Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = indoor air-temperature forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 7778 KB  
Proceeding Paper
Adaptive IoT-Based Platform for CO2 Forecasting Using Generative Adversarial Networks: Enhancing Indoor Air Quality Management with Minimal Data
by Alessandro Leone, Andrea Manni, Andrea Caroppo and Gabriele Rescio
Eng. Proc. 2025, 110(1), 3; https://doi.org/10.3390/engproc2025110003 - 30 Oct 2025
Viewed by 343
Abstract
Monitoring indoor air quality is vital for health, as CO2 is a major pollutant. An automated system that accurately forecasts CO2 levels can optimize HVAC management, preventing sudden increases and reducing energy waste while maintaining occupant comfort. Traditionally, such systems require [...] Read more.
Monitoring indoor air quality is vital for health, as CO2 is a major pollutant. An automated system that accurately forecasts CO2 levels can optimize HVAC management, preventing sudden increases and reducing energy waste while maintaining occupant comfort. Traditionally, such systems require extensive datasets collected over months to train algorithms, making them computational expensive and inefficient. To address this limitation, an adaptive IoT-based platform has been developed, leveraging a limited set of recent data to forecast CO2 trends. Tested in a real-world setting, the system analyzed parameters such as physical activity, temperature, humidity, and CO2 to ensure accurate predictions. Data acquisition was performed using the Smartex WWS T-shirt for physical activity data and the UPSense UPAI3-CPVTHA environmental sensor for other measurements. The chosen sensor devices are wireless and minimally invasive, while data processing was carried out on a low-power embedded PC. The proposed forecasting model adopts an innovative approach. After a 5-day training period, a Generative Adversarial Network enhances the dataset by simulating a 10-day training period. The model utilizes a Generative Adversarial Network with a Long Short-Term Memory network as the generator to predict future CO2 values based on historical data, while the discriminator, also a Long Short-Term Memory network, distinguishes between actual and generated CO2 values. This approach, based on Conditional Generative Adversarial Networks, effectively captures data distributions, enabling more accurate multi-step probabilistic forecasts. In this way, the framework maintains a Root Mean Square Error of approximately 8 ppm, matching the performance of our previous approach, while reducing the need for real training data from 10 to just 5 days. Furthermore, it achieves accuracy comparable to other state-of-the-art methods that typically requires weeks or even months of training. This advancement significantly enhances computational efficiency and reduces data requirements for model training, improving the system’s practicality for real-world applications. Full article
(This article belongs to the Proceedings of The 2nd International Conference on AI Sensors and Transducers)
Show Figures

Figure 1

44 pages, 4243 KB  
Review
AI-Powered Building Ecosystems: A Narrative Mapping Review on the Integration of Digital Twins and LLMs for Proactive Comfort, IEQ, and Energy Management
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Zhanel Baigarayeva, Nurdaulet Izmailov, Tolebi Riza, Abdulaziz Abdukarimov, Miras Mukazhan and Bakdaulet Zhumagulov
Sensors 2025, 25(17), 5265; https://doi.org/10.3390/s25175265 - 24 Aug 2025
Cited by 2 | Viewed by 3226
Abstract
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis [...] Read more.
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis of the complete technological evolution from IoT sensors to generative AI. We uniquely frame this progression within a human-centric architecture that integrates digital twins of both the building (DT-B) and its occupants (DT-H), providing a forward-looking perspective on occupant comfort and energy management. We find that deep reinforcement learning (DRL) agents, often developed within physics-calibrated digital twins, reduce annual HVAC demand by 10–35% while maintaining an operative temperature within ±0.5 °C and CO2 below 800 ppm. These comfort and IAQ targets are consistent with ASHRAE Standard 55 (thermal environmental conditions) and ASHRAE Standard 62.1 (ventilation for acceptable indoor air quality); keeping the operative temperature within ±0.5 °C of the setpoint and indoor CO2 near or below ~800 ppm reflects commonly adopted control tolerances and per-person outdoor air supply objectives. Regarding energy impacts, simulation studies commonly report higher double-digit reductions, whereas real building deployments typically achieve single- to low-double-digit savings; we therefore report simulation and field results separately. Supervised learners, including gradient boosting and various neural networks, achieve 87–97% accuracy for short-term load, comfort, and fault forecasting. Furthermore, unsupervised models successfully mine large-scale telemetry for anomalies and occupancy patterns, enabling adaptive ventilation that can cut sick building complaints by 40%. Despite these gains, deployment is hindered by fragmented datasets, interoperability issues between legacy BAS and modern IoT devices, and the computer energy and privacy–security costs of large models. The key research priorities include (1) open, high-fidelity IEQ benchmarks; (2) energy-aware, on-device learning architectures; (3) privacy-preserving federated frameworks; (4) hybrid, physics-informed models to win operator trust. Addressing these challenges is pivotal for scaling AI from isolated pilots to trustworthy, human-centric building ecosystems. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

31 pages, 1803 KB  
Article
A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Baglan Imanbek, Waldemar Wójcik and Yedil Nurakhov
Energies 2025, 18(15), 4164; https://doi.org/10.3390/en18154164 - 6 Aug 2025
Cited by 2 | Viewed by 1484
Abstract
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance [...] Read more.
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO2), particulate matter (PM2.5), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R2) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM2.5) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load. Full article
Show Figures

Figure 1

22 pages, 13770 KB  
Article
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning
by Jiazheng Zhu, Xize Huang, Xiaoyu Liang, Meng Wang and Yu Zhang
Plants 2025, 14(15), 2402; https://doi.org/10.3390/plants14152402 - 3 Aug 2025
Viewed by 808
Abstract
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into [...] Read more.
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into an epidemic under favorable environmental conditions. Accurate prediction and determination of the prevention and control period represent both a critical challenge and key focus area in managing rubber-tree powdery mildew. This study investigates the effects of spore concentration, environmental factors, and infection time on the progression of powdery mildew in rubber trees. By employing six distinct machine learning model construction methods, with the disease index of powdery mildew in rubber trees as the response variable and spore concentration, temperature, humidity, and infection time as predictive variables, a preliminary predictive model for the disease index of rubber-tree powdery mildew was developed. Results from indoor inoculation experiments indicate that spore concentration directly influences disease progression and severity. Higher spore concentrations lead to faster disease development and increased severity. The optimal relative humidity for powdery mildew development in rubber trees is 80% RH. At varying temperatures, the influence of humidity on the disease index differs across spore concentration, exhibiting distinct trends. Each model effectively simulates the progression of powdery mildew in rubber trees, with predicted values closely aligning with observed data. Among the models, the Kernel Ridge Regression (KRR) model demonstrates the highest accuracy, the R2 values for the training set and test set were 0.978 and 0.964, respectively, while the RMSE values were 4.037 and 4.926, respectively. This research provides a robust technical foundation for reducing the labor intensity of traditional prediction methods and offers valuable insights for forecasting airborne forest diseases. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

28 pages, 4067 KB  
Article
Comprehensive Assessment of Indoor Thermal in Vernacular Building Using Machine Learning Model with GAN-Based Data Imputation: A Case of Aceh Region, Indonesia
by Muslimsyah Muslimsyah, Safwan Safwan and Andri Novandri
Buildings 2025, 15(14), 2448; https://doi.org/10.3390/buildings15142448 - 11 Jul 2025
Cited by 1 | Viewed by 954
Abstract
This study introduces a predictive model for estimating indoor room temperatures in vernacular building using external environmental factors such as air temperature, humidity, sunshine duration, and wind speed. The dataset was sourced from the Meteorology, Climatology, and Geophysics Agency and supplemented with direct [...] Read more.
This study introduces a predictive model for estimating indoor room temperatures in vernacular building using external environmental factors such as air temperature, humidity, sunshine duration, and wind speed. The dataset was sourced from the Meteorology, Climatology, and Geophysics Agency and supplemented with direct measurements collected from four rooms within a vernacular building in Aceh Province, Indonesia. A Generative Adversarial Network (GAN)-based imputation technique was implemented to address missing data during preprocessing. The prediction model adopts a hybrid framework that integrates Multiple Linear Regression (MLR) and Artificial Neural Networks (ANNs), with both models optimized using Support Vector Regression (SVR) to better capture the nonlinear dynamics between inputs and outputs. The evaluation results show that the ANN-SVR model achieved the lowest average MAE¯ and RMSE¯ values, at 0.164 and 0.218, respectively, and the highest average R¯ and R2¯ values, at 0.785 and 0.618. Evaluation results indicate that the ANN-SVR model consistently achieved the lowest error rates and the highest correlation coefficients across all four rooms, identifying it as the most effective model for forecasting indoor thermal conditions. These results validate the combined use of ANN-SVR for prediction and GAN for preprocessing as a powerful strategy to enhance data quality and model performance. The findings offer a scientific basis for architectural planning to improve thermal comfort in vernacular buildings such as the Rumoh Aceh. Full article
(This article belongs to the Special Issue Thermal Environment in Buildings: Innovations and Safety Perspectives)
Show Figures

Figure 1

28 pages, 5769 KB  
Article
Assessment and Enhancement of Indoor Environmental Quality in a School Building
by Ronan Proot-Lafontaine, Abdelatif Merabtine, Geoffrey Henriot and Wahid Maref
Sustainability 2025, 17(12), 5576; https://doi.org/10.3390/su17125576 - 17 Jun 2025
Viewed by 1109
Abstract
Achieving both indoor environmental quality (IEQ) and energy efficiency in school buildings remains a challenge, particularly in older structures where renovation strategies often lack site-specific validation. This study evaluates the impact of energy retrofits on a 1970s primary school in France by integrating [...] Read more.
Achieving both indoor environmental quality (IEQ) and energy efficiency in school buildings remains a challenge, particularly in older structures where renovation strategies often lack site-specific validation. This study evaluates the impact of energy retrofits on a 1970s primary school in France by integrating in situ measurements with a validated numerical model for forecasting energy demand and IEQ. Temperature, humidity, and CO2 levels were recorded before and after renovations, which included insulation upgrades and an air handling unit replacement. Results indicate significant improvements in winter thermal comfort (PPD < 20%) with a reduced heating water temperature (65 °C to 55 °C) and stable indoor air quality (CO2 < 800 ppm), without the need for window ventilation. Night-flushing ventilation proved effective in mitigating overheating by shifting peak temperatures outside school hours, contributing to enhanced thermal regulation. Long-term energy consumption analysis (2019–2022) revealed substantial reductions in gas and electricity use, 15% and 29% of energy saving for electricity and gas, supporting the effectiveness of the applied renovation strategies. However, summer overheating (up to 30 °C) persisted, particularly in south-facing upper floors with extensive glazing, underscoring the need for additional optimization in solar gain management and heating control. By providing empirical validation of renovation outcomes, this study bridges the gap between theoretical predictions and real-world effectiveness, offering a data-driven framework for enhancing IEQ and energy performance in aging school infrastructure. Full article
(This article belongs to the Special Issue New Insights into Indoor Air Quality in Sustainable Buildings)
Show Figures

Figure 1

30 pages, 23341 KB  
Article
Methodological Advances in Temperature Dynamics Modeling for Energy-Efficient Indoor Air Management Systems
by Ferran Iglesias, Joaquim Massana, Llorenç Burgas, Narcís Planellas and Joan Colomer
Appl. Sci. 2025, 15(8), 4291; https://doi.org/10.3390/app15084291 - 13 Apr 2025
Cited by 2 | Viewed by 737
Abstract
Heating, ventilation, and air conditioning (HVAC) systems account for up to 40% of the total energy consumption in buildings. Improving the modeling of HVAC components is necessary to optimize energy efficiency, maintain indoor thermal comfort, and reduce their carbon footprint. This work addresses [...] Read more.
Heating, ventilation, and air conditioning (HVAC) systems account for up to 40% of the total energy consumption in buildings. Improving the modeling of HVAC components is necessary to optimize energy efficiency, maintain indoor thermal comfort, and reduce their carbon footprint. This work addresses the lack of a general methodology for data preprocessing by introducing a novel approach for feature extraction and feature selection based on physical equations and expert knowledge that can be applied to any data-driven model. The proposed framework enables the forecasting of indoor temperatures and the energy consumption of individual HVAC components. The methodology is validated with real-world data from a system involving a fan coil unit and a thermal inertia deposit powered by geothermal energy, achieving a coefficient of determination (R2) of 0.98 and mean absolute percentage error (MAPE) of 0.44%. Full article
Show Figures

Figure 1

22 pages, 5429 KB  
Article
Thermal Behavior of a Historic Building Housing Books Across Past and Future Climate Scenarios
by Gianluca Cadelano, Alessandro Bortolin, Antonio della Valle, Giovanni Ferrarini, Paola Cattaneo, Fabio Peron and Giuseppe Emmi
Heritage 2024, 7(12), 6916-6937; https://doi.org/10.3390/heritage7120320 - 7 Dec 2024
Cited by 1 | Viewed by 1936
Abstract
Climate change poses significant challenges for the renovation of historic buildings, requiring a careful balance between preservation and energy efficiency, particularly considering the forecasted rise in temperatures. This study focuses on a medieval building undergoing renovation, examining thermal behaviors based on future climate [...] Read more.
Climate change poses significant challenges for the renovation of historic buildings, requiring a careful balance between preservation and energy efficiency, particularly considering the forecasted rise in temperatures. This study focuses on a medieval building undergoing renovation, examining thermal behaviors based on future climate settings, with particular attention to the rooms housing a book collection. Books require controlled microclimatic conditions that must be ensured for their preservation; hence, the energy use for air conditioning control must be considered during the renovation planning phase. Through on-site monitoring of the thermophysical properties of the building envelope and indoor microclimate, along with energy model software simulations, both historic climate and global warming scenarios were evaluated for their potential impact on thermal behavior and consequently on energy consumption. This study aims at contributing to the long-term sustainability and resilience of historic buildings, as well as proposing best practices for planning interventions involving sensitive cultural heritage materials, considering the effects of climate change in the renovation process. The results show strategies to address the climatic changes through a methodology optimizing renovation interventions. The sizing of air conditioning systems coupled with a less stringent microclimate control mitigates energy requirements, in line with the sustainable management approach. Full article
(This article belongs to the Special Issue Challenges to Heritage Conservation under Climate Change)
Show Figures

Figure 1

18 pages, 10887 KB  
Article
The Cost-Optimal Control of Building Air Conditioner Loads Based on Machine Learning: A Case Study of an Office Building in Nanjing
by Zhenwei Guo, Xinyu Wang, Yao Wang, Fenglei Zhu, Haizhu Zhou, Miao Zhang and Yuxiang Wang
Buildings 2024, 14(10), 3040; https://doi.org/10.3390/buildings14103040 - 24 Sep 2024
Viewed by 2145
Abstract
Building envelopes and indoor environments exhibit thermal inertia, forming a virtual energy storage system in conjunction with the building air conditioner (AC) system. This system represents a current demand response resource for building electricity use. Thus, this study centers on the CatBoost algorithm [...] Read more.
Building envelopes and indoor environments exhibit thermal inertia, forming a virtual energy storage system in conjunction with the building air conditioner (AC) system. This system represents a current demand response resource for building electricity use. Thus, this study centers on the CatBoost algorithm within machine learning (ML) technology, utilizing the LASSO regression model for feature selection and applying the Optuna framework for hyperparameter optimization (HPO) to develop a cost-optimal control method for minimizing building AC loads. This method addresses the challenges associated with traditional load forecasting and control methods, which are often impacted by environmental temperature, building parameters, and user behavior uncertainties. These methods struggle to accurately capture the complex dynamics and nonlinear relationships of AC operations, making it difficult to devise AC operation and virtual energy storage scheduling strategies effectively. The proposed method was applied and validated using a case study of an office building in Nanjing, China. The prediction results showed coefficient of variation in root mean square error (CV-RMSE) values of 6.4% and 2.2%. Compared with the original operating conditions, the indoor temperature remained within a comfortable range, the AC load was reduced by 5.25%, and the operating energy costs were reduced by 24.94%. These results demonstrate that the proposed method offers improved computational efficiency, enhanced model performance, and economic benefits. Full article
Show Figures

Figure 1

11 pages, 851 KB  
Communication
Revealing Long-Term Indoor Air Quality Prediction: An Intelligent Informer-Based Approach
by Hui Long, Jueling Luo, Yalu Zhang, Shijie Li, Si Xie, Haodong Ma and Haonan Zhang
Sensors 2023, 23(18), 8003; https://doi.org/10.3390/s23188003 - 21 Sep 2023
Cited by 8 | Viewed by 3554
Abstract
Indoor air pollution is an urgent issue, posing a significant threat to the health of indoor workers and residents. Individuals engaged in indoor occupations typically spend an average of around 21 h per day in enclosed spaces, while residents spend approximately 13 h [...] Read more.
Indoor air pollution is an urgent issue, posing a significant threat to the health of indoor workers and residents. Individuals engaged in indoor occupations typically spend an average of around 21 h per day in enclosed spaces, while residents spend approximately 13 h indoors on average. Accurately predicting indoor air quality is crucial for the well-being of indoor workers and frequent home dwellers. Despite the development of numerous methods for indoor air quality prediction, the task remains challenging, especially under constraints of limited air quality data collection points. To address this issue, we propose a neural network capable of capturing time dependencies and correlations among data indicators, which integrates the informer model with a data-correlation feature extractor based on MLP. In the experiments of this study, we employ the Informer model to predict indoor air quality in an industrial park in Changsha, Hunan Province, China. The model utilizes indoor and outdoor temperature, humidity, and outdoor particulate matter (PM) values to forecast future indoor particle levels. Experimental results demonstrate the superiority of the Informer model over other methods for both long-term and short-term indoor air quality predictions. The model we propose holds significant implications for safeguarding personal health and well-being, as well as advancing indoor air quality management practices. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

14 pages, 1392 KB  
Article
Predictive Modeling of Indoor Environmental Parameters for Assessing Comfort Conditions in a Kindergarten Setting
by Radostin Mitkov, Dessislava Petrova-Antonova and Petar O. Hristov
Toxics 2023, 11(8), 709; https://doi.org/10.3390/toxics11080709 - 17 Aug 2023
Cited by 3 | Viewed by 2096
Abstract
People tend to spend the majority of their time indoors. Indoor air properties can significantly affect humans’ comfort, health, and productivity. This study utilizes measurement data of indoor conditions in a kindergarten in Sofia, Bulgaria. Autoregressive integrated moving average (ARIMA) and long short-term [...] Read more.
People tend to spend the majority of their time indoors. Indoor air properties can significantly affect humans’ comfort, health, and productivity. This study utilizes measurement data of indoor conditions in a kindergarten in Sofia, Bulgaria. Autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM) recurrent neural network (RNN) models were developed to predict CO2 levels in the educational facility over the next hour based on 2.5 h of past data and allow for near real-time decision-making. The better-performing model, LSTM, is also used for temperature and relative humidity forecasting. Global comfort is then estimated based on threshold values for temperature, humidity, and CO2. The predicted R2 values ranged between 0.938 and 0.981 for the three parameters, while the prediction of global comfort conditions achieved a 91/100 accuracy. Full article
Show Figures

Figure 1

24 pages, 5799 KB  
Article
Applicability of Deep Learning Algorithms for Predicting Indoor Temperatures: Towards the Development of Digital Twin HVAC Systems
by Pooria Norouzi, Sirine Maalej and Rodrigo Mora
Buildings 2023, 13(6), 1542; https://doi.org/10.3390/buildings13061542 - 16 Jun 2023
Cited by 30 | Viewed by 5490
Abstract
The development of digital twins leads to the pathway toward intelligent buildings. Today, the overwhelming rate of data in buildings carries a high amount of information that can provide an opportunity for a digital representation of the buildings and energy optimization strategies in [...] Read more.
The development of digital twins leads to the pathway toward intelligent buildings. Today, the overwhelming rate of data in buildings carries a high amount of information that can provide an opportunity for a digital representation of the buildings and energy optimization strategies in the Heating, Ventilation, and Air Conditioning (HVAC) systems. To implement a successful energy management strategy in a building, a data-driven approach should accurately forecast the HVAC features, in particular the indoor temperatures. Accurate predictions not only increase thermal comfort levels, but also play a crucial role in saving energy consumption. This study aims to investigate the capabilities of data-driven approaches and the development of a model for predicting indoor temperatures. A case study of an educational building is considered to forecast indoor temperatures using machine learning and deep learning algorithms. The algorithms’ performance is evaluated and compared. The important model parameters are sorted out before choosing the best architecture. Considering real data, prediction models are created for indoor temperatures. The results reveal that all the investigated models are successful in predicting indoor temperatures. Hence, the proposed deep neural network model obtained the highest accuracy with an average RMSE of 0.16 °C, which renders it the best candidate for the development of a digital twin. Full article
Show Figures

Figure 1

17 pages, 16030 KB  
Article
Multi-Sensor Platform for Predictive Air Quality Monitoring
by Gabriele Rescio, Andrea Manni, Andrea Caroppo, Anna Maria Carluccio, Pietro Siciliano and Alessandro Leone
Sensors 2023, 23(11), 5139; https://doi.org/10.3390/s23115139 - 28 May 2023
Cited by 16 | Viewed by 3748
Abstract
Air quality monitoring is a very important aspect of providing safe indoor conditions, and carbon dioxide (CO2) is one of the pollutants that most affects people’s health. An automatic system able to accurately forecast CO2 concentration can prevent a sudden [...] Read more.
Air quality monitoring is a very important aspect of providing safe indoor conditions, and carbon dioxide (CO2) is one of the pollutants that most affects people’s health. An automatic system able to accurately forecast CO2 concentration can prevent a sudden rise in CO2 levels through appropriate control of heating, ventilation and air-conditioning (HVAC) systems, avoiding energy waste and ensuring people’s comfort. There are several works in the literature dedicated to air quality assessment and control of HVAC systems; the performance maximisation of such systems is typically achieved using a significant amount of data collected over a long period of time (even months) to train the algorithm. This can be costly and may not respond to a real scenario where the habits of the house occupants or the environment conditions may change over time. To address this problem, an adaptive hardware–software platform was developed, following the IoT paradigm, with a high level of accuracy in forecasting CO2 trends by analysing only a limited window of recent data. The system was tested considering a real case study in a residential room used for smart working and physical exercise; the parameters analysed were the occupants’ physical activity, temperature, humidity and CO2 in the room. Three deep-learning algorithms were evaluated, and the best result was obtained with the Long Short-Term Memory network, which features a Root Mean Square Error of about 10 ppm with a training period of 10 days. Full article
(This article belongs to the Special Issue Air Quality Monitoring Sensors Network)
Show Figures

Figure 1

27 pages, 19917 KB  
Article
Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN
by Nishant Raj Kapoor, Ashok Kumar, Anuj Kumar, Dilovan Asaad Zebari, Krishna Kumar, Mazin Abed Mohammed, Alaa S. Al-Waisy and Marwan Ali Albahar
Int. J. Environ. Res. Public Health 2022, 19(24), 16862; https://doi.org/10.3390/ijerph192416862 - 15 Dec 2022
Cited by 12 | Viewed by 2765
Abstract
The emerging novel variants and re-merging old variants of SARS-CoV-2 make it critical to study the transmission probability in mixed-mode ventilated office environments. Artificial neural network (ANN) and curve fitting (CF) models were created to forecast the R-Event. The R-Event is defined as [...] Read more.
The emerging novel variants and re-merging old variants of SARS-CoV-2 make it critical to study the transmission probability in mixed-mode ventilated office environments. Artificial neural network (ANN) and curve fitting (CF) models were created to forecast the R-Event. The R-Event is defined as the anticipated number of new infections that develop in particular events occurring over the course of time in any defined space. In the spring and summer of 2022, real-time data for an office environment were collected in India in a mixed-mode ventilated office space in a composite climate. The performances of the proposed CF and ANN models were compared with respect to traditional statistical indicators, such as the correlation coefficient, RMSE, MAE, MAPE, NS index, and a20-index, in order to determine the merit of the two approaches. Thirteen input features, namely the indoor temperature (TIn), indoor relative humidity (RHIn), area of opening (AO), number of occupants (O), area per person (AP), volume per person (VP), CO2 concentration (CO2), air quality index (AQI), outer wind speed (WS), outdoor temperature (TOut), outdoor humidity (RHOut), fan air speed (FS), and air conditioning (AC), were selected to forecast the R-Event as the target. The main objective was to determine the relationship between the CO2 level and R-Event, ultimately producing a model for forecasting infections in office building environments. The correlation coefficients for the CF and ANN models in this case study were 0.7439 and 0.9999, respectively. This demonstrates that the ANN model is more accurate in R-Event prediction than the curve fitting model. The results show that the proposed ANN model is reliable and significantly accurate in forecasting the R-Event values for mixed-mode ventilated offices. Full article
(This article belongs to the Special Issue Advances in Indoor Environmental Quality)
Show Figures

Figure 1

19 pages, 6098 KB  
Article
Assessment of Indoor Air Quality in Academic Buildings Using IoT and Deep Learning
by Mohamed Marzouk and Mohamed Atef
Sustainability 2022, 14(12), 7015; https://doi.org/10.3390/su14127015 - 8 Jun 2022
Cited by 32 | Viewed by 6305
Abstract
Humans spend most of their lifetime indoors; thus, it is important to keep indoor air quality within acceptable levels. As a result, many initiatives have been developed by multiple research centers or through academic studies to address the harmful effects of increased indoor [...] Read more.
Humans spend most of their lifetime indoors; thus, it is important to keep indoor air quality within acceptable levels. As a result, many initiatives have been developed by multiple research centers or through academic studies to address the harmful effects of increased indoor pollutants on public health. This research introduces a system for monitoring different air parameters to evaluate the indoor air quality (IAQ) and to provide real-time readings. The proposed system aims to enhance planning and controlling measures and increase both safety and occupants’ comfort. The system combines microcontrollers and electronic sensors to form an Internet of Things (IoT) solution that collects different indoor readings. The readings are then compared with outdoor readings for the same experiment period and prepared for further processing using artificial intelligence (AI) models. The results showed the high effectiveness of the IoT device in transferring data via Wi-Fi with minimum disruptions and missing data. The average readings for temperature, humidity, air pressure, CO2, CO, and PM2.5 in the presented case study are 30 °C, 42%, 100,422 pa, 460 ppm, 2.2 ppm, and 15.3 µ/m3, respectively. The developed model was able to predict multiple air parameters with acceptable accuracy. It can be concluded that the proposed system proved itself as a powerful forecasting and management tool for monitoring and controlling IAQ. Full article
(This article belongs to the Special Issue IT-Enabled Sustainability and Development)
Show Figures

Figure 1

Back to TopTop