Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = inductance damping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20344 KiB  
Article
Transient Stability Analysis for the Wind Power Grid-Connected System: A Manifold Topology Perspective on the Global Stability Domain
by Jinhao Yuan, Meiling Ma and Yanbing Jia
Electricity 2025, 6(3), 44; https://doi.org/10.3390/electricity6030044 - 1 Aug 2025
Viewed by 183
Abstract
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on [...] Read more.
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on BSD theory, using the method of combining the manifold topologies and singularities at infinity. On this basis, the effect of large-scale doubly fed induction generators (DFIGs) replacing synchronous units on the BSD of the system is analyzed. Simulation results based on the IEEE 39-bus system indicate that the negative impedance characteristics and low inertia of DFIGs lead to a contraction of the stability domain. The principle of singularity invariance (PSI) proposed in this paper can effectively expand the BSD by adjusting the inertia and damping, thereby increasing the critical clearing time by about 5.16% and decreasing the dynamic response time by about 6.22% (inertia increases by about 5.56%). PSI is superior and applicable compared to traditional energy functions, and can be used to study the power angle stability of power systems with a high proportion of renewable energy. Full article
Show Figures

Figure 1

20 pages, 6870 KiB  
Article
Stability Limit Analysis of DFIG Connected to Weak Grid in DC-Link Voltage Control Timescale
by Kezheng Jiang, Lie Li, Zhenyu He and Dan Liu
Electronics 2025, 14(15), 3022; https://doi.org/10.3390/electronics14153022 - 29 Jul 2025
Viewed by 180
Abstract
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines [...] Read more.
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines being integrated into a weak grid, which decreases the stability limits of wind turbines. To solve this problem, this study investigates the stability limits of a Doubly Fed Induction Generator (DFIG) connected to a weak grid in a DC-link voltage control timescale. To start with, a model of the DFIG in a DC-link voltage control timescale is presented for stability limit analysis, which facilitates profound physical understanding. Through steady-state stability analysis based on sensitivity evaluation, it is found that the critical factor restricting the stability limit of the DFIG connected to a weak grid is ∂Pe/∂ (−ird), changing from positive to negative. As ∂Pe/∂ (−ird) reaches zero, the system reaches its stability limit. Furthermore, by considering control loop dynamics and grid strength, the stability limit of the DFIG is investigated based on eigenvalue analysis with multiple physical scenarios. The results of root locus analysis show that, when the DFIG is connected to an extremely weak grid, reducing the bandwidth of the PLL or increasing the bandwidth of the AVC with equal damping can increase the stability limit. The aforesaid theoretical analysis is verified through both time domain simulation and physical experiments. Full article
Show Figures

Figure 1

15 pages, 1136 KiB  
Article
Association of HMGB1, IL-1β, IL-8, IL-10, and MCP-1 with the Development of Systemic Inflammatory Response Syndrome in Pediatric Patients with Recently Diagnosed Acute Lymphoblastic Leukemia
by Carmen Maldonado-Bernal, Horacio Márquez-González, Erandi Pérez-Figueroa, Rocío Nieto-Meneses, Víctor Olivar-López, Aurora Medina-Sanson and Elva Jiménez-Hernández
Life 2025, 15(8), 1187; https://doi.org/10.3390/life15081187 - 25 Jul 2025
Viewed by 308
Abstract
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing [...] Read more.
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing systemic inflammatory response syndrome (SIRS). The construction of a prognostic model of fever and development of SIRS based on the identification of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs) and inflammatory cytokines, can help identify children with ALL and fever or SIRS and who do not have an infection. A cohort of 30 children with recently diagnosed ALL and absence of infectious microorganisms before starting the remission induction phase was studied. Two groups were identified: (1) a group with SIRS (fever, tachycardia, tachypnea, and leukopenia, without focus of infection) and (2) a group without SIRS. The DAMPs, namely HMGB1 and S100A8 proteins, were quantified by ELISA and inflammatory mediators were determined by multiple protein analysis. The medians of DAMPs and inflammatory mediators in children with SIRS were higher than in children who did not have SIRS, and the delta values of the biomarkers studied in patients with and without SIRS showed important differences, with statistically higher medians in patients with SIRS compared to those without SIRS. HMGB1 together with IL-1β, IL-8, IL-10, and MCP-1 can serve as biomarkers to identify children with ALL and fever or SIRS who should not receive antimicrobial treatment because the origin of their fever is not due to an infectious agent. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

15 pages, 2113 KiB  
Article
Improved Segmented Control Strategy for Continuous Fault Ride-Through of Doubly-Fed Wind Turbines
by Tie Chen, Yifan Xu, Yue Liu, Junlin Ren and Youyuan Fan
Energies 2025, 18(14), 3845; https://doi.org/10.3390/en18143845 - 19 Jul 2025
Viewed by 219
Abstract
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced [...] Read more.
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced electromotive force (EMF) in each stage of continuous faults, a feedforward control strategy based on the transient component of stator current is proposed. The observable stator current is extracted for its transient component, which is used as a rotor voltage compensation term to effectively counteract the influence of transient EMF. Meanwhile, a fuzzy control algorithm is introduced during the low voltage ride-through (LVRT) stage to dynamically adjust the virtual resistance value, enhancing the system’s damping characteristics. Studies show that this strategy significantly suppresses rotor current spikes in all stages of voltage ride-through. Finally, simulation results verify that the proposed method improves the ride-through performance of DFIG under continuous voltage faults. Full article
Show Figures

Figure 1

11 pages, 647 KiB  
Review
Understanding the Role of Epithelial Cells in the Pathogenesis of Systemic Sclerosis
by Lydia Nagib, Anshul Sheel Kumar and Richard Stratton
Cells 2025, 14(13), 962; https://doi.org/10.3390/cells14130962 - 24 Jun 2025
Viewed by 605
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder affecting the skin and internal organs, categorized as either limited cutaneous SSc, where distal areas of skin are involved, or diffuse cutaneous SSc, where more extensive proximal skin involvement is seen. Vascular remodelling and internal [...] Read more.
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder affecting the skin and internal organs, categorized as either limited cutaneous SSc, where distal areas of skin are involved, or diffuse cutaneous SSc, where more extensive proximal skin involvement is seen. Vascular remodelling and internal organ involvement are frequent complications in both subsets. Multiple pathogenic mechanisms have been demonstrated, including production of disease-specific autoantibodies, endothelial cell damage at an early stage, infiltration of involved tissues by immune cells, as well as environmental factors triggering the onset such as solvents and viruses. Although not strongly familial, susceptibility to SSc is associated with multiple single nucleotide polymorphisms in immunoregulatory genes relevant to antigen presentation, T cell signalling and adaptive immunity, as well as innate immunity. In addition, several lines of evidence demonstrate abnormalities within the epithelial cell layer in SSc. Macroscopically, the SSc epidermis is pigmented, thickened and stiff and strongly promotes myofibroblasts in co-culture. Moreover, multiple activating factors and pathways have been implicated in the disease epidermis, including wound healing responses, induction of damage associated molecular patterns (DAMPS) and the release of pro-fibrotic growth factors and cytokines. Similar to SSc, data from studies of cutaneous wound healing indicate a major role for epidermal keratinocytes in regulating local fibroblast responses during repair of the wound defect. Since the epithelium is strongly exposed to environmental factors and richly populated with protective immune cells, it is possible that disease-initiating mechanisms in SSc involve dysregulated immunity and tissue repair within this cell layer. Treatments designed to restore epithelial homeostasis or else disrupt epithelial–fibroblast cross-talk could be of benefit in this severe and resistant disease. Accordingly, single cell analysis has confirmed an active signature in SSc keratinocytes, which was partially reversed following a period of JAK inhibitor therapy. Full article
(This article belongs to the Special Issue The Role of Epithelial Cells in Scleroderma—Second Edition)
Show Figures

Figure 1

19 pages, 1681 KiB  
Article
An Energy-Function-Based Approach for Power System Inertia Assessment
by Shizheng Wang and Zhenglong Sun
Energies 2025, 18(12), 3105; https://doi.org/10.3390/en18123105 - 12 Jun 2025
Viewed by 311
Abstract
With the increasing popularity of low-cost, clean, and environmentally friendly new energy sources, the proportion of grid-connected new energy units has increased significantly. However, since these units are frequency decoupled from the grid through a power electronic interface, they are unable to provide [...] Read more.
With the increasing popularity of low-cost, clean, and environmentally friendly new energy sources, the proportion of grid-connected new energy units has increased significantly. However, since these units are frequency decoupled from the grid through a power electronic interface, they are unable to provide inertia support during active power perturbations, which leads to a decrease in system inertia and reduced frequency stability. In this study, the urgent need to accurately assess inertia is addressed by developing an energy-function-based inertia identification technique that eliminates the effect of damping terms. By integrating vibration mechanics, the proposed method calculates the inertia value after a perturbation using port measurements (active power, voltage phase, and frequency). Simulation results of the Western System Coordinating Council (WSCC) 9-bus system show that the inertia estimation error of the method is less than 1%, which is superior to conventional methods such as rate-of-change-of-frequency (RoCoF) and least squares methods. Notably, the technique accurately evaluates the inertia of synchronous generators and doubly fed induction generators (DFIGs) under virtual inertia control, providing a robust inertia evaluation framework for low-inertia power systems with high renewable energy penetration. This research deepens the understanding of inertial dynamics and contributes to practical applications in grid stability analysis and control strategy optimalization. Full article
Show Figures

Figure 1

22 pages, 3239 KiB  
Article
Analysis and Suppression Strategies of Sub-Synchronous Oscillations in DFIG Wind Farm Integrated with Synchronous Pumped Storage System
by Yuzhe Chen, Feng Wu, Linjun Shi, Yang Li, Zizhao Wang and Yanbo Ding
Sustainability 2025, 17(10), 4588; https://doi.org/10.3390/su17104588 - 16 May 2025
Viewed by 458
Abstract
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to [...] Read more.
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to construct a detailed system model, including the wind turbine shaft system, DFIG, converter control system, synchronous machine, excitation system, power system stabilizer (PSS), and series-compensated transmission lines. Eigenvalue calculation-based small-signal stability analysis is conducted to identify the dominant oscillation modes. Suppression measures are also developed using relative participation analysis, and simulations are carried out to validate the accuracy of the model and analysis method. The analysis results indicate that the SSO phenomenon is primarily influenced by the electrical state variables of the DFIG system, while the impact of the state variables of the synchronous machine is relatively minor. When the level of series compensation in the system increases, SSO is significantly exacerbated. To address this issue, a sub-synchronous damping controller (SSDC) is incorporated on the rotor side of the DFIG. The results demonstrate that this method effectively mitigates the SSO and significantly enhances the system’s robustness against disturbances. Furthermore, a simplified modeling approach is proposed based on relative participation analysis. This method neglects the dynamic characteristics of the synchronous machine while considering its impact on the steady-state impedance and initial conditions of the model. These findings provide theoretical guidance and practical insights for addressing and mitigating SSO issues in hybrid renewable energy systems composed of DFIGs and synchronous machines. Full article
Show Figures

Figure 1

15 pages, 5490 KiB  
Article
Ultra-Low Frequency Oscillation in a Thermal Power System Induced by Doubly-Fed Induction Generators with Inertia Control
by Wei Huang, Suwei Zhai, Xuegang Lu, Xiaojie Zhang, Yanjun Liu, Wei He and Yifan Fang
Processes 2025, 13(5), 1368; https://doi.org/10.3390/pr13051368 - 29 Apr 2025
Viewed by 453
Abstract
Ultra-low frequency oscillation has been regarded as a typical instability issue in power systems consisting of hydro turbine synchronous generators due to the water hammer phenomenon. However, the increasing installation of renewable power generators gradually changes the stability mechanisms within multiple frequency bands. [...] Read more.
Ultra-low frequency oscillation has been regarded as a typical instability issue in power systems consisting of hydro turbine synchronous generators due to the water hammer phenomenon. However, the increasing installation of renewable power generators gradually changes the stability mechanisms within multiple frequency bands. In this digest, a new kind of ultra-low frequency oscillation caused by doubly-fed induction generators (DFIGs) equipped with a df/dt controller in a thermal power generation system is introduced. To reveal the underlying mechanism, the motion equation model of the DFIG is constructed, and the simplified analytical model is proposed. The results show that when integrating a df/dt-controlled DFIG into a normal three-machine, nine-bus system, the damping ratio decreases to more than 0.2 when the virtual inertia parameter increases from 5 to 20, leading to a conflict between fast virtual inertial response and stability requirements. Other controllers related to active power regulation are also vital to stability. The frequency domain characteristics of the system are studied to illustrate the influence of key parameters on system stability. Finally, simulation verifications are conducted in MATLAB/Simulink. Full article
Show Figures

Figure 1

18 pages, 7230 KiB  
Article
Design of a New Busbar for VFTO Suppression and Analysis of the Suppression Effect
by Huan Wang, Xixiu Wu, Yinglong Diao, Xiwen Chen and Bolun Du
Electronics 2025, 14(9), 1815; https://doi.org/10.3390/electronics14091815 - 29 Apr 2025
Viewed by 300
Abstract
Very fast transient overvoltage (VFTO) is characterized by short wavefront time, high amplitude and wide frequency. VFTO poses a threat to the safe operation of power equipment. In order to suppress the harmful effects of VFTO transmission on power equipment, a new type [...] Read more.
Very fast transient overvoltage (VFTO) is characterized by short wavefront time, high amplitude and wide frequency. VFTO poses a threat to the safe operation of power equipment. In order to suppress the harmful effects of VFTO transmission on power equipment, a new type of busbar based on the structure of “inductance + resistance” has been designed, which is called a “damping busbar”. In this study, the equivalent circuit of a damping bus including spurious parameters was developed. These stray parameters are formed between the GIS enclosure and the damping bus, and between the disk insulators and the damping bus. A damping bus simulation model was established based on the equivalent circuit to carry out analysis of the relationship between the structural parameters of the damping bus and the inductance generated by the damping bus. The simulation results showed that the number of turns plays a decisive role in bus inductance, and the relationship between the number of turns and inductance is approximately linear. Comparative analysis of multiple waveforms was carried out before and after the addition of damping buses to the GIS on a 550 kV test rig. The test data showed that the average amplitude of VFTO decreased by 20.36% after the installation of the damping bus, the number of breakdowns decreased by about 66.7%, and there was no obvious high frequency in the measured waveform after installation. In short, the damping busbar had a good suppression effect on the amplitude and frequency of VFTO, and reduced the number of breakdowns. This technique provides a novel solution for VFTO suppression. Full article
Show Figures

Figure 1

19 pages, 7384 KiB  
Review
A Review of Research Progress in Very Fast Transient Overvoltage (VFTO) Suppression Technology
by Huan Wang, Yinglong Diao, Xixiu Wu and Bolun Du
Energies 2025, 18(9), 2147; https://doi.org/10.3390/en18092147 - 22 Apr 2025
Viewed by 628
Abstract
The very fast transient overvoltage (VFTO) is characterized by steep wavefronts, high amplitude, and wide spectrum. These characteristics can lead to partial discharges or insulation breakdowns in potted insulators, which can lead to localized overheating or turn-to-turn insulation damage in transformers. The strong [...] Read more.
The very fast transient overvoltage (VFTO) is characterized by steep wavefronts, high amplitude, and wide spectrum. These characteristics can lead to partial discharges or insulation breakdowns in potted insulators, which can lead to localized overheating or turn-to-turn insulation damage in transformers. The strong electromagnetic radiation generated by VFTO may also interfere with relay protection and communication systems, triggering risks to grid operation. This paper introduces the existing mainstream VFTO suppression methods, such as damping resistance method, disconnecting switch operation method, inductive method, etc., from the aspects of circuit structure, parameter design and suppression effect, and focuses on the influence of the material selection, parameter adjustment, and mounting structure adjustment of ferrite ring on VFTO suppression effect. In addition, the lightning arrester method and the method of utilizing overhead lines for VFTO suppression are also briefly discussed. The article concludes with a comparison of the advantages and disadvantages of each method and an outlook on the future research direction of VFTO suppression technology. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
Functional Attributes of Synovial Fluid from Osteoarthritic Knee Exacerbate Cellular Inflammation and Metabolic Stress, and Fosters Monocyte to Macrophage Differentiation
by Vanshika Srivastava, Abhay Harsulkar, Shama Aphale, Aare Märtson, Sulev Kõks, Priya Kulkarni and Shantanu Deshpande
Biomedicines 2025, 13(4), 878; https://doi.org/10.3390/biomedicines13040878 - 4 Apr 2025
Cited by 1 | Viewed by 697
Abstract
Background: Besides conventional norms that recognize synovial fluid (SF) as a joint lubricant, nutritional channel, and a diagnostic tool in knee osteoarthritis (kOA), based on the authors previous studies, this study aims to define functional role of SF in kOA. Methods: U937, a [...] Read more.
Background: Besides conventional norms that recognize synovial fluid (SF) as a joint lubricant, nutritional channel, and a diagnostic tool in knee osteoarthritis (kOA), based on the authors previous studies, this study aims to define functional role of SF in kOA. Methods: U937, a monocytic, human myeloid cell line, was induced with progressive grades of kOA SF, and the induction response was assessed on various pro-inflammatory parameters. This ‘SF challenge test model’ was further extended to determine the impact of SF on U937 differentiation using macrophage-specific markers and associated transcription factor genes. Mitochondrial membrane potential changes in SF-treated cells were evaluated with fluorescent JC-1 probe. Results: a significant increase in nitric oxide, matrix metalloproteinase (MMP) 1, 13, and vascular endothelial growth factor (VEGF)-1 was noted in the induced cells. A marked increase was seen in CD68, CD86, and the transcription factors –activator protein (AP)-1, interferon regulatory factor (IRF)-1, and signal transducer and activator of transcription (STAT)-6 in the SF-treated cells indicating active monocytes to macrophage differentiation. Reduced mitochondrial membrane potential was reflected by a reduced red-to-green ratio in JC-1 staining. Conclusions: these results underline the active role of OA SF in stimulating and maintaining inflammation in joint cells, fostering monocyte differentiation into pro-inflammatory macrophages. The decline in the membrane potential suggestive of additional inflammatory pathway in OA via the release of pro-apoptotic factors and damaged associated molecular patterns (DAMPs) within the cells. Overall, biochemical modulation of SF warrants a potential approach to intervene inflammatory cascade in OA and mitigate its progression. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 5534 KiB  
Article
The Pole-to-Ground Fault Current Calculation Method and Impact Factor Investigation for Monopole DC Grids
by Liang Chen, Wei Yi, Pan Deng, Shen Ma, Da Kuang and Hongyu Cai
Electronics 2025, 14(6), 1067; https://doi.org/10.3390/electronics14061067 - 7 Mar 2025
Viewed by 691
Abstract
Flexible DC grids are an important technological means for optimizing power supply structures and promoting energy transition. However, as a system with low inertia and weak damping, the flexible DC grid inherently faces challenges, such as rapid rising of fault currents, vulnerability to [...] Read more.
Flexible DC grids are an important technological means for optimizing power supply structures and promoting energy transition. However, as a system with low inertia and weak damping, the flexible DC grid inherently faces challenges, such as rapid rising of fault currents, vulnerability to significant damage, difficulty in fault interruption, and with regard to the poor overcurrent-withstanding capabilities of power electronic devices. To address these issues, this paper proposes a method for calculating the single-pole ground fault current in a symmetrical monopolar DC grid, and further introduces a matrix exponential calculation method. This method enables quantitative analysis of the influence of various component parameters on the fault current, taking into account the dynamic characteristics of both the faulted and healthy poles in the DC system. The results demonstrate the high accuracy of this calculation method. The analysis reveals that the inductance of the faulted branch has the greatest impact on the fault current, while the inductances of the adjacent outgoing lines also have a certain influence. In contrast, the inductances of lines not adjacent to the faulted branch have minimal impacts on the fault current. Furthermore, the grounding electrode parameters of the converter station connected to the faulted branch exert the most significant influence on the fault current, with the grounding electrode parameters of neighboring converter stations also showing a notable effect. This indicates that the fault current is impacted by the topology of the nearby DC grid, but is not affected by the fault currents at remote converter stations. Full article
Show Figures

Figure 1

17 pages, 3547 KiB  
Article
Optimization of Passive Damping for LCL-Filtered AC Grid-Connected PV-Storage Integrated Systems
by Yue Zhang, Chenchen Song, Tao Wang and Kai Wang
Electronics 2025, 14(4), 801; https://doi.org/10.3390/electronics14040801 - 19 Feb 2025
Cited by 3 | Viewed by 1054
Abstract
This paper conducts an in-depth study on the application of inductor-capacitor-inductor (LCL) filters in grid-connected photovoltaic (PV) inverters. First, the resonance issues associated with LCL filters are analyzed, and solutions are discussed, with a focus on the implementation of passive damping strategies. Various [...] Read more.
This paper conducts an in-depth study on the application of inductor-capacitor-inductor (LCL) filters in grid-connected photovoltaic (PV) inverters. First, the resonance issues associated with LCL filters are analyzed, and solutions are discussed, with a focus on the implementation of passive damping strategies. Various passive damping schemes, based on the placement of resistors (R), are compared and analyzed, ultimately selecting the capacitor branch series resistor as the optimal solution. During the design process, multiple parameters, such as total inductance, inverter-side inductance, grid-side inductance, capacitance, and damping resistors, are considered in light of their mutual constraints. Detailed analysis and optimization of these parameters are performed based on steady-state operation, current ripple, and power loss limitations. Finally, it is concluded that the passive damping solution using a series resistor in the capacitor branch meets the requirements for stable operation and efficient filtering. The optimal solutions are identified as R1 = 0, R2 = ∞, R3 ≠ 0, and R4 = ∞, providing a reliable and effective filtering solution for grid-connected PV inverter systems. Full article
(This article belongs to the Special Issue Technology and Approaches of Battery Energy Storage System)
Show Figures

Figure 1

19 pages, 10355 KiB  
Article
Anti-Slip Control System with Self-Oscillation Suppression Function for the Electromechanical Drive of Wheeled Vehicles
by Aleksandr V. Klimov, Akop V. Antonyan, Andrey V. Keller, Sergey S. Shadrin, Daria A. Makarova and Yury M. Furletov
World Electr. Veh. J. 2025, 16(2), 84; https://doi.org/10.3390/wevj16020084 - 6 Feb 2025
Viewed by 945
Abstract
The movement of a wheeled vehicle is a non-regular dynamic process characterized by a large number of states that depend on the movement conditions. This movement involves a large number of situations where elastic tires skid and slip against the base surface. This [...] Read more.
The movement of a wheeled vehicle is a non-regular dynamic process characterized by a large number of states that depend on the movement conditions. This movement involves a large number of situations where elastic tires skid and slip against the base surface. This reduces the efficiency of movement as useful mechanical energy of the electromechanical drive is spent to overcome the increased skidding and slipping. Complete sliding results in the loss of control over the vehicle, which is unsafe. Processes that take place immediately before such phenomena are of special interest as their parameters can be useful in diagnostics and control. Additionally, such situations involve adverse oscillatory processes that cause additional dynamic mechanical and electrical loading in the electromechanical drive that can result in its failure. The authors provide the results of laboratory road research into the emergence of self-oscillatory phenomena during the rolling of a wheel with increased skidding on the base surface and a low traction factor. This paper reviews the methods of designing an anti-slip control system for wheels with an oscillation damping function and studies the applicability and efficiency of the suggested method using mathematical simulation of the virtual vehicle operation in the Matlab Simulink software package. Using the self-oscillation suppression algorithm in the control system helps reduce the maximum amplitude values by 5 times and average amplitudes by 2.5 times while preventing the moment operator from changing. The maximum values of current oscillation amplitude during algorithm changes were reduced by 2.5 times, while the current change rate was reduced by 3 times. The reduction in the current-change amplitude and rate proves the efficiency of the self-oscillation suppression algorithm. The high change rate of the current consumed by the drive’s inverters may have a negative impact on the remaining operating life of the rechargeable electric power storage system. This impact increases with the proximity of its location due to the low inductance of the connecting lines and the operating parameters, and the useful life of the components of the autonomous voltage inverters. Full article
Show Figures

Figure 1

15 pages, 5517 KiB  
Article
Optimization Control of Sub-Synchronous Oscillations in Doubly Fed Generators with Wind Turbines Using the Genetic Algorithm
by Xu Zhang, Yuhan Xie, Qiman Xie, Hui Huang, Lintao Gao, Jun Ye and Shenbing Ma
Appl. Sci. 2025, 15(3), 1353; https://doi.org/10.3390/app15031353 - 28 Jan 2025
Viewed by 847
Abstract
The sub-synchronous oscillation accident of large-scale doubly fed wind turbines connected to a grid through series compensation has caused a serious impact on the power system. By optimizing the parameters of the doubly fed wind turbines control system, the system impedance can be [...] Read more.
The sub-synchronous oscillation accident of large-scale doubly fed wind turbines connected to a grid through series compensation has caused a serious impact on the power system. By optimizing the parameters of the doubly fed wind turbines control system, the system impedance can be effectively improved to solve the problem of sub-synchronous oscillation. However, owing to the complexity of a grid-connected system of doubly fed generators connected to wind turbines and the influence of the time-varying oscillation characteristics of the system, it is often difficult to achieve a successful suppression. To solve this problem, this paper proposes an optimized additional damping method for the rotor- and grid-side controllers, which can achieve efficient suppression of the sub-synchronous oscillation. The parameters of the proposed additional damping method are optimized for all variable operation conditions using a genetic algorithm under the established frequency–domain impedance model. The detailed time–domain simulation model was constructed with the RTLAB platform to verify the proposed method. The experimental results show that the optimized control strategy can effectively and quickly suppress the sub-synchronous oscillation under different operating conditions, and the amplitude suppression rate reached 85.99%, which effectively improved the grid-connected stability of the wind turbines. Full article
Show Figures

Figure 1

Back to TopTop