Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,466)

Search Parameters:
Keywords = industrial revolution 5.0

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 663 KiB  
Systematic Review
IoT Devices and Their Impact on Learning: A Systematic Review of Technological and Educational Affordances
by Dimitris Tsipianitis, Anastasia Misirli, Konstantinos Lavidas and Vassilis Komis
IoT 2025, 6(3), 45; https://doi.org/10.3390/iot6030045 (registering DOI) - 7 Aug 2025
Abstract
A principal factor of the fourth Industrial Revolution is the Internet of Things (IoT), a network of “smart” objects that communicate by exchanging helpful information about themselves and their environment. Our research aims to address the gaps in the existing literature regarding the [...] Read more.
A principal factor of the fourth Industrial Revolution is the Internet of Things (IoT), a network of “smart” objects that communicate by exchanging helpful information about themselves and their environment. Our research aims to address the gaps in the existing literature regarding the educational and technological affordances of IoT applications in learning environments in secondary education. Our systematic review using the PRISMA method allowed us to extract 25 empirical studies from the last 10 years. We present the categorization of educational and technological affordances, as well as the devices used in these environments. Moreover, our findings indicate widespread adoption of organized educational activities and design-based learning, often incorporating tangible interfaces, smart objects, and IoT applications, which enhance student engagement and interaction. Additionally, we identify the impact of IoT-based learning on knowledge building, autonomous learning, student attitude, and motivation. The results suggest that the IoT can facilitate personalized and experiential learning, fostering a more immersive and adaptive educational experience. Based on these findings, we discuss key recommendations for educators, policymakers, and researchers, while also addressing this study’s limitations and potential directions for future research. Full article
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 285
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

28 pages, 3057 KiB  
Article
Exploring the Role of Energy Consumption Structure and Digital Transformation in Urban Logistics Carbon Emission Efficiency
by Yanfeng Guan, Junding Yang, Rong Wang, Ling Zhang and Mingcheng Wang
Atmosphere 2025, 16(8), 929; https://doi.org/10.3390/atmos16080929 (registering DOI) - 31 Jul 2025
Viewed by 224
Abstract
As the climate problem is getting more and more serious and the “low-carbon revolution” of globalization is emerging, the logistics industry, as a high-end service industry, must also take the road of low-carbon development. Improving logistics carbon emission efficiency (LCEE) is gradually becoming [...] Read more.
As the climate problem is getting more and more serious and the “low-carbon revolution” of globalization is emerging, the logistics industry, as a high-end service industry, must also take the road of low-carbon development. Improving logistics carbon emission efficiency (LCEE) is gradually becoming an inevitable choice to maintain sustainable social development. The study uses the Super-SBM (Super-Slack-Based Measure) model to evaluate the urban LCEE from 2013 to 2022, explores the contribution of efficiency changes and technological progress to LCEE through the decomposition of the GML (Global Malmquist–Luenberger) index, and reveals the influence of digital transformation and energy consumption structure on LCEE by using the Spatial Durbin Model, concluding as follows: (1) LCEE declines from east to west, with large regional differences. (2) LCEE has steadily increased over the past decade, with slower growth from east to west. It fell in 2020 due to COVID-19 but has since recovered. (3) LCEE shows a catching-up effect among the three major regions, with technological progress being a key driver of improvement. (4) LCEE has significant spatial dependence. Energy consumption structure has a short-term negative spillover effect, while digital transformation has a positive spillover effect. Full article
(This article belongs to the Special Issue Urban Carbon Emissions (2nd Edition))
Show Figures

Figure 1

35 pages, 2713 KiB  
Article
Leveraging the Power of Human Resource Management Practices for Workforce Empowerment in SMEs on the Shop Floor: A Study on Exploring and Resolving Issues in Operations Management
by Varun Tripathi, Deepshi Garg, Gianpaolo Di Bona and Alessandro Silvestri
Sustainability 2025, 17(15), 6928; https://doi.org/10.3390/su17156928 - 30 Jul 2025
Viewed by 300
Abstract
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry [...] Read more.
Operations management personnel emphasize the maintenance of workforce empowerment on the shop floor. This is made possible by implementing effective operations and human resource management practices. However, organizations are adept at controlling the workforce empowerment domain within operational scenarios. In the current industry revolution scenario, industry personnel often face failure due to a laggard mindset in the face of industry revolutions. There are higher possibilities of failure because of standardized operations controlling the shop floor. Organizations utilize well-established human resource concepts, including McClelland’s acquired needs theory, Herzberg’s two-factor theory, and Maslow’s hierarchy of needs, in order to enhance the workforce’s performance on the shop floor. Current SME individuals require fast-paced approaches for tracking the performance and idleness of a workforce in order to control them more efficiently in both flexible and transformational stages. The present study focuses on investigating the parameters and factors that contribute to workforce empowerment in an industrial revolution scenario. The present research is used to develop a framework utilizing operations and human resource management approaches in order to identify and address the issues responsible for deteriorating workforce contributions. The framework includes HRM and operations management practices, including Herzberg’s two-factor theory, Maslow’s theory, and lean and smart approaches. The developed framework contains four phases for achieving desired outcomes on the shop floor. The developed framework is validated by implementing it in a real-life electric vehicle manufacturing organization, where the human resources and operations team were exhausted and looking to resolve employee-related issues instantly and establish a sustainable work environment. The current industry is transforming from Industry 3.0 to Industry 4.0, and seeks future-ready innovations in operations, control, and monitoring of shop floor setups. The operations management and human resource management practices teams reviewed the results over the next three months after the implementation of the developed framework. The results revealed an improvement in workforce empowerment within the existing work environment, as evidenced by reductions in the number of absentees, resignations, transfer requests, and medical issues, by 30.35%, 94.44%, 95.65%, and 93.33%, respectively. A few studies have been conducted on workforce empowerment by controlling shop floor scenarios through modifications in operations and human resource management strategies. The results of this study can be used to fulfil manufacturers’ needs within confined constraints and provide guidelines for efficiently controlling workforce performance on the shop floor. Constraints refer to barriers that have been decided, including production time, working time, asset availability, resource availability, and organizational policy. The study proposes a decision-making plan for enhancing shop floor performance by providing suitable guidelines and an action plan, taking into account both workforce and operational performance. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

36 pages, 1411 KiB  
Review
A Critical Analysis and Roadmap for the Development of Industry 4-Oriented Facilities for Education, Training, and Research in Academia
by Ziyue Jin, Romeo M. Marian and Javaan S. Chahl
Appl. Syst. Innov. 2025, 8(4), 106; https://doi.org/10.3390/asi8040106 - 29 Jul 2025
Viewed by 537
Abstract
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand [...] Read more.
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand the key features, constraints, and opportunities. This paper presents a systematic literature review of 145 peer-reviewed studies published between 2011 and 2023, which are identified across Scopus, SpringerLink, and Web of Science. As a result, we emphasise the significance of developing Industry 4 learning facilities in academia and outline the main design principles of the Industry 4 ecosystems. We also investigate and discuss the key Industry 4-related technologies that have been extensively used and represented in the reviewed literature, and summarise the challenges and roadblocks that current participants are facing. From these insights, we identify research gaps, outline technology mapping and maturity level, and propose a strategic roadmap for future implementation of Industry 4 facilities. The results of the research are expected to support current and future participants in increasing their awareness of the significance of the development, clarifying the research scope and objectives, and preparing them to deal with inherent complexity and skills issues. Full article
Show Figures

Figure 1

26 pages, 3167 KiB  
Article
Global Population, Carrying Capacity, and High-Quality, High-Pressure Processed Foods in the Industrial Revolution Era
by Agata Angelika Sojecka, Aleksandra Drozd-Rzoska and Sylwester J. Rzoska
Sustainability 2025, 17(15), 6827; https://doi.org/10.3390/su17156827 - 27 Jul 2025
Viewed by 259
Abstract
The report examines food availability and demand in the Anthropocene era, exploring the connections between global population growth and carrying capacity through an extended version of Cohen’s Condorcet concept. It recalls the super-Malthus and Verhulst-type scalings, matched with the recently introduced analytic relative [...] Read more.
The report examines food availability and demand in the Anthropocene era, exploring the connections between global population growth and carrying capacity through an extended version of Cohen’s Condorcet concept. It recalls the super-Malthus and Verhulst-type scalings, matched with the recently introduced analytic relative growth rate. It focuses particularly on the ongoing Fifth Industrial Revolution (IR) and its interaction with the concept of a sustainable civilization. In this context, the significance of innovative food preservation technologies that can yield high-quality foods with health-promoting features, while simultaneously increasing food quantities and reducing adverse environmental impacts, is discussed. To achieve this, high-pressure preservation and processing (HPP) can play a dominant role. High-pressure ‘cold pasteurization’, related to room-temperature processing, has already achieved a global scale. Its superior features are notable and are fairly correlated with social expectations of a sustainable society and the technological tasks of the Fifth Industrial Revolution. The discussion is based on the authors’ experiences in HPP-related research and applications. The next breakthrough could be HPP-related sterilization. The innovative HPP path, supported by the colossal barocaloric effect, is presented. The mass implementation of pressure-related sterilization could lead to milestone societal, pro-health, environmental, and economic benefits. Full article
Show Figures

Figure 1

15 pages, 1795 KiB  
Article
Minimum-Energy Trajectory Planning for an Underactuated Serial Planar Manipulator
by Domenico Dona’, Jason Bettega, Iacopo Tamellin, Paolo Boscariol and Roberto Caracciolo
Robotics 2025, 14(7), 98; https://doi.org/10.3390/robotics14070098 - 18 Jul 2025
Viewed by 262
Abstract
Underactuated robotic systems are appealing for industrial use due to their reduced actuator number, which lowers energy consumption and system complexity. Underactuated systems are, however, often affected by residual vibrations. This paper addresses the challenge of generating energy-optimal trajectories while imposing theoretical null [...] Read more.
Underactuated robotic systems are appealing for industrial use due to their reduced actuator number, which lowers energy consumption and system complexity. Underactuated systems are, however, often affected by residual vibrations. This paper addresses the challenge of generating energy-optimal trajectories while imposing theoretical null residual (and yet practical low) vibration in underactuated systems. The trajectory planning problem is cast as a constrained optimal control problem (OCP) for a two-degree-of-freedom revolute–revolute planar manipulator. The proposed method produces energy-efficient motion while limiting residual vibrations under motor torque limitations. Experiments compare the proposed trajectories to input shaping techniques (ZV, ZVD, NZV, NZVD). Results show energy savings that range from 12% to 69% with comparable and negligible residual oscillations. Full article
(This article belongs to the Special Issue Adaptive and Nonlinear Control of Robotics)
Show Figures

Figure 1

14 pages, 1442 KiB  
Proceeding Paper
Large Language Models in Low-Altitude Economy: A Novel Framework for Empowering Aerial Operations and Services
by Jun Wang and Yawei Shi
Eng. Proc. 2025, 98(1), 33; https://doi.org/10.3390/engproc2025098033 - 4 Jul 2025
Viewed by 380
Abstract
The advent of large language models (LLMs), characterized by their immense scale, deep understanding of language nuances, and remarkable generative capabilities, has sparked a revolution across numerous industries and reshaped the way of machines’ comprehension of human languages. In this context, the low-altitude [...] Read more.
The advent of large language models (LLMs), characterized by their immense scale, deep understanding of language nuances, and remarkable generative capabilities, has sparked a revolution across numerous industries and reshaped the way of machines’ comprehension of human languages. In this context, the low-altitude economy, an emerging domain that encompasses a wide spectrum of activities and services leveraging unmanned aerial vehicles (UAVs), drones, and other low-flying platforms, benefits significantly from the integration of LLMs. We developed a novel framework to explore the applications of LLMs in the low-altitude economy, outlining how these advanced models enhance aerial operations, optimize service delivery, and foster innovation in a rapidly evolving industry. Full article
Show Figures

Figure 1

23 pages, 335 KiB  
Review
Urban Phytoremediation: A Nature-Based Solution for Environmental Reclamation and Sustainability
by Luca Di Stasio, Annamaria Gentile, Dario Nicola Tangredi, Paolo Piccolo, Gianmaria Oliva, Giovanni Vigliotta, Angela Cicatelli, Francesco Guarino, Werther Guidi Nissim, Massimo Labra and Stefano Castiglione
Plants 2025, 14(13), 2057; https://doi.org/10.3390/plants14132057 - 4 Jul 2025
Viewed by 886
Abstract
Starting from the Industrial Revolution in the 18th century to date, urban areas have faced increasing environmental challenges due to the diffusion of harmful substances, resulting from vehicular traffic, the activities of different industries, waste, and building construction, etc. These pollutants are dangerous, [...] Read more.
Starting from the Industrial Revolution in the 18th century to date, urban areas have faced increasing environmental challenges due to the diffusion of harmful substances, resulting from vehicular traffic, the activities of different industries, waste, and building construction, etc. These pollutants are dangerous, since they pose a threat to both the environment and human health. Phytoremediation is an environmentally friendly and low-cost technique that uses plants and their associated microorganisms to clean-up contaminated sites. In this review, we explore its main applications in urban settings. Specifically, we investigate how phytoremediation works, highlighting the most effective plants for its success in a city context. Moreover, we also describe the main factors influencing its effectiveness, such as soil, climate, and pollutants. In this regard, several case studies, conducted worldwide, have reported on how phytoremediation can successfully reclaim contaminated areas, transforming them into reusable city green spaces, with reduced costs compared to traditional remediation techniques (e.g., soil replacement, soil washing, etc.). Moreover, by integrating it into urban planning, cities can address environmental pollution, while promoting biodiversity, enhancing the landscape, and increasing its social acceptance. This nature-based solution offers a practical path toward more sustainable and resilient urban environments, especially in regard to the climate change framework. Full article
19 pages, 1507 KiB  
Article
Fog Computing Architecture for Load Balancing in Parallel Production with a Distributed MES
by William Oñate and Ricardo Sanz
Appl. Sci. 2025, 15(13), 7438; https://doi.org/10.3390/app15137438 - 2 Jul 2025
Viewed by 216
Abstract
The technological growth in the automation of manufacturing processes, as seen in Industry 4.0, is characterized by a constant revolution and evolution in small- and medium-sized factories. As basic and advanced technologies from the pillars of Industry 4.0 are gradually incorporated into their [...] Read more.
The technological growth in the automation of manufacturing processes, as seen in Industry 4.0, is characterized by a constant revolution and evolution in small- and medium-sized factories. As basic and advanced technologies from the pillars of Industry 4.0 are gradually incorporated into their value chain, these factories can achieve adaptive technological transformation. This article presents a practical solution for companies seeking to evolve their production processes during the expansion phase of their manufacturing, starting from a base architecture with Industry 4.0 features which then integrate and implement specific tools that facilitate the duplication of installed capacity; this creates a situation that allows for the development of manufacturing execution systems (MESs) for each production line and a fog computing node, which is responsible for optimizing the load balance of order requests coming from the cloud and also acts as an intermediary between MESs and the cloud. On the other hand, legacy Machine Learning (ML) inference acceleration modules were integrated into the single-board computers of MESs to improve workflow across the new architecture. These improvements and integrations enabled the value chain of this expanded architecture to have lower latency, greater scalability, optimized resource utilization, and improved resistance to network service failures compared to the initial one. Full article
Show Figures

Figure 1

18 pages, 544 KiB  
Review
Integrating Machine Learning into Asset Administration Shell: A Practical Example Using Industrial Control Valves
by Julliana Gonçalves Marques, Felipe L. Medeiros, Pedro L. F. F. de Medeiros, Gustavo B. Paz Leitão, Danilo C. de Souza, Diego R. Cabral Silva and Luiz Affonso Guedes
Processes 2025, 13(7), 2100; https://doi.org/10.3390/pr13072100 - 2 Jul 2025
Viewed by 425
Abstract
Asset Management (AM) is quickly transforming due to the digital revolution induced by Industry 4.0, in which Cyber–Physical Systems (CPS) and Digital Twins (DT) are taking key positions in monitoring and optimizing physical assets. With more intelligent functionalities arising in industrial contexts, Machine [...] Read more.
Asset Management (AM) is quickly transforming due to the digital revolution induced by Industry 4.0, in which Cyber–Physical Systems (CPS) and Digital Twins (DT) are taking key positions in monitoring and optimizing physical assets. With more intelligent functionalities arising in industrial contexts, Machine Learning (ML) has transitioned from playing a supporting role to becoming a core constituent of asset operation. However, while the Asset Administration Shell (AAS) has become an industry standard format for digital asset representation, incorporating ML models into this format is a significant challenge. In this research, a control valve, a common asset in industrial equipment, is used to explore the modeling of a machine learning model as an AAS submodel, including its related elements, such as parameters, hyperparameters, and metadata, in accordance with the latest guidelines issued by the Industrial Digital Twin Association (IDTA) in early 2025. The main contribution of this work is to clarify basic machine learning principles while demonstrating their alignment with the AAS framework, hence facilitating the further development of smart and interoperable DTs in modern industrial environments. Full article
Show Figures

Figure 1

25 pages, 1514 KiB  
Review
Towards Sustainable Scaling-Up of Nanomaterials Fabrication: Current Situation, Challenges, and Future Perspectives
by Mouad Hachhach, Sanae Bayou, Achraf El Kasmi, Mohamed Zoubair Saidi, Hanane Akram, Mounir Hanafi, Ouafae Achak, Chaouki El Moujahid and Tarik Chafik
Eng 2025, 6(7), 149; https://doi.org/10.3390/eng6070149 - 1 Jul 2025
Viewed by 947
Abstract
Nanomaterials are present everywhere today and represent the new industrial revolution. Depending on the application, there are many ways to synthesize nanomaterials with different properties. The industrial production of nanomaterials faces various challenges at different stages, going from conception and design to implementation [...] Read more.
Nanomaterials are present everywhere today and represent the new industrial revolution. Depending on the application, there are many ways to synthesize nanomaterials with different properties. The industrial production of nanomaterials faces various challenges at different stages, going from conception and design to implementation and scaling-up of the production process, which can limit the growth of practical application at a large-scale scope, such as due to the lack of reproducibility, safety, and environmental impact. Here, we discuss current advances achieved for nanomaterial production at a large scale, encompassing a range of synthetic strategies and post-treatment modifications used to enhance the nanomaterials’ performance. A particular interest is devoted to highlighting the progress of MoS2 nanomaterials’ application. Thus, overcoming those discussed challenges becomes a new prospect for the future perspectives of industrial nanomaterials and nanotechnologies. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

20 pages, 2517 KiB  
Article
Transformation of Shipbuilding into Smart and Green: A Methodology Proposal
by Zoran Kunkera, Nataša Tošanović and Neven Hadžić
Eng 2025, 6(7), 148; https://doi.org/10.3390/eng6070148 - 1 Jul 2025
Viewed by 305
Abstract
Since the beginning of the last decade, digital technological achievements have ushered the economies of developed countries into the fourth industrial revolution, transforming industries into smart ones, referred to as “Industry 4.0”, enabling them to innovate as a prerequisite for sustainable development and [...] Read more.
Since the beginning of the last decade, digital technological achievements have ushered the economies of developed countries into the fourth industrial revolution, transforming industries into smart ones, referred to as “Industry 4.0”, enabling them to innovate as a prerequisite for sustainable development and economic growth. At the same time, the European Union’s institutions are adopting strategies and programs to transform the European industry into a climate-neutral one, aiming to achieve this by 2050. The authors, participating in the introduction of Lean tools and digital technologies into one of the European shipyards using the “CULIS” (Connect Universal Lean Improvement System) methodology, recognize the high potential of its contribution to the European Commission’s guidelines for transitioning the economy to a sustainable one, and for this purpose, they present it in this paper. Namely, the methodology in question not only theoretically results in a “quick” implementation of tools and doctrines—with an approximately 36-month total duration of the process—but also encompasses as many as three transformations: Lean, digital, and green; an analysis of a methodology with such characteristics significantly adds to the originality of this study. The current stage of the observed shipyard’s “triple” transformation process already results in significant improvements—e.g., an increase in productivity by around 21% or a reduction in sales process costs by 38%. However, given its ongoing pilot phase, (further) analyses of improvements in (European) shipbuilding competitiveness and profitability that can be achieved through digital Lean management of projects’ realization process are implied. Full article
Show Figures

Figure 1

18 pages, 49730 KiB  
Article
High-Resolution Daily XCH4 Prediction Using New Convolutional Neural Network Autoencoder Model and Remote Sensing Data
by Mohamad M. Awad and Saeid Homayouni
Atmosphere 2025, 16(7), 806; https://doi.org/10.3390/atmos16070806 - 1 Jul 2025
Viewed by 311
Abstract
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental [...] Read more.
Atmospheric methane (CH4) concentrations have increased to 2.5 times their pre-industrial levels, with a marked acceleration in recent decades. CH4 is responsible for approximately 30% of the global temperature rise since the Industrial Revolution. This growing concentration contributes to environmental degradation, including ocean acidification, accelerated climate change, and a rise in natural disasters. The column-averaged dry-air mole fraction of methane (XCH4) is a crucial indicator for assessing atmospheric CH4 levels. In this study, the Sentinel-5P TROPOMI instrument was employed to monitor, map, and estimate CH4 concentrations on both regional and global scales. However, TROPOMI data exhibits limitations such as spatial gaps and relatively coarse resolution, particularly at regional scales or over small areas. To mitigate these limitations, a novel Convolutional Neural Network Autoencoder (CNN-AE) model was developed. Validation was performed using the Total Carbon Column Observing Network (TCCON), providing a benchmark for evaluating the accuracy of various interpolation and prediction models. The CNN-AE model demonstrated the highest accuracy in regional-scale analysis, achieving a Mean Absolute Error (MAE) of 28.48 ppb and a Root Mean Square Error (RMSE) of 30.07 ppb. This was followed by the Random Forest (RF) regressor (MAE: 29.07 ppb; RMSE: 36.89 ppb), GridData Nearest Neighbor Interpolator (NNI) (MAE: 30.06 ppb; RMSE: 32.14 ppb), and the Radial Basis Function (RBF) Interpolator (MAE: 80.23 ppb; RMSE: 90.54 ppb). On a global scale, the CNN-AE again outperformed other methods, yielding the lowest MAE and RMSE (19.78 and 24.7 ppb, respectively), followed by RF (21.46 and 27.23 ppb), GridData NNI (25.3 and 32.62 ppb), and RBF (43.08 and 54.93 ppb). Full article
Show Figures

Figure 1

15 pages, 205 KiB  
Article
From the Philosopher’s Stone to AI: Epistemologies of the Renaissance and the Digital Age
by Bram Hennekes
Philosophies 2025, 10(4), 79; https://doi.org/10.3390/philosophies10040079 - 30 Jun 2025
Viewed by 642
Abstract
This paper reexamines the enduring role of esoteric traditions, as articulated by Frances Yates, in shaping the intellectual landscape of the scientific revolution and their resonance in the digital age. Challenging the linear, progress-centered narratives of traditional historiographies, it explores how esoteric principles—symbolized [...] Read more.
This paper reexamines the enduring role of esoteric traditions, as articulated by Frances Yates, in shaping the intellectual landscape of the scientific revolution and their resonance in the digital age. Challenging the linear, progress-centered narratives of traditional historiographies, it explores how esoteric principles—symbolized by transformative motifs like the Philosopher’s Stone—provided a framework for early scientific inquiry by promoting hidden knowledge, experimentation, mathematics, and interdisciplinary synthesis. This paper argues that moments of accelerated scientific and technological development magnify the visibility of esoteric structures, demonstrating how the intellectual configurations of Renaissance learned circles persist in contemporary expert domains. In particular, artificial intelligence exemplifies the revival of esoteric modes of interpretation, as AI systems—much like their Renaissance predecessors—derive authority through the identification of unseen patterns and the extrapolation of hidden truths. By bridging Renaissance esotericism with the modern information revolution, this study highlights how such traditions are not mere relics of the past but dynamic paradigms shaping the present and future, potentially culminating in new forms of digital mysticism. This study affirms that the temporal gap during periods of rapid technological change between industrial practice and formal scientific treatises reinforces esoteric knowledge structures. Full article
Back to TopTop