Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,231)

Search Parameters:
Keywords = industrialization issues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 22926 KiB  
Article
Comparative Study to Evaluate Mixing Efficiency of Very Fine Particles
by Sung Je Lee and Se-Yun Hwang
Appl. Sci. 2025, 15(15), 8712; https://doi.org/10.3390/app15158712 (registering DOI) - 6 Aug 2025
Abstract
This study evaluates the applicability and accuracy of coarse-grain modeling (CGM) in discrete-element method (DEM)–based simulations, focusing on particle-mixing efficiency in five representative industrial mixers: the tumbling V mixer, ribbon-blade mixer, paddle-blade mixer, vertical-blade mixer, and conical-screw mixer. Although the DEM is widely [...] Read more.
This study evaluates the applicability and accuracy of coarse-grain modeling (CGM) in discrete-element method (DEM)–based simulations, focusing on particle-mixing efficiency in five representative industrial mixers: the tumbling V mixer, ribbon-blade mixer, paddle-blade mixer, vertical-blade mixer, and conical-screw mixer. Although the DEM is widely employed for particulate system simulations, the high computational cost associated with fine particles significantly hinders large-scale applications. CGM addresses these issues by scaling up particle sizes, thereby reducing particle counts and allowing longer simulation timesteps. We utilized the Lacey mixing index (LMI) as a statistical measure to quantitatively assess mixing uniformity across various CGM scaling factors. Based on the results, CGM significantly reduced computational time (by over 90% in certain cases) while preserving acceptable accuracy levels in terms of LMI values. The mixing behaviors remained consistent under various CGM conditions, based on both visually inspected particle distributions and the temporal LMI trends. Although minor deviations occurred in early-stage mixing, these discrepancies diminished with time, with the final LMI errors remaining below 5% in most scenarios. These findings indicate that CGM effectively enhances computational efficiency in DEM simulations without significantly compromising physical accuracy. This research provides practical guidelines for optimizing industrial-scale particle-mixing processes and conducting computationally feasible, scalable, and reliable DEM simulations. Full article
32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

30 pages, 2099 KiB  
Article
SABE-YOLO: Structure-Aware and Boundary-Enhanced YOLO for Weld Seam Instance Segmentation
by Rui Wen, Wu Xie, Yong Fan and Lanlan Shen
J. Imaging 2025, 11(8), 262; https://doi.org/10.3390/jimaging11080262 - 6 Aug 2025
Abstract
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, [...] Read more.
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, existing approaches still face significant challenges in boundary perception and structural representation. Due to the inherently elongated shapes, complex geometries, and blurred edges of weld seams, current segmentation models often struggle to maintain high accuracy in practical applications. To address this issue, a novel structure-aware and boundary-enhanced YOLO (SABE-YOLO) is proposed for weld seam instance segmentation. First, a Structure-Aware Fusion Module (SAFM) is designed to enhance structural feature representation through strip pooling attention and element-wise multiplicative fusion, targeting the difficulty in extracting elongated and complex features. Second, a C2f-based Boundary-Enhanced Aggregation Module (C2f-BEAM) is constructed to improve edge feature sensitivity by integrating multi-scale boundary detail extraction, feature aggregation, and attention mechanisms. Finally, the inner minimum point distance-based intersection over union (Inner-MPDIoU) is introduced to improve localization accuracy for weld seam regions. Experimental results on the self-built weld seam image dataset show that SABE-YOLO outperforms YOLOv8n-Seg by 3 percentage points in the AP(50–95) metric, reaching 46.3%. Meanwhile, it maintains a low computational cost (18.3 GFLOPs) and a small number of parameters (6.6M), while achieving an inference speed of 127 FPS, demonstrating a favorable trade-off between segmentation accuracy and computational efficiency. The proposed method provides an effective solution for high-precision visual perception of complex weld seam structures and demonstrates strong potential for industrial application. Full article
(This article belongs to the Section Image and Video Processing)
19 pages, 1584 KiB  
Article
The Development of a Predictive Maintenance System for Gearboxes Through a Statistical Diagnostic Analysis of Lubricating Oil and Artificial Intelligence
by Diego Rigolli, Lorenzo Pompei, Massimo Manfredini, Massimiliano Vignoli, Vincenzo La Battaglia and Alessandro Giorgetti
Machines 2025, 13(8), 693; https://doi.org/10.3390/machines13080693 - 6 Aug 2025
Abstract
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, [...] Read more.
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, characterized by long analysis times and a marked dependence on the subjective interpretation of operators. The method includes a detailed statistical analysis of the common ways to assess the condition of lubricants, such as optical emission spectroscopy, particle counting, measuring viscosity and density, and Fourier-transform infrared spectroscopy (FT-IR). These methods are then combined with an artificial intelligence model. Tested on commercial gearbox data, the proposed approach demonstrates agreement between IA and expert evaluation. The application has shown that it can effectively support diagnoses, reduce processing time by 60%, and minimize human errors. It also improves knowledge sharing through an increase in the stability and repetitiveness of diagnoses and promotes consistency and clarity in reporting. Full article
Show Figures

Figure 1

21 pages, 5215 KiB  
Article
A Cyber-Physical Integrated Framework for Developing Smart Operations in Robotic Applications
by Tien-Lun Liu, Po-Chun Chen, Yi-Hsiang Chao and Kuan-Chun Huang
Electronics 2025, 14(15), 3130; https://doi.org/10.3390/electronics14153130 - 6 Aug 2025
Abstract
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues [...] Read more.
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues of intelligent robots with cognitive and coordination capability by introducing cyber-physical integration technology. The authors propose a system architecture with open-source software and low-cost hardware based on the 5C hierarchy and then conduct experiments to verify the proposed framework. These experiments involve the collection of real-time data using a depth camera, object detection to recognize obstacles, simulation of collision avoidance for a robotic arm, and cyber-physical integration to perform a robotic task. The proposed framework realizes the scheme of the 5C architecture of Industry 4.0 and establishes a digital twin in cyberspace. By utilizing connection, conversion, calculation, simulation, verification, and operation, the robotic arm is capable of making independent judgments and appropriate decisions to successfully complete the assigned task, thereby verifying the proposed framework. Such a cyber-physical integration system is characterized by low cost but good effectiveness. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

24 pages, 1671 KiB  
Article
Sustainability in Purpose-Driven Businesses Operating in Cultural and Creative Industries: Insights from Consumers’ Perspectives on Società Benefit
by Gesualda Iodice and Francesco Bifulco
Sustainability 2025, 17(15), 7117; https://doi.org/10.3390/su17157117 - 6 Aug 2025
Abstract
This study intends to provide insights and challenges for the shape of the B movement, an emerging paradigm that fosters cross-sectoral partnerships and encourages ethical business practices through so-called purpose-driven businesses. Focusing on Italy, the first European country to adopt this managerial model, [...] Read more.
This study intends to provide insights and challenges for the shape of the B movement, an emerging paradigm that fosters cross-sectoral partnerships and encourages ethical business practices through so-called purpose-driven businesses. Focusing on Italy, the first European country to adopt this managerial model, the research investigates Italian Benefit Corporations, known as Società Benefit (SB), and their most appealing sustainability claims from a consumer perspective. The analysis intends to inform theory development by assuming the cultural and creative industry (CCI) as a field of interest, utilizing a within-subjects experimental design to analyze data from a diverse consumer sample across various contexts. The results indicate that messaging centered on economic sustainability emerged as the most effective in generating positive consumer responses, highlighting a prevailing inclination toward pragmatic factors such as affordability, economic accessibility, and tangible benefits rather than social issues. While sustainable behaviors are not yet widespread, latent ethical sensitivity for authentic, value-driven businesses suggests that economic and ethical dimensions can be strategically synthesized to enhance consumer engagement. This insight highlights the role of BCs in catalyzing a shift in consumption patterns within ethical-based and creative-driven sectors. Full article
Show Figures

Figure 1

22 pages, 322 KiB  
Article
The Impact of Green Finance on Energy Transition Under Climate Change
by Zhengwei Ma and Xiangli Jiang
Sustainability 2025, 17(15), 7112; https://doi.org/10.3390/su17157112 - 6 Aug 2025
Abstract
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure [...] Read more.
In recent years, growing concerns over environmental degradation and deepening awareness of the necessity of sustainable development have propelled green and low-carbon energy transition into a focal issue for both academia and policymakers. By decomposing energy transition into the transformation of energy structure and the upgrading of energy efficiency, this study investigates the impact and mechanisms of green finance on energy transition across 30 provinces (municipalities and autonomous regions) in China, with the exception of Tibet. In addition, the impact of climate change is incorporated into the analytical framework. Empirical results demonstrate that green finance development significantly accelerates energy transition, a conclusion robust to rigorous validation. Analysis of the mechanism shows that green finance promotes energy transition through the facilitation of technological innovation and the upgrade of industrial structures. Moreover, empirical evidence reveals that climate change undermines the promotional influence of sustainable finance on energy system transformation. The magnitude of this suppression varies nonlinearly across provincial jurisdictions with differing energy transition progress. Regional heterogeneity analyses further uncover marked discrepancies in climate–finance interactions, demonstrating amplified effects in coastal economic hubs, underdeveloped western provinces, and regions with mature eco-financial markets. According to these findings, actionable policy suggestions are put forward to strengthen green finance and accelerate energy transition. Full article
(This article belongs to the Special Issue Analysis of Energy Systems from the Perspective of Sustainability)
18 pages, 8252 KiB  
Article
Probing Augmented Intelligent Human–Robot Collaborative Assembly Methods Toward Industry 5.0
by Qingwei Nie, Yiping Shen, Ye Ma, Shuqi Zhang, Lujie Zong, Ze Zheng, Yunbo Zhangwa and Yu Chen
Electronics 2025, 14(15), 3125; https://doi.org/10.3390/electronics14153125 - 5 Aug 2025
Abstract
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge [...] Read more.
Facing the demands of Human–Robot Collaborative (HRC) assembly for complex products under Industry 5.0, this paper proposes an intelligent assembly method that integrates Large Language Model (LLM) reasoning with Augmented Reality (AR) interaction. To address issues such as poor visibility, difficulty in knowledge acquisition, and strong decision dependency in the assembly of complex aerospace products within confined spaces, an assembly task model and structured process information are constructed. Combined with a retrieval-augmented generation mechanism, the method realizes knowledge reasoning and optimization suggestion generation. An improved ORB-SLAM2 algorithm is applied to achieve virtual–real mapping and component tracking, further supporting the development of an enhanced visual interaction system. The proposed approach is validated through a typical aerospace electronic cabin assembly task, demonstrating significant improvements in assembly efficiency, quality, and human–robot interaction experience, thus providing effective support for intelligent HRC assembly. Full article
(This article belongs to the Special Issue Human–Robot Interaction and Communication Towards Industry 5.0)
Show Figures

Figure 1

35 pages, 3601 KiB  
Article
Carbon Emissions and Influencing Factors in the Areas Along the Belt and Road Initiative in Africa: A Spatial Spillover Perspective
by Suxin Yang and Miguel Ángel Benedicto Solsona
Sustainability 2025, 17(15), 7098; https://doi.org/10.3390/su17157098 - 5 Aug 2025
Abstract
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel [...] Read more.
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel study employs carbon dioxide emission intensity (CEI) and per capita carbon dioxide emissions (PCE) as dual indicators to evaluate the spatial spillover effects of 54 BRI African countries on their neighboring countries’ carbon emissions from 2007 to 2023. It identifies the key factors and mechanisms affecting these spillover effects using the spatial differences-in-differences (SDID) model. Results indicate that since the launch of the BRI, the CEI and PCE of BRI African countries have significantly increased, largely due to trade patterns and industrialization structures. Greater trade openness has further boosted local economic development, thereby increasing carbon dioxide’s spatial spillover. Government management and corruption control levels show some heterogeneity in the spillover effects, which may be attributed to long-standing issues of weak institutional enforcement in Africa. Overall, this study reveals the complex relationship between BRI African economic development and environmental outcomes, highlighting the importance of developing sustainable development strategies and establishing strong differentiated regulatory regimes to effectively address environmental challenges. Full article
Show Figures

Figure 1

29 pages, 2636 KiB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

19 pages, 29727 KiB  
Review
A Review of Methods for Increasing the Durability of Hot Forging Tools
by Jan Turek and Jacek Cieślik
Materials 2025, 18(15), 3669; https://doi.org/10.3390/ma18153669 - 4 Aug 2025
Abstract
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die [...] Read more.
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die geometry, tribological conditions, and lubrication. The review is based on extensive literature data, including recent publications and the authors’ own research, which has been implemented under industrial conditions at the modern forging facility in Forge Plant “Glinik” (Poland). The study introduces original design and technological solutions, such as an innovative concept for manufacturing forging dies from alloy structural steels with welded impressions, replacing traditional hot-work tool steel dies. It also proposes a zonal hardfacing approach, which involves applying welds with different chemical compositions to specific surface zones of the die impressions, selected according to the dominant wear mechanisms in each zone. General guidelines for selecting hardfacing material compositions are also provided. Additionally, the article presents technological processes for die production and regeneration. The importance and application of computer simulations of forging processes are emphasized, particularly in predicting wear mechanisms and intensity, as well as in optimizing tool and forging geometry. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

29 pages, 7945 KiB  
Article
Innovative Data Models: Transforming Material Process Design and Optimization
by Amir M. Horr, Matthias Hartmann and Fabio Haunreiter
Metals 2025, 15(8), 873; https://doi.org/10.3390/met15080873 (registering DOI) - 4 Aug 2025
Abstract
As the use of data models and data science techniques in industrial processes grows exponentially, the question arises: to what extent can these techniques impact the future of manufacturing processes? This article examines the potential future impacts of these models based on an [...] Read more.
As the use of data models and data science techniques in industrial processes grows exponentially, the question arises: to what extent can these techniques impact the future of manufacturing processes? This article examines the potential future impacts of these models based on an assessment of existing trends and practices. The drive towards digital-oriented manufacturing and cyber-based process optimization and control has brought many opportunities and challenges. On one hand, issues of data acquisition, handling, and quality for proper database building have become important subjects. On the other hand, the reliable utilization of this available data for optimization and control has inspired much research. This research work discusses the fundamental question of how far these models can help design and/or improve existing processes, highlighting their limitations and challenges. Furthermore, it reviews state-of-the-art practices and their successes and failures in material process applications, including casting, extrusion, and additive manufacturing (AM), and presents some quantitative indications. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 (registering DOI) - 4 Aug 2025
Viewed by 37
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

20 pages, 4209 KiB  
Article
Evaluation of Maximum Torque per Ampere Control Method for Interior Permanent Magnet Machine Drives on dSpace with Emphasis on Potential Practical Issues for High Energy Efficiency
by Osman Emre Özçiflikçi, Mikail Koç and Serkan Bahçeci
Energies 2025, 18(15), 4118; https://doi.org/10.3390/en18154118 - 3 Aug 2025
Viewed by 102
Abstract
Interior-mounted permanent magnet (IPM) machines have been widely used in recent years due to their high efficiency, high torque/power densities, and so on. These machines can produce reluctance torque whereas their surface-mounted (SPM) counterparts cannot. Hence, IPMs are attractive in industrial applications that [...] Read more.
Interior-mounted permanent magnet (IPM) machines have been widely used in recent years due to their high efficiency, high torque/power densities, and so on. These machines can produce reluctance torque whereas their surface-mounted (SPM) counterparts cannot. Hence, IPMs are attractive in industrial applications that require high torque density. Id=0 control is commonly adopted to drive permanent magnet (PM) machines, and the strategy is attractive due to its simplicity. However, although it is suitable for SPMs, adopting it in IPMs sacrifices the reluctance torque that can be obtained from the machine. Hence, it is vital to control IPMs using the maximum torque per ampere (MTPA) strategy. This paper adopts the MTPA strategy for a 4.1 kW prototype IPM machine. Test system configuration is discussed step by step by paying particular attention to potential practical issues and inspirational discussions on their solutions. The issues associated with misaligned rotor positions or whistling problems pertinent to inappropriate power conversion strategies are addressed to overcome such issues in practical IPM drives. Comprehensive discussions and extensive comparisons of well-matched simulation and experimental results of both Id=0- and MTPA-controlled drives at different evaluation metrics will be quite insightful to achieve efficiency-optimized IPM drives. Full article
(This article belongs to the Special Issue Advances in Control Strategies of Permanent Magnet Motor Drive)
Show Figures

Figure 1

11 pages, 3181 KiB  
Article
Development of a Three-Dimensional Nanostructure SnO2-Based Gas Sensor for Room-Temperature Hydrogen Detection
by Zhilong Song, Yi Tian, Yue Kang and Jia Yan
Sensors 2025, 25(15), 4784; https://doi.org/10.3390/s25154784 - 3 Aug 2025
Viewed by 143
Abstract
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H [...] Read more.
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H2 gas, which presents significant challenges for their performance and application. This study addresses these issues by introducing a novel SnO2-based sensor featuring a three-dimensional (3D) nanostructure, designed to enhance sensitivity and allow for room-temperature operation. This work lies in the use of a 3D anodic aluminum oxide (AAO) template to deposit SnO2 nanoparticles through ultrasonic spray pyrolysis, followed by modification with platinum (Pt) nanoparticles to further enhance the sensor’s response. The as-prepared sensors were extensively characterized, and their H2 sensing performance was evaluated. The results show that the 3D nanostructure provides a uniform and dense distribution of SnO2 nanoparticles, which significantly improves the sensor’s sensitivity and repeatability, especially in H2 detection at room temperature. This work demonstrates the potential of utilizing 3D nanostructures to overcome the traditional limitations of SnO2-based sensors. Full article
Show Figures

Figure 1

Back to TopTop