score rose from 2.75 → 2.85. Inter-rater reliability is filled with Cohen’s κ = 0.75. Conclusions: The proposed TAMM delivers measurable, short-term maturity gains and complements ISO 9001-based QMS without introducing conflicting processes. Practitioners can use the checklist to identify actionable gaps, prioritize remediation, and quantify progress, while researchers may extend TAMM to other domains or automate scoring via repository mining. Full article
(This article belongs to the Special Issue Software Reliability, Security and Quality Assurance)
Show Figures

Figure 1

15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 (registering DOI) - 5 Aug 2025
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

24 pages, 4384 KiB  
Article
Untargeted Metabolomic Identifies Potential Seasonal Biomarkers of Semen Quality in Duroc Boars
by Notsile H. Dlamini, Serge L. Kameni and Jean M. Feugang
Biology 2025, 14(8), 995; https://doi.org/10.3390/biology14080995 (registering DOI) - 4 Aug 2025
Abstract
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) [...] Read more.
High semen quality is vital for reproductive success in the swine industry; however, seasonal fluctuations often compromise this quality. The molecular mechanism underlying these seasonal effects on semen quality remains largely unclear. This study employed untargeted metabolomic profiling of boar seminal plasma (SP) to identify metabolites and metabolic pathways associated with semen quality during the summer and winter months. Semen samples were collected from mature Duroc boars at a commercial boar stud and classified as Passed or Failed based on motility and morphology. SP from five samples per group was analyzed using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). In total, 373 metabolites were detected in positive ion mode and 478 in negative ion mode. Several differentially expressed metabolites (DEMs) were identified, including ergothioneine, indole-3-methyl acetate, and avocadyne in the summer, as well as LysoPC, dopamine, and betaine in the winter. These metabolites are associated with key sperm functions, including energy metabolism, antioxidant defense, and capacitation. KEGG pathway analysis indicated enrichment in starch and sucrose metabolism, pyrimidine metabolism, and amino acid metabolism across the seasons. Overall, the results reveal that SP metabolomic profiles vary with the season, thereby influencing semen quality. The identified metabolites may serve as potential biomarkers for assessing semen quality and enhancing reproductive efficiency in swine production. Full article
(This article belongs to the Special Issue Reproductive Physiology and Pathology in Livestock)
Show Figures

Figure 1

22 pages, 5939 KiB  
Article
Single-Nucleus Transcriptome Sequencing Unravels Physiological Differences in Holstein Cows Under Different Physiological States
by Peipei Li, Yaqiang Guo, Yanchun Bao, Caixia Shi, Lin Zhu, Mingjuan Gu, Risu Na and Wenguang Zhang
Genes 2025, 16(8), 931; https://doi.org/10.3390/genes16080931 (registering DOI) - 3 Aug 2025
Viewed by 88
Abstract
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk [...] Read more.
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk yield and excellent milk quality. However, their reproductive efficiency is comprehensively influenced by a variety of complex factors, and improving their reproductive performance faces numerous challenges. The ovary, as the core organ of the female reproductive system, plays a decisive role in embryonic development and pregnancy maintenance. It is not only the site where eggs are produced and developed but it also regulates the cow’s estrous cycle, ovulation process, and the establishment and maintenance of pregnancy by secreting various hormones. The normal functioning of the ovary is crucial for the smooth development of the embryo and the successful maintenance of pregnancy. Methods: Currently, traditional sequencing technologies have obvious limitations in deciphering ovarian function and reproductive regulatory mechanisms. To overcome the bottlenecks of traditional sequencing technologies, this study selected Holstein cows as the research subjects. Ovarian samples were collected from one pregnant and one non-pregnant Holstein cow, and single-nucleus transcriptome sequencing technology was used to conduct an in-depth study on the ovarian cells of Holstein cows. Results: By constructing a cell type-specific molecular atlas of the ovaries, nine different cell types were successfully identified. This study compared the proportions of ovarian cell types under different physiological states and found that the proportion of endothelial cells decreased during pregnancy, while the proportions of granulosa cells and luteal cells increased significantly. In terms of functional enrichment analysis, oocytes during both pregnancy and non-pregnancy play roles in the “cell cycle” and “homologous recombination” pathways. However, non-pregnant oocytes are also involved in the “progesterone-mediated oocyte maturation” pathway. Luteal cells during pregnancy mainly function in the “cortisol synthesis and secretion” and “ovarian steroidogenesis” pathways; non-pregnant luteal cells are mainly enriched in pathway processes such as the “AMPK signaling pathway”, “pyrimidine metabolism”, and “nucleotide metabolism”. Cell communication analysis reveals that there are 51 signaling pathways involved in the pregnant ovary, with endothelial cells, granulosa cells, and luteal cells serving as the core communication hubs. In the non-pregnant ovary, there are 48 pathways, and the interaction between endothelial cells and stromal cells is the dominant mode. Conclusions: This study provides new insights into the regulatory mechanisms of reproductive efficiency in Holstein cows. The differences in the proportions of ovarian cell types, functional pathways, and cell communication patterns under different physiological states, especially the increase in the proportions of granulosa cells and luteal cells during pregnancy and the specificity of related functional pathways, indicate that these cells play a crucial role in the reproductive process of cows. These findings also highlight the importance of ovarian cells in pathways such as “cell cycle”, “homologous recombination”, and “progesterone-mediated oocyte maturation”, as well as the cell communication mechanisms in regulating ovarian function and reproductive performance. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 229
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

22 pages, 29737 KiB  
Article
A Comparative Investigation of CFD Approaches for Oil–Air Two-Phase Flow in High-Speed Lubricated Rolling Bearings
by Ruifeng Zhao, Pengfei Zhou, Jianfeng Zhong, Duan Yang and Jie Ling
Machines 2025, 13(8), 678; https://doi.org/10.3390/machines13080678 - 1 Aug 2025
Viewed by 125
Abstract
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is [...] Read more.
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is a lack of comparative studies employing different simulation strategies to address this issue, leaving a gap in evidence-based guidance for selecting appropriate simulation approaches in practical applications. This study begins with a comparative analysis between experimental and simulation results to validate the reliability of the adopted simulation approach. Subsequently, a comparative evaluation of different simulation methods is conducted to provide a scientific basis for relevant decision-making. Evaluated from three dimensions—adaptability to rotational speed conditions, research focuses (oil distribution and power loss), and computational economy—the findings reveal that FVM excels at medium-to-high speeds, accurately predicting continuous oil film distribution and power loss, while MPS, leveraging its meshless Lagrangian characteristics, demonstrates superior capability in describing physical phenomena under extreme conditions, albeit with higher computational costs. Economically, FVM, supported by mature software ecosystems and parallel computing optimization, is more suitable for industrial design applications, whereas MPS, being more reliant on high-performance hardware, is better suited for academic research and customized scenarios. The study further proposes that future research could adopt an FVM-MPS coupled approach to balance efficiency and precision, offering a new paradigm for multi-scale lubrication analysis in bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

20 pages, 5647 KiB  
Article
Research on the Improved ICP Algorithm for LiDAR Point Cloud Registration
by Honglei Yuan, Guangyun Li, Li Wang and Xiangfei Li
Sensors 2025, 25(15), 4748; https://doi.org/10.3390/s25154748 - 1 Aug 2025
Viewed by 229
Abstract
Over three decades of research has been undertaken on point cloud registration algorithms, resulting in mature theoretical frameworks and methodologies. However, among the numerous registration techniques used, the impact of point cloud scanning quality on registration outcomes has rarely been addressed. In most [...] Read more.
Over three decades of research has been undertaken on point cloud registration algorithms, resulting in mature theoretical frameworks and methodologies. However, among the numerous registration techniques used, the impact of point cloud scanning quality on registration outcomes has rarely been addressed. In most engineering and industrial measurement applications, the accuracy and density of LiDAR point clouds are highly dependent on laser scanners, leading to significant variability that critically affects registration quality. Key factors influencing point cloud accuracy include scanning distance, incidence angle, and the surface characteristics of the target. Notably, in short-range scanning scenarios, incidence angle emerges as the dominant error source. Building on this insight, this study systematically investigates the relationship between scanning incidence angles and point cloud quality. We propose an incident-angle-dependent weighting function for point cloud observations, and further develop an improved weighted Iterative Closest Point (ICP) registration algorithm. Experimental results demonstrate that the proposed method achieves approximately 30% higher registration accuracy compared to traditional ICP algorithms and a 10% improvement over Faro SCENE’s proprietary solution. Full article
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 (registering DOI) - 31 Jul 2025
Viewed by 201
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

36 pages, 1411 KiB  
Review
A Critical Analysis and Roadmap for the Development of Industry 4-Oriented Facilities for Education, Training, and Research in Academia
by Ziyue Jin, Romeo M. Marian and Javaan S. Chahl
Appl. Syst. Innov. 2025, 8(4), 106; https://doi.org/10.3390/asi8040106 - 29 Jul 2025
Viewed by 522
Abstract
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand [...] Read more.
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand the key features, constraints, and opportunities. This paper presents a systematic literature review of 145 peer-reviewed studies published between 2011 and 2023, which are identified across Scopus, SpringerLink, and Web of Science. As a result, we emphasise the significance of developing Industry 4 learning facilities in academia and outline the main design principles of the Industry 4 ecosystems. We also investigate and discuss the key Industry 4-related technologies that have been extensively used and represented in the reviewed literature, and summarise the challenges and roadblocks that current participants are facing. From these insights, we identify research gaps, outline technology mapping and maturity level, and propose a strategic roadmap for future implementation of Industry 4 facilities. The results of the research are expected to support current and future participants in increasing their awareness of the significance of the development, clarifying the research scope and objectives, and preparing them to deal with inherent complexity and skills issues. Full article
Show Figures

Figure 1

18 pages, 4648 KiB  
Article
Wood- and Steel-Based Offsite Construction Solutions for Sustainable Building Renovation: Assessing the European and Italian Contexts
by Graziano Salvalai, Francesca Gadusso and Miriam Benedetti
Sustainability 2025, 17(15), 6799; https://doi.org/10.3390/su17156799 - 26 Jul 2025
Viewed by 473
Abstract
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with [...] Read more.
Offsite construction (OSC) offers a promising alternative for accelerating refurbishment projects across Italy and Europe. However, its adoption remains limited due to technical, regulatory, and cultural barriers. This study, conducted as part of the OFFICIO project, maps the current European OSC landscape, with a focus on wood and light-steel technologies for sustainable building refurbishment. Combining a literature review, analysis of funded projects, and market data for 541 OSC products, the study develops tailored KPIs to assess these products’ technical maturity, prefabrication level, and environmental integration. The results reveal that wood-based OSC, although less widespread, is more mature and centered on the use of multi-layer panels, while steel-based systems, though more prevalent, remain largely tied to semi-offsite construction, indicating untapped development potential. Research efforts, especially concentrated in Mediterranean regions, focus on technological integration of renewable energy systems. A significant literature gap was identified in information concerning panel-to-wall connection, critical for renovation, limiting OSC’s adaptability to regeneration of existing buildings. The findings highlight the need for cross-sector collaboration, legislative clarity, and better alignment of public procurement standards with OSC characteristics. Addressing these issues is essential to bridge the gap between research prototypes and industrial adoption and accelerate the sustainable transformation of Europe’s construction sector to help meet climate neutrality targets. Full article
Show Figures

Figure 1

16 pages, 1206 KiB  
Article
Footprint of Domestic Processing on Safety and Functional Properties of Italian Black Garlic
by Davide Addazii, Chiara Cevoli, Flavia Casciano, Federico Ferioli, Tullia Gallina Toschi, Andrea Gianotti and Lorenzo Nissen
Foods 2025, 14(15), 2595; https://doi.org/10.3390/foods14152595 - 24 Jul 2025
Viewed by 252
Abstract
Garlic (Allium sativum L.) is extensively recognized for its health-promoting effects and functional attributes, including antibacterial and anti-inflammatory activities. Additionally, the derived product of the industrial maturation process, known as black garlic, is famous for its functional properties. The novelty of the [...] Read more.
Garlic (Allium sativum L.) is extensively recognized for its health-promoting effects and functional attributes, including antibacterial and anti-inflammatory activities. Additionally, the derived product of the industrial maturation process, known as black garlic, is famous for its functional properties. The novelty of the present work is to characterize the functional properties of domestically produced black garlic. In fact, this study examines the domestic maturation of fresh garlic bulbs into black garlic of two Italian varieties, focusing on microbial growth, antimicrobial properties, prebiotic activity, volatile organic compounds, mechanical resistance, brown intensity, pH, and Aw. Results show that domestic processes are microbiologically and chemically safe and generate black garlic products with functional attributes such as prebiotic activity and the presence of health-related bioactive compounds, also developing superior technological performance. These findings enhance the understanding of black garlic culinary practices, leveraging gastronomic preparations for the development of healthier and safer food products. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

31 pages, 1342 KiB  
Review
The Role of Artificial Intelligence in Customer Engagement and Social Media Marketing—Implications from a Systematic Review for the Tourism and Hospitality Sectors
by Katarzyna Żyminkowska and Edyta Zachurzok-Srebrny
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 184; https://doi.org/10.3390/jtaer20030184 - 23 Jul 2025
Viewed by 849
Abstract
The adoption of artificial intelligence (AI) in marketing and social media is gaining scholarly interest. While AI technologies offer significant potential for enhancing customer engagement (CE), their effectiveness depends on an industry’s level of digital and AI readiness. This is especially relevant for [...] Read more.
The adoption of artificial intelligence (AI) in marketing and social media is gaining scholarly interest. While AI technologies offer significant potential for enhancing customer engagement (CE), their effectiveness depends on an industry’s level of digital and AI readiness. This is especially relevant for people-centric sectors such as tourism and hospitality, where digital maturity remains relatively low. This study aims to understand how AI supports CE and social media marketing (SMM), and to identify the key antecedents and consequences of its use. Using the PRISMA approach, we conduct a systematic review of 55 peer-reviewed empirical studies on AI-based CE and SMM. Our analysis identifies the main contributing theories and AI technologies in the field, and uncovers four central themes: (1) AI in customer service and user experience design, (2) AI-based customer relationships with brands, (3) AI-driven development of customer trust, and (4) cultural differences and varying levels of AI readiness. We also develop a conceptual framework that outlines the determinants and outcomes of AI-based CE, including relevant moderators and mediators. The study concludes with directions for future research and provides theoretical and managerial implications, particularly for the tourism and hospitality industries. Full article
(This article belongs to the Section Digital Marketing and the Connected Consumer)
Show Figures

Figure 1

Back to TopTop