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Abstract: Humans spend most of their lifetime indoors; thus, it is important to keep indoor air quality
within acceptable levels. As a result, many initiatives have been developed by multiple research
centers or through academic studies to address the harmful effects of increased indoor pollutants on
public health. This research introduces a system for monitoring different air parameters to evaluate
the indoor air quality (IAQ) and to provide real-time readings. The proposed system aims to enhance
planning and controlling measures and increase both safety and occupants’ comfort. The system
combines microcontrollers and electronic sensors to form an Internet of Things (IoT) solution that
collects different indoor readings. The readings are then compared with outdoor readings for the same
experiment period and prepared for further processing using artificial intelligence (AI) models. The
results showed the high effectiveness of the IoT device in transferring data via Wi-Fi with minimum
disruptions and missing data. The average readings for temperature, humidity, air pressure, CO2, CO,
and PM2.5 in the presented case study are 30 ◦C, 42%, 100,422 pa, 460 ppm, 2.2 ppm, and 15.3 µ/m3,
respectively. The developed model was able to predict multiple air parameters with acceptable
accuracy. It can be concluded that the proposed system proved itself as a powerful forecasting and
management tool for monitoring and controlling IAQ.

Keywords: indoor air quality; Internet of Things; artificial intelligence; buildings environment;
deep learning

1. Introduction

According to the US Environmental Protection Agency [1], poor indoor air quality
(IAQ) is considered a major risk to human health. People spend most of their lifetime
indoors, where some pollutant concentrations are as high as five times more than the
pollutants outdoors. In recent years, pollutant concentrations have increased due to a
lack of ventilation and the extensive use of synthetic materials in both residential and
commercial buildings that hinder air exchange, certain occupant behaviors, and chemicals
used in personal products. Those who are affected the most are young adults and those
with respiratory diseases. Weather conditions and building quality represent an additional
concern, since the outdoor air can easily flow inside through cracks and windows, affecting
different rooms and spaces inside; even those under controlled ventilation remain vulnera-
ble to air pollutants. The ultimate goal of any building is to improve quality of life and to
provide occupants with a sustainable, healthy environment. Building studies show that
many health problems are caused by poor indoor air quality and the economic value of a
building is badly affected if the building is known for its poor performance in air quality [2].
Indoor air quality and sustainability management have become vital considerations in
today’s human lives. Buildings that are unique in nature, such as hospitals, are in need of
adequate control of their indoor environment, and in such cases, a sustainable approach
is highly required to continuously evaluate and control any risks that may affect patient
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health [3]. The term “sustainability development” is often used to describe an approach to
improve quality of life, thus providing a healthy environment and enhancing both social
and economic conditions for generations to come [4].

There is growing attention given to indoor air quality (IAQ) due to its effects on
occupants’ comfort and productivity. Indoor air quality depends on parameters that are not
easily measured, and such a challenge requires a fundamental innovation. The Internet of
things (IoT) can be used as an alternative to measure predefined indoor air parameters, but
it is associated with technical details (i.e., sensor availability and Wi-Fi connectivity). Since
the IAQ parameters will depend on continuous monitoring for managing and controlling
later, cloud services can be a good option to effectively store and capture trends from
data. However, choosing a suitable cloud for IoT applications remain a challenging task.
The main objective of this research is to develop a methodology for measuring different
indoor parameters with the ability to store large amounts of data and use prediction models
to enhance both forecasting and controlling ability. This paper’s objectives include both
evaluating and predicting indoor air quality in buildings. It reduces the gap of studying the
relationship between indoor and outdoor air quality. The study identifies IAQ parameters
and their different detection technologies in order to investigate how IoT technology can
be utilized. Finally, an IoT system is developed to provide real-time measurements with
the ability to store large amounts of data for the application of prediction models.

2. Literature Review

Over the last five decades, the human population has increased rapidly and urban ar-
eas have expanded as a result. Such an increase has a significant impact on our environment.
The extensive use of transportation and manufacturing activities has caused a significant
increase in greenhouse gases (GHGs) and a continual increase in Earth’s temperature. The
last decades witnessed a continuous improvement in air quality monitoring technologies,
which facilitated further studies to inspect the relationship between air quality and climate
changes. Air quality studies from the past and present will improve our understanding
of air pollution, health effects, and ecosystem viability [5]. In Europe, different scenarios
have been applied, including the effects of fuel consumption as a result of factories and
transportation activities, in order to evaluate air quality polices. Crippa et al. [6] concluded
that air quality measures and polices, if accurately implemented, can control pollution
and, subsequently, health is enhanced. In India, Rajak et al. [7] presented a comprehensive
review regarding short- and long-term exposure to air pollution and its effects on human
health. It was noted that despite air pollution exposure occurring in both urban and rural
areas, air pollution monitoring systems mainly collect data from mega cities, which implies
that many cases in rural areas are frequently neglected. Arsic et al. [8] also predicted ozone
concentrations depending on different air quality parameters, including CO, H2S, and
SO2. Other factors were also investigated, including wind speed, wind direction, and air
pressure. The study utilized multiple linear regression analysis and compared the results
with an artificial neural network (ANN). The results showed that the ANN demonstrated
better performance when incorporating different primary concentrations and meteorolog-
ical factors. It was concluded that predicting air quality variables is better modeled by
ANNs to consider any nonlinear relationships.

Tran et al. [9] presented a procedure to assess personal exposure (PE) to airborne
particulate matter (PM) across diverse microenvironments (MEs). The procedure was
performed over 24 h. Considering different exposure scenarios is necessary to identify
appropriate strategies to improve urban air quality and mitigate the health effects of PM.
The researchers concluded that there are potential carcinogenic risks associated with long-
term exposure to elevated levels of PM2.5-bound toxic trace elements. Zhou and Ooka [10]
studied the feasibility of adopting deep neural networks (DNNs) for predicting indoor
airflow distribution; they investigated the influence of DNN architecture on prediction
performance, considering two DNNs for different prediction strategies. The performance
of the two DNN architectures was tested on both a training dataset and a test dataset,
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which were compared. Qiu et al. [11] performed an experiment to continuously monitor the
variability of indoor particulate matter in six office buildings in Chengdu, Sichuan Province.
Four out of the six buildings showed a reduction in indoor PM2.5 during work hours,
suggesting functional filtration systems. The results indicated that the daily accumulation
of indoor CO2 was due to ineffective ventilation. Khaniabadi et al. [12] modeled air quality
for health risk assessment and focused on selected parameters such as sulfur compounds
and fine particles. Data collected hourly were used to accurately calculate the average
daily concentrations. The study concluded that mitigation policies are needed to be taken
by governments to control air pollution, especially fine particles. Steinemann et al. [13]
illustrated that green buildings might not result in better IAQ. Many developers in recent
years have aimed to certify their building as a green building. Although certificates have
minimum requirements in order to gain IAQ credits, it was noticed that many buildings
may obtain certification without satisfying the IAQ requirements. Luo et al. [14] shed
some light on the relationship between occupants’ indoor climate experience and their
thermal comfort expectations in buildings. The study emphasized the need for physical
measurements, and encouraged the review of the current indoor environment standards. It
is usually claimed that ventilation will lead to better IAQ. Francisco et al. [15] conducted
an in-depth study of ventilation effects on IAQ and occupants’ health in households. It
was concluded that more studies are needed in order to discover the relationship between
ventilation and IAQ. In New Zealand, Bennett et al. [16] studied sources of pollution for
the indoor environment, and it was concluded that school location highly affected the
IAQ. Hesaraki and Huda [17] analyzed and discussed radiant low-temperature heating
(LTH) and high-temperature cooling (HTC) systems based on their results on energy usage,
thermal comfort, indoor air quality, design, and control. The authors concluded that
LTH/HTC systems can save between 10% and 30% energy and provide better thermal
comfort in comparison with all-air systems.

Jin et al. [18] investigated the relationship between lung cancer and poor indoor
environment to provide a base for future studies related to IAQ. The results showed that
the pollution sources linked directly to lung cancer are smoking, indirect smoking, oil fumes,
coal used for cooking, and solid fuel used for heating. In Egypt, Osman et al. [19] studied
IAQ in hospitals as the indoor environment is highly critical and needs to be continuously
monitored and controlled. It was concluded that further studies need to investigate the
dispersion of different contaminants. Maesano et al. [20] studied the relationship between
pollution sources and health effects. It was observed that there is a lack of studies for
IAQ in educational buildings, and a poor indoor environment greatly affects students’
performance. Chang et al. [21] studied indoor decoration materials and their relationship
with IAQ, and concluded that sources of indoor pollution included wall decorations, panel
furniture, and latex paints. The study concluded that an increase in temperature will
lead to an increase in pollutant concentrations, and ventilation will positively decrease
concentrations. Mutis et al. [22] utilized IR sensors to detect indoor motion and to predict
the occupants’ activities using deep learning to balance between the energy consumption
and the indoor environment through optimizing the working hours of the HVAC systems.
Jang et al. [23] developed a neural network that enhanced the use of a building energy
management system (BEMS) to overcome the lack of historical data for prediction and
provide better thermal control. Heracleous et al. [24] investigated the indoor comfort
conditions in classrooms by collecting and analyzing in situ measurements of relative
humidity, temperature, and CO2. The recommendations included the need for natural
ventilation at a low air change rate to keep the indoor air quality within the limits provided
by international standards.

Amoatey et al. [25] reviewed IAQ studies from the Gulf Cooperation Council (GCC)
countries. People from this area spend most of their time indoors due to dust storms,
inconvenient temperatures, and relatively high humidity. The review results showed that
mitigation studies and IAQ modeling are urgently needed. The recommendations included
studying the effect of multiple pollutants on health compared to a single pollutant, and
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that future studies should focus on rural areas instead of only concentrating on urban
areas. Cao et al. [26] studied the associations between air pollution, outdoor activities, and
symptoms of wheeze and rhinitis for pre-school children in Wuhan and the surrounding
cities. The research provided a guide to the design of outdoor activities and outdoor courses
for pre-school children during the process of urban construction.

Jin et al. [27] monitored unauthorized intrusion on construction sites to reduce safety
incidents using IoT-based methodology. They developed a monitoring system and pro-
vided means to plan countermeasures such as a reward and punishment mechanism.
Rafsanjani [28] proposed an approach to control occupant energy-use behavior through
combining IoT technologies with behavior intervention techniques to enhance energy sav-
ings. The study was able to track individual occupants’ energy-use actions to identify
inefficient behaviors, and to drive energy-saving behaviors. Boje et al. [29] investigated the
integration between building information modeling (BIM) and digital twin (DT) concepts
to revolutionize the construction industry. The study also stated that the cyber-security of
large-scale infrastructure concerns will remain an issue for years to come. Asif et al. [30]
utilized system dynamics tools to report the indoor CO2, temperature, and relative hu-
midity levels within naturally ventilated classrooms, and the records of ventilation rates
were presented. The study concluded that the CO2 levels remain almost the same when
comparing between summer and winter seasons. Lei et al. [31] investigated the use of
different neural networks to evaluate the air quality within shopping malls, and compared
the results between the fuzzy neural network and Elman neural network to test the use
of a wavelet neural network. The study proved that the wavelet network is optimized
by the use of a rough set to reduce the redundant attributes, and can accurately evaluate
buildings’ IAQ.

Zhou et al. [32] proposed a multi-output neural network to improve air quality fore-
casts. The model depended on multiple input sources from different monitoring stations.
The factors measured included PM2.5, PM10, and NO compounds. The model used long
short-term memory (LSTM) in the network architecture for adding memory capabilities
to the network. The network proved effective in recognizing complex air quality patterns
compared to shallow networks. Khazaei et al. [33] presented a network to predict carbon
dioxide (CO2) concentrations for indoor air based on room parameters. The results showed
that CO2 can be accurately estimated based on temperature and humidity measurements;
thus, a strong relationship exists between these air quality parameters. The study indicated
that such results can improve ventilation studies and the control of indoor environments.
For further studies, it was suggested that more rooms should be monitored to collect
more data and to study other air parameters, as these may affect CO2 concentrations.
Johnston et al. [34] also applied a system that is able to measure fine particles. The system
is considered a low-cost option, since it costs less than USD 100. Although the developed
system showed accurate results, its lack of mobility, due to the need for a continuous power
supply, is considered a major limitation for scalability.

Previous research efforts have either concentrated on the IoT solutions without per-
forming a reading analysis, or focused on the IAQ processing and prediction models, which
are based on previously collected data, without considering either real-time readings or
outdoor environment effects on the indoor environment. Any applied solution for assessing
IAQ needs to provide the continuous monitoring of critical parameters with easy access
to the collected historical data. IoT technologies are a promising method for collecting
environmental measurements, but in order to develop a full comprehension, advanced
modeling is required. The literature presented different modeling techniques for predicting
IAQ, but frequently failed to include outdoor variables within their inputs.

3. Air Quality Parameters

The following sub-sections identify the main parameters that are essential to evaluate
the IAQ. Thermal comfort, including temperature and relative humidity, varies based
on occupants’ preferences. Air pressure is a main component in order to control the
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indoor environment. Carbon dioxide concentrations indicate the air circulation rate within
confined spaces. Carbon monoxide is a toxic gas that causes poisoning. Fine air particles
can accumulate in the human lungs, causing different respiratory diseases. Finally, the
relationship between the outdoor and indoor environment is a crucial factor for controlling
internal spaces.

3.1. Thermal Comfort

According to the American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE Standard 55-2017 [35]), thermal comfort is an expression of satisfaction
with the surrounding thermal environment, and that satisfaction is evaluated subjectively
according to the human condition of mind. Thermal comfort is greatly affected by clothes,
air temperature, relative humidity, and air speed. In addition, the occupant’s expectation
is considered an important psychological factor. In buildings, improvement in indoor air
quality greatly increases productivity and contributes towards the provision of a healthy
environment [36]. Thus, keeping the surrounding environment within an acceptable range
of temperature and relative humidity is one of the objectives to control IAQ.

3.2. Air Pressure

Air pressure is the weight of air molecules that press on objects. Temperature and wind
have a significant influence on building pressure. All controlling systems and mechanisms
installed in buildings to provide thermal comfort either result in high pressure in buildings
or low pressure. A slightly higher pressure will keep hot air outside of the building
during summer, and in winter, low pressure will allow outside air inside, which will
stabilize the humidity. Controlling air pressure inside the building is key to a comfortable
indoor environment.

3.3. Carbon Dioxide

Carbon dioxide (CO2) is a gas with no color that consists of one carbon and two oxygen
atoms. The gas results from aerobic organisms as they metabolize carbohydrates and lipids.
Other sources of the gas include volcanoes and hot springs. It is the main component of
the surrounding air and is essential to all forms of life. It is also a versatile gas that can be
used for different industrial purposes. Since the industrial revolution, the concentration of
CO2 has been increasing rapidly, leading to global warming and the acidification of oceans
and seas. According to the National Oceanic and Atmospheric Administration [37], the
concentration of CO2 gas reached 417 ppm in 2019. The growth rate in 2019 was 2.2 ppm,
which is highest rate for the last 10 years.

3.4. Carbon Monoxide

Carbon Monoxide (CO) consists of on carbon atom bonded with one oxygen atom. It
is a colorless and odorless gas. The gas is known for its toxicity to all beings that depend
on hemoglobin to carry oxygen through the blood stream. CO is generated from the partial
oxidation of carbon compounds. During the burning process, the carbon compounds
are decomposed to CO2, but the lack of oxygen during the burning process leads to the
formation of CO gas. According to Omaye [38], fatal air poisoning in many countries is
mainly caused by CO poisoning.

3.5. Fine Particles

According to the United States Environmental Protection Agency [39], fine particles
(also known as particulate matter) are a mixture of tiny solid and liquid particles that exists
in the air. Particles such as dust may be seen by normal eyes, but other particles may need
a microscope to be seen. Both the size and shape of the particles vary greatly. Particles are
emitted directly from fires, unpaved roads, and construction activities. Other sources of
particulate matter (PM) include chemical reactions in the atmosphere and industry emis-
sions. The most common PM types are PM10 and PM2.5, which are classified based on the
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diameter of the particle, being either greater than 10 micrometers or 2.5 micrometers. The
classification is important, since particles less than 2.5 micrometers can easily accumulate
in the lungs and enter the blood stream.

3.6. Relationship between Indoor and Outdoor Air Quality

The relationship between indoor and outdoor air quality is represented in the literature
either as a model or a conducted experiment. The modeling approach often depends on
computer simulation or attempting to develop a comprehensive relationship starting from
basic mathematical equations. On the other hand, the experimental approach typically
requires sampling using advanced instruments and a controlled environment in order to
acquire accurate results. Software is available to simulate the relationship between the
indoor and outdoor environments to predict pollutant concentrations in small spaces, but
it is also able to simulate the air flow and provide pollutant predictions for entire buildings
or complex projects. Such a methodology provides guidelines for designers to integrate the
results with designs and to improve HVAC performance. The disadvantage of modeling is
that during the facility operation, the simulation might not be that useful for controlling
the indoor environment, and there will be a need for further experiments to account for the
actual activities of the occupants and changes to the outdoor environment. Thus, in order
to control the IAQ, there is a need to link the sampling and software simulation to better
improve decision making.

4. Research Method

The proposed system activities for evaluating IAQ in academic buildings are depicted
in Figure 1. These tasks can be grouped into four main phases, including developing the
IoT module (Phase 1), which consists of microcontrollers connected with sensors; then,
the data are transferred (Phase 2) via Wi-Fi to a designated cloud to be accumulated for
deep-learning model application (Phase 3) to enhance the prediction and visualization of
IAQ (Phase 4) analysis.

4.1. IoT Module

Internet of Things (IoT) technologies are rapidly developing and provide huge possi-
bilities in terms of satisfying our changing needs. IoT applications are being integrated into
all aspects of our life, from Smart Cities to controlling small equipment in factories. The
technology facilitates the collection and analysis of huge amounts of data and supports the
decision maker with real-time information to maximize the output results. IoT technology
includes the following five steps:
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An IoT application typically consists of microcontrollers attached to sensors, which
collect different readings from the surrounding environment and send them to an IoT plat-
form via an internet service. Monitoring air parameters has been a goal for IoT developers.
The measurement and evaluation of air conditions were being investigated a long time ago,
but with the innovation of IoT technology, providing real-time information is possible and
responses to events have become faster than ever.
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Thingspeak [40] is an open-source IoT platform established in 2010 that aims to revo-
lutionize IoT applications by providing cloud services to improve applications’ scalability.
Thingspeak is divided into channels, where each channel contains eight fields that collect
data from sensors and present real-time data visualization. There are some key capabilities
that make Thingspeak unique among other common IoT platforms. The following are some
of Thingspeak’s characteristics, which enable IoT designers to:

• Easily set up devices to directly connect to the cloud services.
• Present collected sensor data in different charts according to each field.
• Use the powerful features of MATLAB to deeply analyze the sensor data.
• Schedule specific analytics to run based on certain events.
• Prototype IoT applications without the need for any web or server programming.

Table 1 lists the components and their respective designated functions of the proposed
IoT application. Figure 2 illustrates sensors connection with ESP32 Microcontroller.
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Table 1. Designated functions of IoT application components.

Component Function Illustration

ESP32 Microcontroller

ESP series, especially ESP32, provide the designer with
unique abilities including Bluetooth and Wi-Fi connections
to enable the board to act not only as a microcontroller, but

also as gateway for different IoT applications.
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A wooden box of size 27 cm × 15 cm was designed and created to contain all of the 
sensors and microcontrollers to create an air-quality monitoring device, as depicted in 
Figure 3. An IoT box was provided with a moving mechanism at the bottom to allow the 
sensors, microcontrollers, and batteries to fit in easily as clearly shown in Figure 4. After 
the box was assembled, tests were performed to make sure that the sensors were sending 
readings to their specific channel on the Thingspeak platform. 

Figure 2. Sensors connected with ESP32. (a) DHT 11, (b) BMP180, (c) MQ 135, (d) MQ 7,
(e) GP2Y1010AU0F.

A wooden box of size 27 cm × 15 cm was designed and created to contain all of the
sensors and microcontrollers to create an air-quality monitoring device, as depicted in
Figure 3. An IoT box was provided with a moving mechanism at the bottom to allow the
sensors, microcontrollers, and batteries to fit in easily as clearly shown in Figure 4. After
the box was assembled, tests were performed to make sure that the sensors were sending
readings to their specific channel on the Thingspeak platform.
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4.2. Data Transmission

For data transmission, the floor of a university building was chosen to conduct the
experiment in different rooms for several days. Figure 5 shows the floor plan and dimen-
sions. For every room, a code was given (for example R1), and a channel was created on
the Thingspeak platform. Multiple IoT boxes were assembled so that every room had a
box to effectively monitor the IAQ, and all sensors were put at a reasonable height (as
close to the middle as possible) and not close to walls and windows. The microcontrollers
were programmed to send a reading every 10 min. Each reading contained measurements
for temperature, humidity, air pressure, CO2, CO, and PM. All boxes sent their data via
Wi-Fi and the Thingspeak channels were tested to receive the readings. The measurements
were collected from all rooms and uploaded to the Thingspeak platform during July and
August 2019. Figure 6 shows the monitoring of the collected readings on Thingspeak for
the case study.

After collecting readings for 9 days, from 1:00 PM on the 29 July to 1:00 PM on the
7 August, the number of readings totaled 16,764 for 13 different spaces. Many readings
were lost due to Wi-Fi instability and the checking of the connectivity of the devices from
time to time. Table 2 illustrates the average reading for each day for the whole floor. It can
be noticed that the average of the readings varies for temperature and humidity on a daily
basis, but for other variables, the readings show steady averages for the floor.
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Table 2. Average daily readings of the case.

Day Avg. Temp. (◦C) Avg. Humidity (%) Avg. Air Pressure
(Pascal)

Avg. CO
(PPM)

Avg. CO2
(PPM)

Avg. PM
(µ/m3)

29 July 34.0 24.1 100,403.2 2.4 463.20 15.30

30 July 29.8 40.0 100,404.3 2.4 460.10 14.20

31 July 29.1 50.3 100,409.1 2.4 474.30 15.90

1 August 28.9 48.2 100,406.7 2.4 477.90 16.80

2 August 30.5 39.5 100,405.9 2.4 448.70 15.20

3 August 30.8 38.6 100,407.2 2.4 459.10 16.50

4 August 30.5 42.3 100,403.3 2.4 471.80 17.20

5 August 29.9 45.6 100,403.8 2.4 461.10 13.50

6 August 28.4 43.8 100,404.1 2.5 459.30 13.70

7 August 24.2 61.9 100,406.7 2.5 460.20 15.10

Table 3 provides more details for each of the studied academic building rooms, and it
can be noticed that the space with the code R7 is the hottest in terms of temperature with
an average of 31.7 ◦C, while R2 is considered the coldest. The average CO2 concentration
in room R2 was 475.3 ppm, and since the average in this is the highest, it can be concluded
that R2 is the worst in terms of ventilation. R3 contained the least number of fine particles
and this was not expected, as R9 is not used on a regular basis and it was expected to have
the lowest concentration. The maximum CO reading was 5 ppm, and this was detected
in R1, R4, R7, R121, and R122. In general, the rooms show acceptable readings for CO
and particulate matter, and varied for CO2 according to the ventilation mechanism for
each room. The relationship between temperature and humidity can be observed in both
R8 and R11, which have one of the lowest temperature averages and the highest average
humidity. To extract more information about the rooms, further analysis is needed to
develop a comprehensive conclusion about the IAQ.

4.3. Deep-Learning Module

After successfully utilizing the IoT for collecting IAQ measurements, raw data were
downloaded from the cloud to be labeled and prepared for modeling. In order to fully
understand the indoor environment, outdoor air parameters must be considered; thus,
outdoor measurements were added. The Meteoblue [46] database was utilized in this
study for collecting outdoor environment historical data. Multiple columns were added,
including outdoor temperature, outdoor humidity, outdoor wind velocity, and outdoor
wind direction. It can be noticed from Table 4 that CO and dust were excluded from
the readings, as their concentrations depend on the occupants’ behavior, which is not
considered in this study. The table provides a sample of the readings collected from 29 July
to 7 August. The total number of readings is 16,764 records. The model inputs include
all outdoor variables and the indoor pressure due to the physical relationship between
temperature and pressure. The outputs that the model predicts are indoor temperature,
humidity, and CO2 for the 13 different rooms considered in the case study. To facilitate the
training process, the outdoor wind direction from Meteoblue was selected to be in degrees
rather than text directions (N, E, S, and W) to provide maximum accuracy and the fastest
training performance. Moreover, blank readings or missing variables were excluded so that
all collected readings contained all variables. Once all of the data were ready, they were
saved as Excel sheet files to be imported later to TensorFlow.
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Table 3. IAQ readings for the academic building rooms.

Room ID
No. of

Readings

Temperature (◦C) Humidity (%) Air Pressure (Pa) Carbon Dioxide (PPM) Carbon Monoxide (PPM) Particulate Matter (µ/m3)

Min Avg. Max. Min Avg. Max. Min Avg. Max. Min Avg. Max. Min Avg. Max. Min Avg. Max.

R1 1318 19.3 29.5 39.7 7.3 41.6 82.8 100,390 100,407.1 100,418 422 460.1 511 1 3.3 5 7 14.3 19

R2 1302 20.3 28.2 39.4 8.9 43.4 79.6 100,389 100,405.3 100,423 442 475.3 548 2 2.1 4 5 17.2 21

R3 1285 18.2 30.3 38.5 10.6 45.5 91.3 100,386 100,403.5 100,420 393 440.1 505 0 1.9 3 7 12.9 19

R4 1310 20.8 31.4 38.9 9.7 42.7 85.6 100,389 100,406.2 100,422 416 462.8 514 2 2.4 5 8 16.1 21

R5 1296 21.5 30.5 40.3 8.4 44.8 77.2 100,391 100,407.8 100,426 404 451.3 514 2 3.3 4 10 15.2 21

R6 1300 22.6 29.3 41.6 10.1 45.7 89.7 100,387 100,404.1 100,422 441 473.2 551 1 2.1 3 9 17.8 25

R7 1293 19.7 31.7 37.9 5.2 43.8 85.8 100,390 100,407.7 100,424 428 461.9 538 3 2.2 5 14 13.2 20

R8 1291 21.8 28.8 39.1 7.8 46.4 79.6 100,389 100,407.1 100,425 422 467.1 524 0 2.8 4 4 16.7 21

R9 1275 22.1 30.6 40.5 6.3 45.3 83.9 100,389 100,406.4 100,422 435 471.8 522 1 1.7 4 5 16.3 23

R10 1286 20.4 31.2 39.5 8.5 42.1 79.8 100,391 100,408.7 100,425 413 455.2 527 0 3.2 3 11 15.1 22

R11 1294 19.9 29.7 37.8 5.6 46.4 90.3 100,388 100,405.2 100,423 434 464.7 542 0 2.9 3 9 13.9 20

R121 1272 21.2 30.9 41.8 7.2 44.4 84.6 100,391 100,408.3 100,426 423 470.1 529 1 2.2 5 13 16.4 21

R122 1242 20.7 30.5 41.4 7.9 44.2 89.3 100,387 100,404.1 100,421 422 472.3 549 1 2.3 4 12 15.9 20

Table 4. Readings after adding outdoor parameters.

Date/Time

Indoor Outdoor

Temp. (◦C) Humidity (%) Air Pressure (Pa) CO2 (PPM) Temp. (◦C) Humidity (%) Wind Velocity
(Km/hr.)

Wind Direction
(Degree)

7/29 01:01 PM 30 22.6 100,408.0 430.0

37.3 21.0 16.0 340.6

7/29 01:11 PM 29.8 17.9 100,410.0 431.2

7/29 01:20 PM 31.1 16.9 100,407.0 430.2

7/29 01:30 PM 29.1 22.1 100,410.0 430.2

7/29 01:39 PM 29.3 15.1 100,411.0 430.2

7/29 01:49 PM 30.6 21.3 100,407.0 430.8

7/29 01:58 PM 30.3 15.8 100,407.0 431.0
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5. Results Visualization

The Anaconda software interface is an open-source platform for data scientists that
provides different libraries and various applications to model and analyze data. The
platform supports programming languages including Python and R to facilitate different
statistical operations. In this study, the TensorFlow library and Jupyter Notebook web
application were loaded through the Anaconda platform to provide essential machine
learning functions and to facilitate sharing codes and visualizing the simulation results.

The following libraries and functions were used during the modeling process:

• The pandas library provides operations to manipulate data within tables and to import
the numerical readings into Excel or csv formats.

• NumPy contains high-level mathematical operations, which are essential before load-
ing TensorFlow.

• Sklearn provides statistical operations and is used to provide data normalization functions.
• Matplotlib is imported to visualize data and modeling results in various graph presen-

tations and comparisons.
• MinMaxScaler is used for data normalization.
• TensorFlow is imported to start the modeling process.
• The Keras library, which operates within the TensorFlow system, is imported for quick

modeling, allowing multiple architectures to be tested for better results.

After conducting trials with multiple proportions, the percentages of the data used
for training and testing were 80% and 20%, respectively. A validation set was used to
independently check the performance of the ANN weights obtained in the training process.
This was conducted to ensure that the ANN model had not simply overfitted or memorized
the relationship between the training data and the output, but actually developed the
capability to make a prediction for an unseen set of data. Figure 7 depicts the predicted
(orange line) results against actual (blue line) humidity data of room R7 for the training
and testing data, respectively.
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6. System Validation

The validation of this research is based on experimental data obtained from the case
study, which was previously conducted using IoT technology. It should be noted that
despite the model effectiveness in providing acceptable predictions, the model capabilities
are limited, as it was developed based on readings collected within a relatively short period
of time and during the summer season in different spaces for the same building due to
the lack of any formal datasets regarding IAQ in Egypt. In order to enhance the model’s
predictions and to expand its capabilities, readings should be collected over a long period
to cover different seasons and to apply the model to multiple buildings with different uses.

Table 5 lists the model results when applied to different rooms. It can be noted that, in
general, the training accuracy is higher than both the validation and testing. In addition,
the rooms R1, R3, and R4, which are on the eastern side of the building, provided higher
accuracy. However, R2 was exceptional as the use of air conditioning affected the readings
and disrupted the relationship between the data, resulting in 80.94%, which is the lowest
model accuracy for the testing dataset. In general, the testing accuracy was less than the
validation accuracy, but it was noted that rooms R4, R8, and R122 provided higher accuracy
for testing comparing to the validation datasets. The rooms that provided the lowest test
accuracy were R2, R5, R10, R11, R121, and R122. Despite R121 and R122 being within
the same space (Lecture Hall), the results’ accuracy varied, indicating that wide spaces
should be divided into smaller areas and that more sensors should be provided to cover
the entire area. The average accuracy for training, validation, and testing was 91.07, 87.28,
and 85.95, respectively, for the entire floor, but as the model reacted differently for each
room, it is important to emphasize the need to study rooms separately when evaluating
IAQ in buildings.

Table 5. Model accuracy for training, validating, and testing.

Room No. No. of Readings Training
Accuracy (%)

Validation
Accuracy (%)

Testing
Accuracy (%)

R1 1318 93.87 91.21 90.56

R2 1302 86.21 83.15 80.94

R3 1285 92.54 89.26 88.17

R4 1310 93.83 90.11 91.12

R5 1296 90.56 86.17 84.31

R6 1300 89.28 87.49 85.67

R7 1293 91.47 88.51 85.19

R8 1291 89.68 86.30 86.72

R9 1275 90.29 85.64 85.35

R10 1286 91.36 85.78 84.28

R11 1294 87.48 84.93 82.17

R121 1272 92.75 87.88 84.68

R122 1242 94.64 88.19 88.23

7. Results and Discussion

After running the model on the 13 room readings collected from the sensors, it is
concluded that the model outputs varied for each room, indicating that rooms need to be
studied separately, as every room possesses different characteristics including the number
of windows, opening measurements, and usage. Moreover, it was noted that the model
provided lower accuracy in Room 2 due to the use of air-conditioning systems by the
room’s occupants, which indicates the need for occupants’ behavior to be integrated into
the model to enhance the prediction accuracy, as depicted in Figure 8.
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Another observation was made with respect to the loss of readings, which is attributed
to wireless interruptions. Thus, such losses are represented by the discontinuity of the data
and disruption over time, which affected the prediction accuracy (see Figure 9). It is worth
noting that the accuracy of the model differed based on the rooms’ readings and provided,
in several rooms, more than 90% accuracy for the predicted data. The high accuracy is
regarded as being connected to the case study conditions (low volatile environment during
summer), indicating the need to collect more readings during other seasons.
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8. Conclusions

Indoor air quality is the study of air quality within and around different structures.
The effects of poor IAQ include health issues, productivity loss, and occupant discomfort.
The construction industry is yet to improve IAQ measures and procedures to reduce these
harmful effects, as the subject is not adequately addressed within the industry. The most
dominant causes of indoor pollution include lack of indoor ventilation, the outdoor en-
vironment, building materials, and occupants’ behavior. The addressed pollutants in the
literature involved temperature, humidity, CO2 concentrations, CO concentrations, and
fine particles (PM2.5). Collecting IAQ measurements requires advanced equipment and sig-
nificant effort; thus, there is a need for sustainable, reliable, and innovative solutions, which
are provided in this study through the Internet of Things (IoT). This research presented a
solution to continuously monitor IAQ to assess and evaluate the indoor environment in an
educational building using the IoT. The innovative application consists of multiple sensors
to collect indoor measurements with the ability to communicate and connect with different
microcontrollers. Once the readings are collected, the microcontroller sends them to a
cloud via wireless connection. After the collection of the readings, a deep-learning model
is developed, where inputs and outputs are identified to train a model in order to discover
the embedded relationships between different air quality variables. The integration of
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continuous monitoring and the ability to provide numerical relationships between air qual-
ity variables paved the way for providing an improved understanding of the interactions
within the building’s indoor environment.

An academic building was used to test the IoT application, where 13 stations were
prepared and positioned in rooms to cover the entire floor. After the experiment was
conducted, the readings were prepared and labeled for modeling using TensorFlow, a
machine learning library to predict the indoor environment of rooms over time. Outdoor
readings were also added to enhance the model for better reliability.

It was concluded that the model should be enhanced with occupants’ behavior, as
the logical relationships between readings were disrupted. Despite the case study having
limitations due to the experiment being conducted during the summer, the model was
able to provide highly accurate predictions for the selected deep-learning architecture.
Therefore, utilizing the IoT and deep-learning techniques provided an innovative solution
to investigate buildings’ IAQ, and provided a foundation for developing IAQ standards
within the Egyptian construction industry. The research in hand is one of the few avail-
able studies that not only provide a solution for collecting real-time readings of multiple
IAQ parameters, but also utilize deep-learning techniques to create a prediction model
that considers outdoor parameters. Hence, a comprehensive overview was presented
to accurately evaluate the IAQ of the investigated indoor spaces. This research can be
extended in the future by modeling the effect of occupants’ behavior, which influences
indoor environments, and providing guidelines to be followed by occupants to cope with
indoor air pollution. In addition, more sensors can be integrated to measure more indoor
environment parameters such as volatile organic compounds (VOCs), ammonia (NH3),
and ozone (O3). As such, quantitative analysis can be conducted to provide a benchmark
with the results obtained in this research. Furthermore, a digital twin can be used to allow
the continuous monitoring of physical facilities and reflect the results in a digital prototype.
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