Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (792)

Search Parameters:
Keywords = induced pluripotent stem cells (iPSCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 704 KiB  
Review
Clinical Applications of Corneal Cells Derived from Induced Pluripotent Stem Cells
by Yixin Luan, Aytan Musayeva, Jina Kim, Debbie Le Blon, Bert van den Bogerd, Mor M. Dickman, Vanessa L. S. LaPointe, Sorcha Ni Dhubhghaill and Silke Oellerich
Biomolecules 2025, 15(8), 1139; https://doi.org/10.3390/biom15081139 - 7 Aug 2025
Abstract
Corneal diseases are among the leading causes of blindness worldwide and the standard treatment is the transplantation of corneal donor tissue. Treatment for cornea-related visual impairment and blindness is, however, often constrained by the global shortage of suitable donor grafts. To alleviate the [...] Read more.
Corneal diseases are among the leading causes of blindness worldwide and the standard treatment is the transplantation of corneal donor tissue. Treatment for cornea-related visual impairment and blindness is, however, often constrained by the global shortage of suitable donor grafts. To alleviate the shortage of corneal donor tissue, new treatment options have been explored in the last decade. The discovery of induced pluripotent stem cells (iPSCs), which has revolutionized regenerative medicine, offers immense potential for corneal repair and regeneration. Using iPSCs can provide a renewable source for generating various corneal cell types, including corneal epithelial cells, stromal keratocytes, and corneal endothelial cells. To document the recent progress towards the clinical application of iPSC-derived corneal cells, this review summarizes the latest advancements in iPSC-derived corneal cell therapies, ranging from differentiation protocols and preclinical studies to the first clinical trials, and discusses the challenges for successful translation to the clinic. Full article
Show Figures

Figure 1

7 pages, 1334 KiB  
Technical Note
An Optimized Protocol for SBEM-Based Ultrastructural Analysis of Cultured Human Cells
by Natalia Diak, Łukasz Chajec, Agnieszka Fus-Kujawa and Karolina Bajdak-Rusinek
Methods Protoc. 2025, 8(4), 90; https://doi.org/10.3390/mps8040090 (registering DOI) - 6 Aug 2025
Abstract
Serial block-face scanning electron microscopy (SBEM) is a powerful technique for three-dimensional ultrastructural analysis of biological samples, though its application to in vitro cultured human cells remains underutilized. In this study, we present an optimized SBEM sample preparation protocol using human dermal fibroblasts [...] Read more.
Serial block-face scanning electron microscopy (SBEM) is a powerful technique for three-dimensional ultrastructural analysis of biological samples, though its application to in vitro cultured human cells remains underutilized. In this study, we present an optimized SBEM sample preparation protocol using human dermal fibroblasts and induced pluripotent stem cells (iPSCs). The method includes key modifications to the original protocol, such as using only glutaraldehyde for fixation and substituting the toxic cacodylate buffer with a less hazardous phosphate buffer. These adaptations result in excellent preservation of cellular ultrastructure, with high contrast and clarity, as validated by transmission electron microscopy (TEM). The loss of natural cell morphology resulted from fixation during passage, when cells formed a precipitate, rather than from fixation directly within the culture medium. The protocol is time-efficient, safe, and broadly applicable to both stem cells and differentiated cells cultured under 2D conditions, providing a valuable tool for ultrastructural analysis in diverse biomedical research settings. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

39 pages, 1418 KiB  
Review
Human-Induced Pluripotent Stem Cells (iPSCs) for Disease Modeling and Insulin Target Cell Regeneration in the Treatment of Insulin Resistance: A Review
by Sama Thiab, Juberiya M. Azeez, Alekya Anala, Moksha Nanda, Somieya Khan, Alexandra E. Butler and Manjula Nandakumar
Cells 2025, 14(15), 1188; https://doi.org/10.3390/cells14151188 - 1 Aug 2025
Viewed by 147
Abstract
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired [...] Read more.
Diabetes mellitus, both type 1 (T1D) and type 2 (T2D), has become the epidemic of the century and a major public health concern given its rising prevalence and the increasing adoption of a sedentary lifestyle globally. This multifaceted disease is characterized by impaired pancreatic beta cell function and insulin resistance (IR) in peripheral organs, namely the liver, skeletal muscle, and adipose tissue. Additional insulin target tissues, including cardiomyocytes and neuronal cells, are also affected. The advent of stem cell research has opened new avenues for tackling this disease, particularly through the regeneration of insulin target cells and the establishment of disease models for further investigation. Human-induced pluripotent stem cells (iPSCs) have emerged as a valuable resource for generating specialized cell types, such as hepatocytes, myocytes, adipocytes, cardiomyocytes, and neuronal cells, with diverse applications ranging from drug screening to disease modeling and, importantly, treating IR in T2D. This review aims to elucidate the significant applications of iPSC-derived insulin target cells in studying the pathogenesis of insulin resistance and T2D. Furthermore, recent differentiation strategies, protocols, signaling pathways, growth factors, and advancements in this field of therapeutic research for each specific iPSC-derived cell type are discussed. Full article
(This article belongs to the Special Issue Advances in Human Pluripotent Stem Cells)
Show Figures

Figure 1

15 pages, 3945 KiB  
Article
Modeling Aberrant Angiogenesis in Arteriovenous Malformations Using Endothelial Cells and Organoids for Pharmacological Treatment
by Eun Jung Oh, Hyun Mi Kim, Suin Kwak and Ho Yun Chung
Cells 2025, 14(14), 1081; https://doi.org/10.3390/cells14141081 - 15 Jul 2025
Viewed by 385
Abstract
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism [...] Read more.
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism involved in AVM regulation. In this study, we examined 30 human tissue samples, comprising 10 vascular samples, 10 human fibroblasts derived from AVM tissue, and 10 vascular samples derived from healthy individuals. The pharmacological agents thalidomide, U0126, and rapamycin were applied to the isolated endothelial cells (ECs). The pharmacological treatments reduced the proliferation of AVM ECs and downregulated miR-135b-5p, a biomarker associated with AVMs. The expression levels of angiogenesis-related genes, including VEGF, ANG2, FSTL1, and MARCKS, decreased; in comparison, CSPG4, a gene related to capillary networks, was upregulated. Following analysis of these findings, skin samples from 10 AVM patients were reprogrammed into induced pluripotent stem cells (iPSCs) to generate AVM blood vessel organoids. Treatment of these AVM blood vessel organoids with thalidomide, U0126, and rapamycin resulted in a reduction in the expression of the EC markers CD31 and α-SMA. The establishment of AVM blood vessel organoids offers a physiologically relevant in vitro model for disease characterization and drug screening. The authors of future studies should aim to refine this model using advanced techniques, such as microfluidic systems, to more efficiently replicate AVMs’ pathology and support the development of personalized therapies. Full article
Show Figures

Figure 1

12 pages, 1832 KiB  
Brief Report
HIV Protein TAT Dysregulates Multiple Pathways in Human iPSCs-Derived Microglia
by Liam Liyang Guo, Robert Jiang, Yan Cheng, Brooke Russell, Sanders Y. Yan and Ming-Lei Guo
Life 2025, 15(7), 1082; https://doi.org/10.3390/life15071082 - 9 Jul 2025
Viewed by 493
Abstract
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing [...] Read more.
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing to NeuroHIV through dysregulating microglia (Mg) functions. Previous studies have demonstrated that HIV-TAT can affect lipid metabolism, immune responses, autophagy, and senescence in rodent Mg. However, due to the significant species differences between rodent and human Mg (hMg), it is essential to take caution when interpreting the results obtained from rodent models into human conditions. For the unanswered questions, we generated hMg from human inducible pluripotent stem cells (iPSCs) and exposed them to HIV-TAT. The results obtained from Flow analysis and immunostaining experiments reveal that TAT can induce LD accumulation and increase perilipin-2 (Plin2) levels in hMg. Meanwhile, HIV-TAT can upregulate autophagosome formation and p53 levels. Through human immune array assay, we showed that TAT can increase the expression of multiple pro-inflammatory mediators, cytokines, and chemokines in hMg. Extensive bioinformatic analysis shows that HIV-TAT can affect multiple neuroimmune signaling pathways and indicates that microRNAs (miRNAs) are coherently involved in such dysregulation. Overall, our findings provide direct evidence showing that HIV-TAT can affect lipid metabolism, autophagy, senescence signaling, and multiple neuroimmune-related pathways in hMg and indicate the roles of novel miRNAs on NeuroHIV pathogenesis, which deserves further investigations. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

20 pages, 1321 KiB  
Review
Regenerative Immunotherapy for Cancer: Transcription Factor Reprogramming of Tumor-Specific T Cells
by Tyler R. McCaw, Nicholas P. Restifo, Kathrin Plath and Joseph G. Crompton
Cancers 2025, 17(13), 2225; https://doi.org/10.3390/cancers17132225 - 2 Jul 2025
Viewed by 847
Abstract
Cell-based immunotherapy is a promising treatment strategy for cancer. Particularly in the case of solid tumors, however, this strategy only benefits a minority of patients. A critical limitation to immunotherapy is T cell exhaustion, a terminal differentiation state characterized by loss of self-renewal [...] Read more.
Cell-based immunotherapy is a promising treatment strategy for cancer. Particularly in the case of solid tumors, however, this strategy only benefits a minority of patients. A critical limitation to immunotherapy is T cell exhaustion, a terminal differentiation state characterized by loss of self-renewal and cytotoxic capacity. For over a decade, regenerative immunology approaches to overcome exhaustion and restore stem-like features of T cells have been pursued. The reprogramming of tumor-specific T cells back to a less-differentiated, stem-like state using induced pluripotent stem cell (iPSC) technology has been viewed as a powerful and highly appealing strategy to overcome the limitations imposed by exhaustion. However, clinical translation of these approaches has been stymied by the requirement for subsequent iPSC-to-T cell re-maturation strategies, vanishingly low efficiencies, and resource-intensive cell culture protocols. In this review, we discuss the emergence of transcription factor reprogramming to iPSCs, contemporary techniques for T cell reprogramming, as well as techniques for re-differentiation into mature T cells. We discuss the potential clinical utility of T cell reprogramming and re-maturation strategies alongside progress and major roadblocks toward clinical translation. If these challenges can be addressed, transcription factor reprogramming of T cells into iPSCs and subsequent re-maturation into tumor-specific stem-like T cells may represent an incredibly efficacious approach to cancer immunotherapy. Full article
(This article belongs to the Special Issue Advancements in Preclinical Models for Solid Cancers)
Show Figures

Figure 1

14 pages, 1948 KiB  
Article
Establishing a 3D Spheroid Model of Cholinergic Neurons from SH-SY5Y Cells for Neurotoxicity Assessment
by Felipe Franco-Campos, Mónica Fernández-Franzón, Yelko Rodríguez-Carrasco and María-José Ruiz
Toxins 2025, 17(7), 336; https://doi.org/10.3390/toxins17070336 - 2 Jul 2025
Viewed by 565
Abstract
The nervous system maintains homeostasis and coordinated behavior through complex neuronal and glial cells. Traditional models, such as primary rodent neurons and human-induced pluripotent stem cell (hIPSC)-derived neurons, have advanced our understanding of neuronal function and neurotoxic damage; however, they are costly and [...] Read more.
The nervous system maintains homeostasis and coordinated behavior through complex neuronal and glial cells. Traditional models, such as primary rodent neurons and human-induced pluripotent stem cell (hIPSC)-derived neurons, have advanced our understanding of neuronal function and neurotoxic damage; however, they are costly and labor-intensive. SH-SY5Y cells, an immortalized human neuroblastoma cell line, provide a more accessible alternative for studying neuronal processes and neurotoxicity. However, their limited capacity to differentiate into specific neuronal phenotypes remains a challenge. To address this limitation, differentiation protocols using neuronal factors and vitamins have been developed, primarily in two-dimensional (2D) cultures, which reduces physiological relevance. Here, we present a novel three-dimensional (3D) SH-SY5Y model incorporating 2D differentiation protocols to generate cholinergic neurons (ChAT+). This model enhances neurotoxicity studies related to pesticides and mycotoxins. Our protocol produces homogeneous spheroids differentiated into cholinergic neurons using serum restriction and specific factors, maintaining viability and circularity for up to 22 days. Differentiation was validated by immunofluorescence and Western blot by Choline acetyltransferase (ChAT) expression. This scalable and reproducible 3D model provides a valuable in vitro tool for neurotoxicological research, improving physiological relevance and enabling the study of cholinergic neuron differentiation and function. Full article
Show Figures

Figure 1

15 pages, 7842 KiB  
Article
Role of BMPR2 Mutation in Lung Organoid Differentiation
by Simin Jiang, Dian Chen, Liangliang Tian, Zihang Pan, Huanyu Long, Lanhe Chu, Weijing Kong, Qiyang Yao, Xiaojing Ma, Yun Zhao, Kai Wang and Yahong Chen
Biomedicines 2025, 13(7), 1623; https://doi.org/10.3390/biomedicines13071623 - 2 Jul 2025
Viewed by 431
Abstract
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, [...] Read more.
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, the role of BMPR2 mutations in lung epithelial development remains unclear. Methods: We generated induced pluripotent stem cells (iPSCs) from a patient carrying a BMPR2 mutation (c.631C>T), and gene-corrected isogenic controls were created using CRISPR/Cas9. These iPSCs were differentiated into lung progenitor cells and subsequently cultured to generate alveolar and airway organoids. The differentiation efficiency and epithelial lineage specification were assessed using immunofluorescence, flow cytometry, and qRT-PCR. Results: BMPR2-mutant iPSCs showed no impairment in forming a definitive or anterior foregut endoderm. However, a significant reduction in lung progenitor cell differentiation was observed. Further, while alveolar epithelial differentiation remained largely unaffected, airway organoids derived from BMPR2-mutant cells exhibited impaired goblet and ciliated cell development, with an increase in basal and club cell markers, indicating skewing toward undifferentiated airway cell populations. Conclusions: BMPR2 dysfunction selectively impairs late-stage lung progenitor specification and disrupts airway epithelial maturation, providing new insights into the developmental impacts of BMPR2 mutations. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

20 pages, 11811 KiB  
Article
Macrophage Migration Inhibitory Factor Suppresses Natural Killer Cell Response and Promotes Hypoimmunogenic Stem Cell Engraftment Following Spinal Cord Injury
by Shenglan Li, Yiyan Zheng, Haipeng Xue, Haiwei Zhang, Jiayun Wu, Xiaohui Chen, Miguel Perez Bouza, Samantha Yi, Hongxia Zhou, Xugang Xia, Xianmin Zeng, Qi Lin Cao and Ying Liu
Biology 2025, 14(7), 791; https://doi.org/10.3390/biology14070791 - 30 Jun 2025
Viewed by 460
Abstract
Human induced pluripotent stem cells (iPSCs) offer immense potential as a source for cell therapy in spinal cord injury (SCI) and other diseases. The development of hypoimmunogenic, universal cells that could be transplanted to any recipient without requiring a matching donor could significantly [...] Read more.
Human induced pluripotent stem cells (iPSCs) offer immense potential as a source for cell therapy in spinal cord injury (SCI) and other diseases. The development of hypoimmunogenic, universal cells that could be transplanted to any recipient without requiring a matching donor could significantly enhance their therapeutic potential and accelerate clinical translation. To create off-the-shelf hypoimmunogenic cells, we used CRISPR-Cas9 to delete B2M (HLA class I) and CIITA (master regulator of HLA class II). Double-knockout (DKO) iPSC-derived neural progenitor cells (NPCs) evaded T-cell-mediated immune rejection in vitro and after grafting into the injured spinal cord of athymic rats and humanized mice. However, loss of HLA class I heightened susceptibility to host natural killer (NK) cell attack, limiting graft survival. To counter this negative effect, we engineered DKO NPCs to overexpress macrophage migration inhibitory factor (MIF), an NK cell checkpoint ligand. MIF expression markedly reduced NK cell-mediated cytotoxicity and improved long-term engraftment and integration of NPCs in the animal models for spinal cord injury. These findings demonstrate that MIF overexpression, combined with concurrent B2M and CIITA deletion, generates hiPSC neural derivatives that escape both T- and NK-cell surveillance. This strategy provides a scalable route to universal donor cells for regenerative therapies in SCI and potentially other disorders. Full article
(This article belongs to the Special Issue Stem Cells in Neurological Disorders: Challenges and Opportunities)
Show Figures

Figure 1

26 pages, 410 KiB  
Perspective
The Use of MSCs, iPSCs, and EVs in the Repair of Human MSK Tissues: Is Ultimate Success Dependent on Developing Excellent Implant Materials as Well as Creating an Optimal Environment for Implantation? What Is the Rationale for These Choices?
by David A. Hart
Int. J. Mol. Sci. 2025, 26(13), 6250; https://doi.org/10.3390/ijms26136250 - 28 Jun 2025
Viewed by 376
Abstract
It has been >35 years since the cells described as mesenchymal stem cells (MSCs) were reported to have multi-lineage potential, which opened the possibility that they could be used to repair injured or diseased musculoskeletal tissues. Since that time, similar cells have been [...] Read more.
It has been >35 years since the cells described as mesenchymal stem cells (MSCs) were reported to have multi-lineage potential, which opened the possibility that they could be used to repair injured or diseased musculoskeletal tissues. Since that time, similar cells have been isolated from many tissues, again raising expectations that they could be used to repair or regenerate many types of tissues. While some progress in using these cells, as well as induced pluripotent stem cells (iPSCs), to facilitate the repair of tissues has been achieved, an emerging body of literature would suggest that the cells in question facilitate repair via released extracellular vesicles (EVs) that contain a cargo of molecules which induce endogenous cells to do the actual repair. How the “stemness” of the cells is involved in such processes remains to be elucidated. While progress in the repair of compromised tissues has been obtained, from some perspectives, the progress has been challenging and successful translation to patients has been slow. In part, this has been due to considerable emphasis being placed on the cells or EVs, and not as much on the environments in which they are implanted. However, successful outcomes likely depend on both the development of optimized materials to be implanted and an environment that is conducive to success after implantation. This perspective article reviews some of the options regarding the implantable materials and the variables or factors that could impact the local environment’s suitability for success following implantation. In addition, attempts are made to reconcile the designation of endogenous cells labeled MSCs and their potential roles as regulators of tissue integrity in vivo. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
23 pages, 8906 KiB  
Article
9-cis-Retinoic Acid Improves Disease Modelling in iPSC-Derived Liver Organoids
by Mina Kazemzadeh Dastjerd, Vincent Merens, Ayla Smout, Rebeca De Wolf, Christophe Chesné, Catherine Verfaillie, Stefaan Verhulst and Leo A. van Grunsven
Cells 2025, 14(13), 983; https://doi.org/10.3390/cells14130983 - 26 Jun 2025
Viewed by 827
Abstract
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. [...] Read more.
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. Induced pluripotent stem cells (iPSCs) allow for patient-specific liver modelling, but current models based on iPSC-derived hepatocytes (iHepatocytes) and HSCs (iHSCs) still lack key functions. We developed organoids of iHepatocytes and iHSCs and compared them to HepaRG and primary HSC organoids. RNA sequencing analysis comparison of these cultures identified a potential role for the transcription factor RXRA in hepatocyte differentiation and HSC quiescence. Treating cells with the RXRA ligand 9-cis-retinoic acid (9CRA) promoted iHepatocyte metabolism and iHSC quiescence. In organoids, 9CRA enhanced fibrotic response to TGF-β and acetaminophen, highlighting its potential for refining iPSC-based liver fibrosis models to more faithfully replicate human drug-induced liver injury and fibrotic conditions. Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
Show Figures

Graphical abstract

47 pages, 1732 KiB  
Review
CRISPR/Cas9 and iPSC-Based Therapeutic Approaches in Alzheimer’s Disease
by Ivana Raffaele, Giovanni Luca Cipriano, Ivan Anchesi, Salvatore Oddo and Serena Silvestro
Antioxidants 2025, 14(7), 781; https://doi.org/10.3390/antiox14070781 - 25 Jun 2025
Viewed by 1797
Abstract
Alzheimer’s disease (AD), the leading cause of dementia, remains poorly understood despite decades of intensive research, which continues to hinder the development of effective treatments. As a complex multifactorial disorder, AD lacks a cure to halt the progressive neurodegeneration, and the precise mechanisms [...] Read more.
Alzheimer’s disease (AD), the leading cause of dementia, remains poorly understood despite decades of intensive research, which continues to hinder the development of effective treatments. As a complex multifactorial disorder, AD lacks a cure to halt the progressive neurodegeneration, and the precise mechanisms underlying its onset and progression remain elusive, limiting therapeutic options. Due to the challenges of studying neuronal cells in vivo, technologies such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) and human-induced pluripotent stem cells (hiPSCs) are key for identifying therapeutic targets, although they face technical and ethical hurdles in their early stages. CRISPR/Cas9 and hiPSCs are promising for disease modeling and therapy, but off-target effects and the complexity of gene editing in the brain limit their use. CRISPR technology enables specific genetic modifications in key AD-related genes, such as APP, PSEN1, PSEN2, and APOE, providing valuable insights into disease mechanisms. iPSC-derived neurons, astrocytes, microglia, and 3D organoids can recapitulate key aspects of human AD pathology, but they do not fully replicate the complexity of the human brain, limiting clinical applicability. These technologies advance studies of amyloid processing, tau aggregation, neuroinflammation, and oxidative stress, yet translating them into clinical therapies remains challenging. Despite the promise of CRISPR/Cas9 and iPSCs for precision medicine, gaps in knowledge about their long-term safety and efficacy must be addressed before clinical implementation. Full article
Show Figures

Figure 1

16 pages, 3298 KiB  
Article
A Novel Pathogenic Variant Identified in HIKESHI-Related Hypomyelinating Leukodystrophy Disrupts Heat Shock Response in iPSCs
by Mahmood Ali Saleh, Maria Boichuck, Aner Ottolenghi, Tatiana Rabinski, Omri Goldenthal, Daniel Sevilla Sanchez, Aviva Fattal-Valevski, Gali Heimer, Shay Ben-Shachar, Stephanie Libzon, Orly Gershoni-Yahalom, Anat Ben-Zvi, Raz Zarivach, Ayelet Zerem, Benyamin Rosental and Gad David Vatine
Int. J. Mol. Sci. 2025, 26(13), 6037; https://doi.org/10.3390/ijms26136037 - 24 Jun 2025
Viewed by 630
Abstract
HIKESHI-related hypomyelinating leukodystrophy (HHL) is a life-threatening disorder caused by homozygous pathogenic variants in HIKESHI. Symptoms include infantile onset progressive spastic dystonic quadriplegia, nystagmus, failure to thrive, diffused hypomyelination, and severe morbidity or death following febrile illness. V54L variants in HIKESHI are [...] Read more.
HIKESHI-related hypomyelinating leukodystrophy (HHL) is a life-threatening disorder caused by homozygous pathogenic variants in HIKESHI. Symptoms include infantile onset progressive spastic dystonic quadriplegia, nystagmus, failure to thrive, diffused hypomyelination, and severe morbidity or death following febrile illness. V54L variants in HIKESHI are particularly prevalent within the Ashkenazi Jewish population. Here, we identified a novel P78S disease-causing variant in HIKESHI in a patient of Christian Arab origin, presenting with clinical and radiologic features characteristic of HHL. In silico analysis suggests that the mutated residue may affect the HIKESHI protein’s dimerization domain. We generated a comprehensive set of induced pluripotent stem cells (iPSCs) from the index case and two additional HHL patients. To investigate mechanisms potentially linked to febrile illness in HHL, we used these cells to study the heat shock (HS) response. HHL-iPSCs showed dramatically decreased levels of HIKESHI compared with healthy controls following HS. In addition, they exhibited increased HSP70 mRNA levels in response to HS, suggesting an increased sensitivity. HHL-iPSCs had impaired HSP70 translocation to the nucleus. Our results provide a human-relevant model for HHL. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

19 pages, 6401 KiB  
Article
Identification of Transcriptomic Differences in Induced Pluripotent Stem Cells and Neural Progenitors from Amyotrophic Lateral Sclerosis Patients Carrying Different Mutations: A Pilot Study
by Chiara Sgromo, Martina Tosi, Cristina Olgasi, Fabiola De Marchi, Francesco Favero, Giorgia Venturin, Beatrice Piola, Alessia Cucci, Lucia Corrado, Letizia Mazzini, Sandra D’Alfonso and Antonia Follenzi
Cells 2025, 14(13), 958; https://doi.org/10.3390/cells14130958 - 23 Jun 2025
Viewed by 536
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS by generating induced pluripotent stem cells (iPSCs) from peripheral blood of ALS patients and healthy donors. iPSCs showed the typical morphology, expressed stem cell markers both at RNA (OCT4, SOX2, KLF4, and c-Myc) and protein (Oct4, Sox2, SSEA3, and Tra1-60) levels. Moreover, embryoid bodies expressing the three germ-layer markers and neurospheres expressing neural progenitor markers were generated. Importantly, the transcriptomic profiles of iPSCs and neurospheres were analyzed to highlight the differences between ALS patients and healthy controls. Interestingly, the differentially expressed genes (DEGs) shared across all ALS iPSCs are linked to extracellular matrix, highlighting its importance in ALS progression. In contrast, ALS neurospheres displayed widespread deficits in neuronal pathways, although these DEGs were varied among patients, reflecting the disease’s heterogeneity. Overall, we generated iPSC lines from ALS patients with diverse genetic backgrounds offering a tool for unravelling the intricate molecular landscape of ALS, paving the way for identifying key pathways implicated in pathogenesis and the disease’s phenotypic variability. Full article
(This article belongs to the Collection Molecular Insights into Neurodegenerative Diseases)
Show Figures

Figure 1

21 pages, 16644 KiB  
Article
Artificial Intelligence Approach in Machine Learning-Based Modeling and Networking of the Coronavirus Pathogenesis Pathway
by Shihori Tanabe, Sabina Quader, Ryuichi Ono, Hiroyoshi Y. Tanaka, Akihisa Yamamoto, Motohiro Kojima, Edward J. Perkins and Horacio Cabral
Curr. Issues Mol. Biol. 2025, 47(6), 466; https://doi.org/10.3390/cimb47060466 - 17 Jun 2025
Viewed by 499
Abstract
The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral [...] Read more.
The coronavirus pathogenesis pathway, which consists of severe acute respiratory syndrome (SARS) coronavirus infection and signaling pathways, including the interferon pathway, the transforming growth factor beta pathway, the mitogen-activated protein kinase pathway, the apoptosis pathway, and the inflammation pathway, is activated upon coronaviral infection. An artificial intelligence approach based on machine learning was utilized to develop models with images of the coronavirus pathogenesis pathway to predict the activation states. Data on coronaviral infection held in a database were analyzed with Ingenuity Pathway Analysis (IPA), a network pathway analysis tool. Data related to SARS coronavirus 2 (SARS-CoV-2) were extracted from more than 100,000 analyses and datasets in the IPA database. A total of 27 analyses, including nine analyses of SARS-CoV-2-infected human-induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes and fibroblasts, and a total of 22 analyses of SARS-CoV-2-infected lung adenocarcinoma (LUAD), were identified as being related to “human” and “SARS coronavirus 2” in the database. The coronavirus pathogenesis pathway was activated in SARS-CoV-2-infected iPSC-derived cells and LUAD cells. A prediction model was developed in Python 3.11 using images of the coronavirus pathogenesis pathway under different conditions. The prediction model of activation states of the coronavirus pathogenesis pathway may aid in treatment identification. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

Back to TopTop