Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = industrial electrification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 - 1 Aug 2025
Viewed by 161
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

18 pages, 5389 KiB  
Article
Novel Method of Estimating Iron Loss Equivalent Resistance of Laminated Core Winding at Various Frequencies
by Maxime Colin, Thierry Boileau, Noureddine Takorabet and Stéphane Charmoille
Energies 2025, 18(15), 4099; https://doi.org/10.3390/en18154099 - 1 Aug 2025
Viewed by 192
Abstract
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying [...] Read more.
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying model-specific parameters, which depend on frequency, is crucial. This article focuses on a specific frequency range where a circuit model with series resistance and inductance, along with a parallel resistance to account for iron losses (Riron), is applicable. While the determination of series elements is well documented, the determination of Riron remains complex and debated, with traditional methods neglecting operating conditions such as magnetic saturation. To address these limitations, an innovative experimental method is proposed, comprising two main steps: determining the complex impedance of the magnetic device and extracting Riron from the model. This method aims to provide a more precise and representative estimation of Riron, improving the reliability and accuracy of electromagnetic and magnetic device simulations and designs. The obtained values of the iron loss equivalent resistance are different by at least 300% than those obtained by an impedance analyzer. The proposed method is expected to advance the understanding and modeling of losses in electromagnetic and magnetic devices, offering more robust tools for engineers and researchers in optimizing device performance and efficiency. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

20 pages, 2735 KiB  
Article
Techno-Economic Assessment of Electrification and Hydrogen Pathways for Optimal Solar Integration in the Glass Industry
by Lorenzo Miserocchi and Alessandro Franco
Solar 2025, 5(3), 35; https://doi.org/10.3390/solar5030035 - 1 Aug 2025
Viewed by 95
Abstract
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel [...] Read more.
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel container glass furnace with a specific energy consumption of 4.35 GJ/t. A mixed-integer linear programming formulation is developed to evaluate specific melting costs, carbon emissions, and renewable energy self-consumption and self-production rates across three scenarios: direct solar coupling, battery storage, and a hydrogen-based infrastructure. Battery storage achieves the greatest reductions in specific melting costs and emissions, whereas hydrogen integration minimizes electricity export to the grid. By incorporating capital investment considerations, the study quantifies the cost premiums and capacity requirements under varying decarbonization targets. A combination of 30 MW of solar plant and 9 MW of electric boosting enables the realization of around 30% carbon reduction while increasing total costs by 25%. Deeper decarbonization targets require more advanced systems, with batteries emerging as a cost-effective solution. These findings offer critical insights into the economic and environmental trade-offs, as well as the technical constraints associated with renewable energy adoption in the glass industry, providing a foundation for strategic energy and decarbonization planning. Full article
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 413
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

37 pages, 863 KiB  
Systematic Review
Sustainable Water Resource Management to Achieve Net-Zero Carbon in the Water Industry: A Systematic Review of the Literature
by Jorge Alejandro Silva
Water 2025, 17(14), 2136; https://doi.org/10.3390/w17142136 - 17 Jul 2025
Viewed by 415
Abstract
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This [...] Read more.
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This paper, using a systematic literature review that complies with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA), aims to propose sustainable water resource management (SWRM) strategies that may assist water utilities in decarbonizing their value chains and achieving net-zero carbon. In total, 31 articles were included from SCOPUS, ResearchGate, ScienceDirect, and Springer. The findings show that water utilities are responsible for 3% of global greenhouse gas emissions and could reduce these emissions by more than 45% by employing a few strategies, including the electrification of transport fleets, the use of renewables, advanced oxidation processes (AOPs) and energy-efficient technologies. A broad-based case study from Scottish Water shows a 254,000-ton CO2 reduction in the period since 2007, indicative of the potential of these measures. The review concludes that net-zero carbon is feasible through a mix of decarbonization, wastewater reuse, smart systems and policy-led innovation, especially if customized to both large and small utilities. To facilitate a wider and a more scalable transition, research needs to focus on development of low-cost and flexible strategies for underserved utilities. Full article
Show Figures

Figure 1

34 pages, 2504 KiB  
Review
Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems
by Stanislav Boldyryev, Oleksandr S. Ivashchuk, Goran Krajačić and Volodymyr M. Atamanyuk
Energies 2025, 18(14), 3685; https://doi.org/10.3390/en18143685 - 12 Jul 2025
Viewed by 358
Abstract
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process [...] Read more.
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process industries, where electricity-driven technologies, including electric heaters, steam boilers, heat pumps, mechanical vapour recompression, and organic Rankine cycles, are increasingly supplanting traditional fossil-fuel-based utilities. The analysis identifies key challenges associated with multi-utility integration, multi-pinch configurations, and low-grade heat utilisation that influence HEN design, retrofitting, and optimisation efforts. A comparative evaluation of various methodological frameworks, including mathematical programming, insights-based methods, and hybrid approaches, is presented, highlighting their relevance to the specific constraints and opportunities of electrified systems. Case studies from the chemicals, food processing, and cement sectors demonstrate the practicality and advantages of employing electrified heat exchanger networks (HENs), particularly in terms of energy efficiency, emissions reduction, and enhanced operational flexibility. The review concludes that effective strategies for the design of HENs are crucial in industrial electrification, facilitating increases in efficiency, reductions in emissions, and improvements in economic feasibility, especially when they are integrated with renewable energy sources and advanced control systems. Future initiatives must focus on harmonising technical advances with system-level resilience and economic sustainability considerations. Full article
Show Figures

Figure 1

6 pages, 156 KiB  
Editorial
Multi-Level Technological Advancements in Stability and Energy Efficiency of Railway Traction Power Supply Systems
by Mingli Wu, Shaobing Yang, Kejian Song, Mengtong Li and Chi Ma
Energies 2025, 18(13), 3392; https://doi.org/10.3390/en18133392 - 27 Jun 2025
Viewed by 287
Abstract
Under the twin forces of global energy transition and transportation electrification in the 21st century, the railway system, as an efficient backbone transportation mode, has witnessed the optimization of power supply technology and energy efficiency emerging as a central challenge driving industrial innovation [...] Read more.
Under the twin forces of global energy transition and transportation electrification in the 21st century, the railway system, as an efficient backbone transportation mode, has witnessed the optimization of power supply technology and energy efficiency emerging as a central challenge driving industrial innovation [...] Full article
(This article belongs to the Special Issue Studies in the Energy Efficiency and Power Supply for Railway Systems)
35 pages, 2556 KiB  
Article
Technical Trends, Radical Innovation, and the Economics of Sustainable, Industrial-Scale Electric Heating for Energy Efficiency and Water Savings
by A. A. Vissa and J. A. Sekhar
Sustainability 2025, 17(13), 5916; https://doi.org/10.3390/su17135916 - 27 Jun 2025
Viewed by 889
Abstract
This article examines the energy efficiency and climate impact of various heating methods commonly employed across industrial sectors. Fossil fuel combustion heat sources, which are predominantly employed for industrial heating, contribute significantly to atmospheric pollution and associated asset losses. The electrification of industrial [...] Read more.
This article examines the energy efficiency and climate impact of various heating methods commonly employed across industrial sectors. Fossil fuel combustion heat sources, which are predominantly employed for industrial heating, contribute significantly to atmospheric pollution and associated asset losses. The electrification of industrial heating has the potential to substantially reduce the total energy consumed in industrial heating processes and significantly mitigate the rate of global warming. Advances in electrical heating technologies are driven by enhanced energy conversion, compactness, and precision control capabilities, ensuring attractive financial payback periods for clean, energy-efficient equipment. These advancements stem from the use of improved performance materials, process optimization, and waste heat utilization practices, particularly at high temperatures. The technical challenges associated with large-scale, heavy-duty electric process heating are addressed through the novel innovations discussed in this article. Electrification and the corresponding energy efficiency improvements reduce the water consumed for industrial steam requirements. The article reviews new technologies that replace conventional process gas heaters and pressure boilers with efficient electric process gas heaters and instant steam generators, operating in the high kilowatt and megawatt power ranges with very high-temperature capabilities. Financial payback calculations for energy-optimized processes are illustrated with examples encompassing a range of comparative energy costs across various temperatures. The economics and implications of waste heat utilization are also examined in this article. Additionally, the role of futuristic, radical technical innovations is evaluated as a sustainable pathway that can significantly lower energy consumption without compromising performance objectives. The potential for a new paradigm of self-organization in processes and final usage objectives is briefly explored for sustainable innovations in thermal engineering and materials development. The policy implications and early adoption of large-scale, energy-efficient thermal electrification are discussed in the context of temperature segmentation for industrial-scale processes and climate-driven asset losses. Policy shifts towards incentivizing energy efficiency at the manufacturing level of heater use are recommended as a pathway for deep decarbonization. Full article
Show Figures

Figure 1

32 pages, 1246 KiB  
Review
A Review of Optimization Strategies for Energy Management in Microgrids
by Astrid Esparza, Maude Blondin and João Pedro F. Trovão
Energies 2025, 18(13), 3245; https://doi.org/10.3390/en18133245 - 20 Jun 2025
Viewed by 561
Abstract
Rapid industrialization, widespread transportation electrification, and significantly rising household energy consumption are rapidly increasing global electricity demand. Climate change and dependency on fossil fuels to meet this demand underscore the critical need for sustainable energy solutions. Microgrids (MGs) provide practical applications for renewable [...] Read more.
Rapid industrialization, widespread transportation electrification, and significantly rising household energy consumption are rapidly increasing global electricity demand. Climate change and dependency on fossil fuels to meet this demand underscore the critical need for sustainable energy solutions. Microgrids (MGs) provide practical applications for renewable energy, reducing reliance on fossil fuels and mitigating ecological impacts. However, renewable energy poses reliability challenges due to its intermittency, primarily influenced by weather conditions. Additionally, fluctuations in fuel prices and the management of multiple devices contribute to the increasing complexity of MGs and the necessity to address a range of objectives. These factors make the optimization of Energy Management Strategies (EMSs) essential and necessary. This study contributes to the field by categorizing the main aspects of MGs and optimization EMS, analyzing the impacts of weather on MG performance, and evaluating their effectiveness in handling multi-objective optimization and data considerations. Furthermore, it examines the pros and cons of different methodologies, offering a thorough overview of current trends and recommendations. This study serves as a foundational resource for future research aimed at refining optimization EMS by identifying research gaps, thereby informing researchers, practitioners, and policymakers. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

18 pages, 1862 KiB  
Article
Energy Management of a Semi-Autonomous Truck Using a Blended Multiple Model Controller Based on Particle Swarm Optimization
by Mohammad Ghazali, Ishaan Gupta, Kemal Buyukkabasakal, Mohamed Amine Ben Abdallah, Caner Harman, Berfin Kahraman and Ahu Ece Hartavi
Energies 2025, 18(11), 2893; https://doi.org/10.3390/en18112893 - 30 May 2025
Cited by 1 | Viewed by 369
Abstract
Recently, the electrification and automation of heavy-duty trucks has gained significant attention from both industry and academia, driven by new legislation introduced by the European Union. During a typical drive cycle, the mass of an urban service truck can vary substantially as waste [...] Read more.
Recently, the electrification and automation of heavy-duty trucks has gained significant attention from both industry and academia, driven by new legislation introduced by the European Union. During a typical drive cycle, the mass of an urban service truck can vary substantially as waste is collected, yet most existing studies rely on a single controller with fixed gains. This limits the ability to adapt to mass changes and results in suboptimal energy usage. Within the framework of the EU-funded OBELICS and ESCALATE projects, this study proposes a novel control strategy for a semi-autonomous refuse truck. The approach combines a particle swarm optimization algorithm to determine optimal controller gains and a multiple model controller to adapt these gains dynamically based on real-time vehicle mass. The main objectives of the proposed method are to (i) optimize controller parameters, (ii) reduce overall energy consumption, and (iii) minimize speed tracking error. A cost function addressing these objectives is formulated for both autonomous and manual driving modes. The strategy is evaluated using a real-world drive cycle from Eskişehir City, Turkiye. Simulation results show that the proposed MMC-based method improves vehicle performance by 5.19% in autonomous mode and 0.534% in manual mode compared to traditional fixed-gain approaches. Full article
Show Figures

Figure 1

18 pages, 3196 KiB  
Article
Industry Perspectives on Electrifying Heavy Equipment: Trends, Challenges, and Opportunities
by Keith Pate, Farid El Breidi, Tawfiq Salem and John Lumkes
Energies 2025, 18(11), 2806; https://doi.org/10.3390/en18112806 - 28 May 2025
Viewed by 472
Abstract
With rising urgency around carbon emissions and climate change, electrification has emerged as a central focus in traditionally combustion-reliant industries. With increasing regulatory restrictions on automotive and smaller off-highway markets (<25 hp), the heavy equipment industry faces growing pressures to adopt hybrid and [...] Read more.
With rising urgency around carbon emissions and climate change, electrification has emerged as a central focus in traditionally combustion-reliant industries. With increasing regulatory restrictions on automotive and smaller off-highway markets (<25 hp), the heavy equipment industry faces growing pressures to adopt hybrid and fully electric solutions. Current literature primarily addresses technical electrification challenges, leaving a gap in understanding industry perspectives. This study explores trends, challenges, and expectations of electrification from industry representatives’ viewpoints, using data from 84 surveys conducted at the CONEXPO/CONAGG trade show and sentiment analysis of 100 interview notes gathered through an NSF Innovation Corps workshop. Results indicate substantial uncertainty toward electrification, with key limitations including power-to-weight ratios, high costs, maintenance, leakage concerns, and reliability of electronic components. The majority (77%) preferred traditional hydraulic systems due to familiarity and reliability, though concerns over maintenance and environmental impact remain prevalent. Participants anticipate a gradual industry transition, projecting widespread adoption of hybrid solutions in 10–15 years and longer timelines for fully electric systems. Effective adoption of greener technologies is likely through industry-wide standards and financial incentives. This study emphasizes the industry’s cautious yet gradually increasing openness to electrification amidst persistent technological and economic challenges. Full article
(This article belongs to the Special Issue Energy Conversion and Management: Hydraulic Machinery and Systems)
Show Figures

Figure 1

20 pages, 1922 KiB  
Article
Electrification of Compressor in Steam Cracker Plant: A Path to Reduced Emissions and Optimized Energy Integration
by Joana Cordeiro Torcato, Rodrigo Silva and Mário Eusébio
ChemEngineering 2025, 9(3), 55; https://doi.org/10.3390/chemengineering9030055 - 27 May 2025
Viewed by 1116
Abstract
Electrification is a highly effective decarbonization and environmental incentive strategy for the chemical industry. Nevertheless, it may lead to downstream challenges in the process. This study analyzes the consequences of electrifying compressors within the steam cracker (SC) condensate system, focusing on the reduction [...] Read more.
Electrification is a highly effective decarbonization and environmental incentive strategy for the chemical industry. Nevertheless, it may lead to downstream challenges in the process. This study analyzes the consequences of electrifying compressors within the steam cracker (SC) condensate system, focusing on the reduction in greenhouse gas (GHG) emissions and energy consumption without compromising the process’s energy efficiency. The aim is to study the impact that the reduction in steam expanded by turbines has on boiler feedwater (BFW) temperature and, subsequently, the behavior it triggers in fuel gas (FG) consumption and carbon dioxide (CO2) emissions in furnaces. It was concluded that condensate imports from the Energies and Utilities Plant (E&U) would increase by a factor of four, with approximately 60% of the imported condensate being cold condensate. The study revealed a mitigation of CO2 emissions, resulting in a 1.3% reduction and a reduction in FG consumption of 1.8% preventing an increase in site energy consumption by 795.4 kW in furnaces. Condenser optimization reduces CO2 emissions by 60%. Energy integration with quench water resulted in heat saving of 1824 kW in hot utility consumption and generating annual savings of EUR 2.3 M. The global carbon dioxide balance can achieve up to a 25% reduction. Full article
Show Figures

Figure 1

28 pages, 925 KiB  
Article
Increasing the Voltage—Sequencing Decarbonisation with Green Power and Efficiency
by Stefan M. Buettner, Josefine Döpp, Liane Strauch, Marina Gilles, Werner König and Anna-Lena Klingler
Energies 2025, 18(11), 2752; https://doi.org/10.3390/en18112752 - 26 May 2025
Cited by 1 | Viewed by 586
Abstract
The industrial sector’s increasing electricity demand (direct and indirect), driven by the electrification of processes and the production of green hydrogen, poses significant challenges for achieving decarbonisation goals. While switching to renewable electricity and offsetting emissions appears straightforward, the gap between current generation [...] Read more.
The industrial sector’s increasing electricity demand (direct and indirect), driven by the electrification of processes and the production of green hydrogen, poses significant challenges for achieving decarbonisation goals. While switching to renewable electricity and offsetting emissions appears straightforward, the gap between current generation capacities and projected demand remains substantial. This article analyses survey data from the Energy Efficiency Index of German Industry (EEI), revealing that manufacturing companies aim to reduce 22.1% of their 2019 emissions by 2025 and 27.3% by 2030, primarily through on-site measures. However, given the slow pace of renewable capacity expansion and the increasing electrification across sectors, it becomes evident that the envisaged green electricity share of 80% by 2030 will require far more capacity than currently planned. To address this challenge, the article introduces a decarbonisability factor to better assess on-site versus off-site measures, highlighting the need for a strategic sequencing of efficiency and renewable generation. To support decision-makers, the article calls for improved data collection and periodic reassessment to account for changing geopolitical and economic conditions. Full article
(This article belongs to the Special Issue Advances in Low Carbon Technologies and Transition Ⅱ)
Show Figures

Graphical abstract

30 pages, 11506 KiB  
Review
Research Progress and Future Prospects of Brake-by-Wire Technology for New Energy Vehicles
by Zhengrong Chen, Ruochen Wang, Renkai Ding, Bin Liu, Wei Liu, Dong Sun and Zhongyang Guo
Energies 2025, 18(11), 2702; https://doi.org/10.3390/en18112702 - 23 May 2025
Viewed by 866
Abstract
The energy crisis and environmental pollution have driven the rapid development of new energy vehicles (NEVs). As a core technology for integrating electrification and intelligence in NEVs, the brake-by-wire (BBW) system has become a research hotspot due to its excellent braking energy recovery [...] Read more.
The energy crisis and environmental pollution have driven the rapid development of new energy vehicles (NEVs). As a core technology for integrating electrification and intelligence in NEVs, the brake-by-wire (BBW) system has become a research hotspot due to its excellent braking energy recovery efficiency and precise active safety control performance. This paper provides a comprehensive review of the research progress in BBW technology for NEVs and provides a forward-looking perspective on its future development. First, the types and structures of the BBW system are introduced, and the development history and representative products are systematically reviewed. Next, this paper focuses on key technologies, such as the design and modeling methods of the BBW system, braking force optimization and distribution strategies, precise actuator control, multi-system coordination, driver operation perception, intelligent decision-making, personalized control, and fault diagnosis and fault-tolerant control. Finally, the main challenges faced in the research of BBW technology for NEVs are analyzed, and future development directions are proposed, providing insights for the optimization designs and industrial application of the BBW system in the future. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

26 pages, 3824 KiB  
Article
Chemical Process for the Production of Methanol with Carbon Capture (CO2) Integrating the Concept of Electrification by Heat Pump and Use of Renewable Energy
by Edgar Correa-Quintana, Yecid Muñoz-Maldonado and Adalberto Ospino-Castro
Energies 2025, 18(10), 2633; https://doi.org/10.3390/en18102633 - 20 May 2025
Viewed by 633
Abstract
The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents the technical and environmental evaluation (life cycle assessment) of a proposed process for methanol production from the conversion of a [...] Read more.
The electrification of industrial processes offers sustainable opportunities for reducing carbon footprints and enhancing energy efficiency in the chemical industry. This paper presents the technical and environmental evaluation (life cycle assessment) of a proposed process for methanol production from the conversion of a conventional process to produce gray hydrogen by SMR technology at a plant located in the Magdalena Medio region of Colombia. The new process incorporates the concept of industrial electrification including a heat pump (HP) system with the use of propane as a working fluid for the distillation and separation system of the water–methanol mixture. The process includes the use of photovoltaic energy (PV) as a thermal supply mechanism for the methanol production process and carbon capture utilization (CCU). The proposed process is compared with a reference methanol production process that uses a dry and wet conversion mechanism. The results obtained using the HYSYS V12.1 simulation software allow identifying a 5% improvement in the performance for methanol production and a reduction in energy consumption of between 30 and 53%, which provides important perspectives on the overall energy efficiency of the process with a significant contribution to the decarbonization (−62%) of the methanol synthesis and production process. Full article
Show Figures

Figure 1

Back to TopTop