Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (320)

Search Parameters:
Keywords = individual humoral immune response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1562 KiB  
Article
Intra-Host Evolution During Relapsing Parvovirus B19 Infection in Immunocompromised Patients
by Anne Russcher, Yassene Mohammed, Margriet E. M. Kraakman, Xavier Chow, Stijn T. Kok, Eric C. J. Claas, Manfred Wuhrer, Ann C. T. M. Vossen, Aloys C. M. Kroes and Jutte J. C. de Vries
Viruses 2025, 17(8), 1034; https://doi.org/10.3390/v17081034 - 23 Jul 2025
Viewed by 342
Abstract
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report [...] Read more.
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report the dynamics of genomic mutations and subsequent protein changes during relapsing infection. Methods: Longitudinal plasma samples from immunocompromised patients with relapsing B19V infection in the period 2011–2019 were analyzed using whole-genome sequencing to evaluate intra-host evolution. The impact of mutations on the 3D viral protein structure was predicted by deep neural network modeling. Results: Of the three immunocompromised patients with relapsing infections for 3 to 9 months, one patient developed two consecutive nonsynonymous mutations in the VP1/2 region: T372S/T145S and Q422L/Q195L. The first mutation was detected in multiple B19V IgG-seropositive follow-up samples and resolved after IgG seroreversion. Computational prediction of the VP1 3D structure of this mutant showed a conformational change in the proximity of the antibody binding domain. No conformational changes were predicted for the other mutations detected. Discussion: Analysis of relapsing B19V infections showed mutational changes occurring over time. Resulting amino acid changes were predicted to lead to a conformational capsid protein change in an IgG-seropositive patient. The impact of humoral response and IVIG treatment on B19V infections should be further investigated to understand viral evolution and potential immune escape. Full article
(This article belongs to the Collection Parvoviridae)
Show Figures

Figure 1

15 pages, 1304 KiB  
Article
Correlates of SARS-CoV-2 Breakthrough Infections in Kidney Transplant Recipients Following a Third SARS-CoV-2 mRNA Vaccine Dose
by Miriam Viktov Thygesen, Charlotte Strandhave, Jeanette Mølgaard Kiib, Randi Berg, Malene Söth Andersen, Emma Berggren Dall, Bodil Gade Hornstrup, Hans Christian Østergaard, Frank Holden Mose, Jon Waarst Gregersen, Søren Jensen-Fangel, Jesper Nørgaard Bech, Henrik Birn, Marianne Kragh Thomsen and Rasmus Offersen
Vaccines 2025, 13(8), 777; https://doi.org/10.3390/vaccines13080777 - 22 Jul 2025
Viewed by 273
Abstract
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in [...] Read more.
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in KTRs and assessed the association between antibody response and protection against SARS-CoV-2 breakthrough infection. Additionally, the clinical and immunological correlates of post-vaccination SARS-CoV-2 infection were examined. Methods: A prospective cohort of 135 KTRs received a third vaccine dose approximately six months following the second dose. Plasma samples were collected at baseline (pre-vaccination), six months after the second dose, and six weeks following the third dose. Humoral responses were assessed using SARS-CoV-2-specific Immunoglobulin G (IgG) titers and virus neutralization assays against wild-type (WT) and viral strains, including multiple Omicron sub-lineages. Results: After the third vaccine dose, 74% of the KTRs had detectable SARS-CoV-2-specific IgG antibodies, compared with 48% following the second dose. The mean IgG titers increased approximately ten-fold post-booster. Despite this increase, neutralizing activity against the Omicron variants remained significantly lower than that against the WT strain. KTRs who subsequently experienced a SARS-CoV-2 breakthrough infection demonstrated reduced neutralizing antibody activity across all variants tested. Additionally, individuals receiving triple immunosuppressive therapy had a significantly higher risk of SARS-CoV-2 breakthrough infection compared with those on dual or monotherapy. A multivariate machine learning analysis identified age and neutralizing activity against WT, Delta, and Omicron BA.2 as the most robust correlates of SARS-CoV-2 breakthrough infection. Conclusions: A third SARS-CoV-2 mRNA vaccine dose significantly improves SARS-CoV-2-specific IgG levels in KTRs; however, the neutralizing response against Omicron variants remains suboptimal. Diminished neutralizing capacity and intensified immunosuppression are key determinants of SARS-CoV-2 breakthrough infection in this immunocompromised population. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

11 pages, 1605 KiB  
Article
Year-Long Antibody Response to the EuCorVac-19 SARS-CoV-2 Vaccine in Healthy Filipinos
by Jonathan F. Lovell, Kazutoyo Miura, Yeong Ok Baik, Chankyu Lee, YoungJin Choi, Jeong-Yoon Lee, Carole A. Long, Michelle Ylade, Roxas Lee-Llacer, Norman De Asis, Mitzi Trinidad-Aseron, Jose Manuel Ranola, Loreta Zoleta De Jesus and Howard Her
Vaccines 2025, 13(8), 776; https://doi.org/10.3390/vaccines13080776 - 22 Jul 2025
Viewed by 399
Abstract
Background: We previously reported an interim safety and immunogenicity analysis of a Phase 3 trial in the Philippines of the EuCorVac-19 (ECV-19) COVID-19 vaccine with the COVISHIELDTM (CS) comparator (ClinicalTrials.gov identifier NCT05572879). Here, we present full-year humoral immunogenicity analysis. Methods: [...] Read more.
Background: We previously reported an interim safety and immunogenicity analysis of a Phase 3 trial in the Philippines of the EuCorVac-19 (ECV-19) COVID-19 vaccine with the COVISHIELDTM (CS) comparator (ClinicalTrials.gov identifier NCT05572879). Here, we present full-year humoral immunogenicity analysis. Methods: Healthy adults over 18 years of age received two injections of ECV-19 or CS vaccines, with 4 weeks between prime and boost. Analysis was carried out in individuals with immunogenicity measurements available at all 4 timepoints (weeks 0, 6, 30, and 56; n = 535 for ECV-19 and n = 260 for CS). Results: 2 weeks after boosting (week 6), ECV-19 elicited higher median anti-RBD IgG (1512 vs. 340 BAU/mL, p < 0.001) and neutralizing antibodies (1280 vs. 453 median microneutralization (MN) titer, p < 0.001) compared to CS. Anti-RBD IgG remained higher for ECV-19 compared to CS through week 30 (412 vs. 238 BAU/mL, p < 0.001) and 56 (425 vs. 260 BAU/mL, p < 0.001). MN titers remained higher for ECV-19 compared to CS through week 30 (640 vs. 453, p < 0.001) and 56 (453 vs. 320, p < 0.001). Correlation between anti-RBD IgG and neutralization titers persisted throughout the study. Women generally exhibited greater antibody responses than men. In the first six months following immunization, the ECV-19 group had a median antibody half-life of 80 days for anti-RBD IgG and 112 days for MN titer. In the subsequent six months, antibody half-life increased to 237 days for anti-RBD IgG and 168 days for MN titer. Conclusions: Following initial prime-boost vaccination, ECV-19 maintained higher anti-RBD IgG and neutralizing antibody titers relative to the CS comparator over a full-year period. Full article
Show Figures

Figure 1

18 pages, 2502 KiB  
Article
Epitope Variation in Hemagglutinin and Antibody Responses to Successive A/Victoria A(H1N1) Strains in Young and Older Adults Following Seasonal Influenza Vaccination: A Pilot Study
by Mónica Espinar-García, Isabel María Vallejo-Bermúdez, María Ángeles Onieva-García, Irene Reina-Alfonso, Luis Llapa-Chino, Pablo Álvarez-Heredia, Inmaculada Salcedo, Rafael Solana, Alejandra Pera and Alexander Batista-Duharte
Vaccines 2025, 13(7), 774; https://doi.org/10.3390/vaccines13070774 - 21 Jul 2025
Viewed by 400
Abstract
Background: Annual influenza vaccine updates target viral drift, but immune responses may be biased by original antigenic sin (OAS). Few studies have explored this across closely related strains. This study examines how OAS shapes responses to sequential influenza variants in the context of [...] Read more.
Background: Annual influenza vaccine updates target viral drift, but immune responses may be biased by original antigenic sin (OAS). Few studies have explored this across closely related strains. This study examines how OAS shapes responses to sequential influenza variants in the context of seasonal vaccination. Methods: We conducted a prospective, longitudinal study to assess the humoral immune response to the 2023–2024 seasonal influenza vaccine containing the A/Victoria/4897/2022 (H1N1) strain. Bioinformatic analyses compared the hemagglutinin (HA) sequences of A/Victoria/4897/2022 and the antigenically related A/Victoria/2570/2019 strain. B-cell epitopes were mapped with BepiPred-3.0 and BepiBlast, and their physicochemical properties analyzed via accessibility, β-turns, flexibility, and hydrophilicity. Antibody responses were measured pre- and 28 days post-Vaxigrip Tetra vaccination in young (18–35) and older (>65) adults, stratified by cytomegalovirus (CMV) serostatus. HA sequences showed >97% identity, with variations mainly in the globular head. Predicted B-cell epitopes overlapped variable sites, suggesting possible immune escape. Despite having been vaccinated against the 2022 strain, serology showed higher antibody titers against the 2019 HA strain in all participants. This pattern suggests a potential antigen imprinting effect, though confirmation awaits further analysis. Age groups differed: older adults showed greater variability, while younger CMV+ individuals tended toward stronger 2019 HA responses. Conclusions: These findings suggest a complex interplay of factors shaping immune responses, though the imprinting effect and the potential role of CMV warrant further exploration in larger, more focused studies. Full article
(This article belongs to the Special Issue Vaccine Development for Influenza Virus)
Show Figures

Figure 1

12 pages, 1494 KiB  
Article
Breakthrough Infection After a Primary Series of COVID-19 Vaccination Induces Stronger Humoral Immunity and Equivalent Cellular Immunity to the Spike Protein Compared with Booster Shots
by Yoshifumi Uwamino, Takashi Yokoyama, Yasunori Sato, Shiho Tanaka, Yuka Kamoshita, Ayako Shibata, Toshinobu Kurafuji, Akiko Tanabe, Tomoko Arai, Akemi Ohno, Ho Namkoong, Tomoyasu Nishimura, Masatoshi Wakui, Mitsuru Murata, Naoki Hasegawa and Hiromichi Matsushita
Vaccines 2025, 13(7), 751; https://doi.org/10.3390/vaccines13070751 - 13 Jul 2025
Viewed by 452
Abstract
Background: The long-term immune implications of administering more than four doses of COVID-19 vaccine and the impact of breakthrough infections are not fully understood. Research Design and Methods: We conducted a follow-up cohort study on Japanese healthcare workers who received more than three [...] Read more.
Background: The long-term immune implications of administering more than four doses of COVID-19 vaccine and the impact of breakthrough infections are not fully understood. Research Design and Methods: We conducted a follow-up cohort study on Japanese healthcare workers who received more than three doses of the BNT162b2 vaccine. We assessed both the anti-SARS-CoV-2 antibody titer and cellular immunity in 429 participants and investigated the numbers, types, and brands of COVID-19 vaccines administered, as well as the episodes of COVID-19 infections after the third dose. Results: Individuals who received three total doses of vaccines with BTI episodes demonstrated higher antibody titers than those who received four total doses of vaccines with no BTIs. The cellular immune responses between these two groups were comparable. Conclusions: These findings suggest that BTIs occurring after the primary series of COVID-19 vaccinations (first to third dose) induced humoral immunity to the spike protein that is greater than that induced by booster doses (fourth or fifth dose) and elicit cellular immunity to the spike protein comparable to that of booster doses. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

20 pages, 3946 KiB  
Article
Immune Durability and Breakthrough Infections 15 Months After SARS-CoV-2 Boosters in People over 65: The IMMERSION Study
by Concepció Violán, Bibiana Quirant-Sánchez, Maria Palau-Antoja, Dolors Palacin, Edwards Pradenas, Macedonia Trigueros, Guillem Pera, Gemma Molist, Gema Fernández-Rivas, Marc Boigués, Mar Isnard, Nuria Prat, Meritxell Carmona-Cervelló, Noemi Lamonja-Vicente, Brenda Biaani León-Gómez, Eva María Martínez-Cáceres, Pere Joan Cardona, Julià Blanco, Marta Massanella and Pere Torán-Monserrat
Vaccines 2025, 13(7), 738; https://doi.org/10.3390/vaccines13070738 - 9 Jul 2025
Viewed by 556
Abstract
Background: SARS-CoV-2 booster vaccination remains essential to prevent severe COVID-19, particularly in vulnerable populations such as older adults. This study evaluated the durability and dynamics of immune responses following booster vaccination(s) in >65-year-old individuals and examined their association with protection against new [...] Read more.
Background: SARS-CoV-2 booster vaccination remains essential to prevent severe COVID-19, particularly in vulnerable populations such as older adults. This study evaluated the durability and dynamics of immune responses following booster vaccination(s) in >65-year-old individuals and examined their association with protection against new infections. Methods: Immune responses were evaluated at 3, 9, and 15 months post-booster, measuring SARS-CoV-2-specific IgG antibodies against spike [IgG(S)] and nucleocapsid [IgG(N)] proteins, neutralizing activity against the Omicron BA.2 variant, and cellular immunity. A subset of participants was tested before booster administration. Regression analyses examined the influence of clinical and immunological factors—including a bivalent fourth dose—on infection risk over time. Results: Booster vaccination significantly enhanced IgG(S) and neutralizing capacity, peaking at 3 months. Although a decline was observed by 9 months, responses remained above baseline. Individuals with prior SARS-CoV-2 infection exhibited higher IgG(S) levels and neutralizing titers, and significantly lower reinfection rates (15%), compared to uninfected individuals. A fourth vaccine dose further increased IgG(S) levels. While neutralizing capacity was not consistently enhanced by the fourth dose, recipients experienced a lower rate of new infections. Immune trajectory analyses revealed that breakthrough infections elicited strong humoral responses comparable to those seen in previously infected individuals, highlighting the role of hybrid immunity. Conclusions: In older adults, booster vaccination induces durable immune responses, with hybrid immunity offering enhanced protection. A fourth dose boosts antibody levels and reduces infection risk, supporting its use in this high-risk group. Continued monitoring is needed to determine the long-term effectiveness of boosters, particularly against emerging variants. Full article
Show Figures

Figure 1

11 pages, 662 KiB  
Article
Antibody Responses Following Primary Immunization with the Recombinant Herpes Zoster Vaccine (Shingrix®) in VZV Seronegative Immunocompromised Adults
by Andrea Wessely, Ines Zwazl, Melita Poturica, Lukas Weseslindtner, Michael Kundi, Ursula Wiedermann and Angelika Wagner
Vaccines 2025, 13(7), 737; https://doi.org/10.3390/vaccines13070737 - 8 Jul 2025
Viewed by 554
Abstract
Background: Immunocompromised patients are at risk of severe varicella zoster virus (VZV) infection and reactivation. In VZV seronegative immunocompromised persons, live-attenuated VZV vaccination is contraindicated, thus the recombinant herpes zoster vaccine (rHZV) remains a safe alternative, although an off-label application. Yet, data on [...] Read more.
Background: Immunocompromised patients are at risk of severe varicella zoster virus (VZV) infection and reactivation. In VZV seronegative immunocompromised persons, live-attenuated VZV vaccination is contraindicated, thus the recombinant herpes zoster vaccine (rHZV) remains a safe alternative, although an off-label application. Yet, data on the induction of a VZV-specific immune response in immunocompromised individuals with VZV-specific IgG below the assay’s cut-off are only available for patients after solid-organ transplantation (SOT). Methods: We retrospectively analyzed the induction of VZV-specific IgG antibody levels after vaccination with rHZV in immunocompromised patients who previously tested anti-VZV-IgG negative between March 2018 and January 2024. Results: Of 952 vaccinees screened that received 2 or 3 doses rHZV, depending on the underlying disease, 33 patients (median age 53.0; 51.5% female) with either hematopoietic stem cell transplantation (82%) or high-grade immunosuppressive treatment (18%) fulfilled the inclusion criteria. Upon rHZV vaccination, 88% (29/33) individuals mounted a significant antibody response exceeding the assay’s cut-off level for seropositivity (p < 0.0001). We detected higher geometric mean antibody concentrations after three compared to two doses. However, 12% remained below the assay’s cut-off level and were therefore considered non-responsive. Conclusions: The rHZV is immunogenic in VZV-seronegative immunocompromised individuals and therefore presents a valid option to induce seroconversion. However, antibody testing in high-risk groups should be considered to identify humoral non- and low responders. Full article
(This article belongs to the Special Issue Varicella and Zoster Vaccination)
Show Figures

Figure 1

11 pages, 1069 KiB  
Article
Evaluation of Torquetenovirus (TTV) Particle Integrity Utilizing PMAxx™
by Giuseppe Sberna, Claudia Minosse, Cosmina Mija, Eliana Specchiarello, Pietro Giorgio Spezia, Sara Belladonna, Giulia Berno, Lavinia Fabeni, Giulia Matusali, Silvia Meschi, Daniele Focosi and Fabrizio Maggi
Int. J. Mol. Sci. 2025, 26(13), 6542; https://doi.org/10.3390/ijms26136542 - 7 Jul 2025
Viewed by 453
Abstract
Torquetenovirus (TTV) is a ubiquitous, non-pathogenic DNA virus that has been suggested as a biomarker of immune competence, with the viral load correlating with the level of immunosuppression. However, by detecting non-intact viral particles, standard PCR-based quantification may overestimate the TTV viremia. To [...] Read more.
Torquetenovirus (TTV) is a ubiquitous, non-pathogenic DNA virus that has been suggested as a biomarker of immune competence, with the viral load correlating with the level of immunosuppression. However, by detecting non-intact viral particles, standard PCR-based quantification may overestimate the TTV viremia. To improve the clinical relevance of TTV quantification, in this study, we investigated the use of PMAxx™, a virion viability dye that selectively blocks the amplification of compromised virions. Serum samples from 10 Hepatitis C Virus-positive (HCV+) individuals, 81 liver transplant recipients (LTRs), and 40 people with HIV (PWH) were treated with PMAxx™ and analyzed for TTV DNA loads by digital droplet PCR (ddPCR). Furthermore, anti-SARS-CoV-2 IgG levels and neutralizing antibody (nAbs) titers were measured post-COVID-19 vaccination. Using ddPCR, the PMAxx™ treatment significantly reduced the TTV DNA levels in all the groups (mean reduction: 0.66 Log copies/mL), indicating the abundant presence of non-intact, circulating viral genomes. However, correlations between TTV DNA and SARS-CoV-2 IgG or nAbs were weak or absent in both PMAxx™-treated and untreated samples. These findings suggest that while PMAxx™ enhanced the specificity of TTV quantification, it did not improve the predictive value of TTV viremia at assessing vaccine-induced humoral responses. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

21 pages, 939 KiB  
Review
Kidney Involvement in SARS-CoV-2 Infection: Peritoneal Dialysis as the Preferred Modality
by Marko Baralić, Nikola Stojanović, Selena Gajić, Aleksandar Sič, Aarish Manzar, Ana Bontić, Jelena Pavlović, Mateja N. Bojić and Aleksandra Kezić
Vaccines 2025, 13(7), 723; https://doi.org/10.3390/vaccines13070723 - 2 Jul 2025
Viewed by 543
Abstract
Patients undergoing peritoneal dialysis (PD) represent a uniquely vulnerable population due to intrinsic immunological dysfunction and a high prevalence of comorbid conditions. This review examines the complex interplay between natural and vaccine-induced immune responses to SARS-CoV-2 in this group, focusing on viral entry, [...] Read more.
Patients undergoing peritoneal dialysis (PD) represent a uniquely vulnerable population due to intrinsic immunological dysfunction and a high prevalence of comorbid conditions. This review examines the complex interplay between natural and vaccine-induced immune responses to SARS-CoV-2 in this group, focusing on viral entry, immune activation, and immune evasion mechanisms. Particular attention is given to the impaired cellular and humoral responses seen in PD patients, including reduced T-cell function, diminished antibody production, and abnormal cytokine signaling, all of which contribute to an elevated risk of severe COVID-19 outcomes. The immunogenicity and clinical efficacy of various vaccine platforms, including inactivated, vector-based, and mRNA formulations, are critically assessed, with an emphasis on the role of booster doses in enhancing protection amid waning immunity and evolving viral variants. Furthermore, the review highlights the advantages of PD as a home-based modality that is compatible with telemedicine and may reduce the risk of viral exposure. These insights underscore the importance of developing individualized vaccination strategies, maintaining close immunological surveillance, and implementing innovative dialysis care approaches to improve clinical outcomes during the ongoing pandemic and future public health crises. Tailored booster strategies and telemedicine-integrated care models are essential for improving outcomes in this high-risk population. Full article
(This article belongs to the Special Issue Immune Responses in Patients with Chronic Disease After Vaccination)
Show Figures

Figure 1

17 pages, 1853 KiB  
Systematic Review
Safety, Immunogenicity, and Efficacy of COVID-19 Vaccines in Radiation–Oncology Patients: A Systematic Review and Meta-Analysis
by Paul Thöne, Margot Egger, Michael Stephan Gruber, Georg Gruber, Christina Kasassov, Dalma Nyiri, Eva Weis, Helene Werl, Leonhard Trinkl, Wolfgang Lilleby, Martin Clodi, Elisabeth Bräutigam, Benjamin Dieplinger, Annette Aigner and Hans Geinitz
Vaccines 2025, 13(7), 715; https://doi.org/10.3390/vaccines13070715 - 30 Jun 2025
Viewed by 460
Abstract
Background/Objectives: The COVID-19 pandemic significantly threatened cancer patients and oncologic care. The rollout of vaccines emerged as a critical milestone, despite the initial lack of evidence regarding their safety and efficacy in this population. This systematic review and meta-analysis evaluate the current [...] Read more.
Background/Objectives: The COVID-19 pandemic significantly threatened cancer patients and oncologic care. The rollout of vaccines emerged as a critical milestone, despite the initial lack of evidence regarding their safety and efficacy in this population. This systematic review and meta-analysis evaluate the current evidence on COVID-19 vaccination in patients undergoing radiotherapy (RT). Methods: PubMed, Livivo, Scopus, and Cochrane Library were systematically reviewed for relevant publications on COVID-19 vaccination in the context of radiation oncology, published by 19 April 2024. The treatment effects were calculated as the proportion of seroconverted individuals. Results: A total of 22 studies published between 2021 and 2024 were included, covering various aspects of vaccination, including safety, tolerability, qualitative and quantitative humoral responses, cellular responses, vaccination efficacy, and booster vaccinations. Notably, patients undergoing RT exhibited a high willingness to receive vaccination. Vaccination was overall well tolerated and safe, with a low incidence of side effects, which were primarily mild. The primary meta-analysis showed a seroconversion proportion of 91% [95% CI: 84–96%] overall, with a somewhat higher proportion of 93% in patients receiving RT alone, compared to 90% in patients receiving either RT or RT combined with chemotherapy. Furthermore, immunization during RT led to a sustained increase in antibody titers, with a notable long-term persistence of IgG. Conclusions: COVID-19 vaccines demonstrate excellent safety, immunogenicity, and efficacy in patients receiving RT, who also exhibit a high willingness to be vaccinated. The outcomes observed are comparable to those in healthy controls and superior to those seen in patients receiving other cancer treatments, such as chemotherapy. The vaccination of radiation oncology patients in future pandemics or epidemics is strongly advocated even during active treatment. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Graphical abstract

11 pages, 222 KiB  
Article
Effects of Rumen-Protected Taurine Supplementation on Ruminal Fermentation, Hematological Profiles, Liver Function, and Immune Responses in Yaks
by Shoupei Zhao, Lianghao Lu, Yuanyuan Chen, Huaming Yang, Bao Zhang, Mingyu Cao, Wenju Chao, Wanchao Xue, Xiaorong Fan, Jianxin Xiao, Rui Hu, Quanhui Peng, Lizhi Wang, Zhisheng Wang and Bai Xue
Animals 2025, 15(13), 1929; https://doi.org/10.3390/ani15131929 - 30 Jun 2025
Viewed by 372
Abstract
The present study evaluated the effects of dietary rumen-protected taurine (RPT) supplementation on ruminal fermentation, hematological parameters, liver function, stress-related hormones, and immune responses in yaks. Eighteen yaks were randomly allocated to three groups: a control group receiving no RPT (CON), a low-dose [...] Read more.
The present study evaluated the effects of dietary rumen-protected taurine (RPT) supplementation on ruminal fermentation, hematological parameters, liver function, stress-related hormones, and immune responses in yaks. Eighteen yaks were randomly allocated to three groups: a control group receiving no RPT (CON), a low-dose group receiving 20 g/day (RPT20), and a high-dose group receiving 40 g/day (RPT40). Supplementation with RPT did not significantly affect ruminal pH, microbial protein concentration, ammonia nitrogen, total volatile fatty acids, or the individual volatile fatty acid profiles (p > 0.05). A decreasing trend in red blood cell count was observed (p = 0.050), while no significant changes were detected in white blood cell or platelet indices (p > 0.05). Liver function markers, including albumin, alanine transaminase, aspartate transaminase, and total protein, remained unchanged, although a trend toward altered alkaline phosphatase activity was noted (p = 0.074). No significant effects were observed on acute-phase proteins (serum amyloid A, C-reactive protein) or stress-related hormones (epinephrine, adrenocorticotropic hormone, cortisol) (p > 0.05). Importantly, serum immunoglobulin A and immunoglobulin G levels were significantly increased in response to RPT supplementation (p = 0.029 and p = 0.043, respectively), suggesting enhanced humoral immunity. These findings indicate that RPT may improve immune function in yaks without negatively affecting rumen fermentation or liver health. Full article
18 pages, 5108 KiB  
Article
Designing a Multi-Epitope Vaccine Against MPXV and HIV Based on an Immunoinformatic Approach
by Ding Tang, Siwen Wu, Youchun Wang and Weijin Huang
Int. J. Mol. Sci. 2025, 26(13), 6313; https://doi.org/10.3390/ijms26136313 - 30 Jun 2025
Viewed by 418
Abstract
In the current global health environment, the spread of the monkeypox virus (MPXV) and the persistent threat of human immunodeficiency virus (HIV) have become critical public health challenges. Since 2022, MPXV has rapidly disseminated worldwide, and nearly half of MPXV-infected individuals are co-infected [...] Read more.
In the current global health environment, the spread of the monkeypox virus (MPXV) and the persistent threat of human immunodeficiency virus (HIV) have become critical public health challenges. Since 2022, MPXV has rapidly disseminated worldwide, and nearly half of MPXV-infected individuals are co-infected with HIV. This complex situation calls for innovative preventive strategies. In this study, an innovative multi-epitope vaccine was designed using bioinformatics and immunoinformatic approaches. Ten HIV proteins and nine MPXV proteins were used to predict potential epitopes. Non-allergenic, highly antigenic, IFN-γ-inducible, and non-toxic epitopes were selected to construct the multi-epitope vaccine. It was found that the designed vaccine construct was highly antigenic, soluble, and had acceptable physicochemical properties. Based on molecular docking and molecular dynamics simulation (MDs) analyses, the vaccine construct demonstrated stable and robust interactions with Toll-like receptors (TLR2, TLR3, and TLR4). Although no actual animal experiments have been conducted to evaluate the vaccine’s effectiveness, immune simulations showed that the vaccine could elicit potent humoral and cell-mediated immune responses. Overall, this study provides a promising vaccine candidate against MPXV and HIV co-infection and emphasizes innovative strategies to interrupt the international transmission of these two viruses. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

16 pages, 1434 KiB  
Article
Exploring Immune Responses to SARS-CoV-2: Insights from Sinopharm (BBIBP-CorV)-Vaccinated Individuals in a Group of Venezuelan Admixed Volunteers
by Alexis Hipólito García, Soriuska José Mayora, Christian Medina, Inírida Amada Belisario, Wendy Yaqueline Martínez, Francis Isamarg Crespo and Juan Bautista De Sanctis
Biomedicines 2025, 13(7), 1550; https://doi.org/10.3390/biomedicines13071550 - 25 Jun 2025
Viewed by 473
Abstract
Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. [...] Read more.
Background: Vaccines are crucial for preventing infectious diseases, as both humoral and cellular immune responses play a vital role in combating viral infections. The cellular immune response is crucial against SARS-CoV-2, particularly with the emergence of new variants that evade antibody neutralization. This study focuses on the immune memory response in individuals who have been vaccinated with the Sinopharm BBIBP-CorV vaccine. Methods: A cross-sectional study evaluated lymphocyte subpopulations using flow cytometry in 52 vaccinated adults (30 females, 22 males) who had been exposed to SARS-CoV-2 or diagnosed with COVID-19. Conducted from February to June 2023 during the Omicron variant’s circulation, this study assessed antigens—CD154 in CD4+ T cells, CD107 and CD314 in CD8+ T cells, CD314 in NK cells, and CD86 in CD19 B cells—after stimulation with viral peptides and an inactivated virus. Granzyme B and IFN-γ were quantified using ELISA. Results: The memory response, regardless of gender, age, or Body Mass Index (BMI), was mild but significant upon exposure to a viral antigen or inactivated virus. An increase in the secretion of IFN-γ and granzyme B was also observed. Conclusions: It is suggested that the vaccine was able to generate a mild long-term memory against the SARS-CoV-2 virus in vaccinated adult individuals, independent of gender and BMI. Full article
Show Figures

Figure 1

13 pages, 2026 KiB  
Article
Pre-Existing Anti-Inflammatory Immune Conditions Influence Early Antibody Avidity and Isotype Profile Following Comirnaty® Vaccination in Mice
by Mariangeles Castillo, María C. Miraglia, Florencia C. Mansilla, Cecilia P. Randazzo, Leticia V. Bentancor, Teresa Freire and Alejandra V. Capozzo
Vaccines 2025, 13(7), 677; https://doi.org/10.3390/vaccines13070677 - 24 Jun 2025
Viewed by 557
Abstract
Background/Objectives: Vaccine immunogenicity is often suboptimal in vulnerable populations such as the elderly, infants, and individuals in low- and middle-income countries. One contributing factor may be pre-existing immunomodulatory conditions, including helminth infections. This study investigates the impact of Fasciola hepatica (F. hepatica [...] Read more.
Background/Objectives: Vaccine immunogenicity is often suboptimal in vulnerable populations such as the elderly, infants, and individuals in low- and middle-income countries. One contributing factor may be pre-existing immunomodulatory conditions, including helminth infections. This study investigates the impact of Fasciola hepatica (F. hepatica) derived molecules on the early humoral response to the COVID-19 mRNA vaccine Comirnaty® in a mouse model. Methods: BALB/c mice were pretreated with a F. hepatica protein extract (FH) or complete Freund’s adjuvant (CFA) prior to vaccination. Cytokine production and antibody responses were assessed at 0, 14, and 21 days post-vaccination (dpv) through serum analysis and ex vivo splenocyte stimulation with the SARS-CoV-2 receptor-binding domain (RBD) or LPS. Results: At 0 dpv, FH-treated mice showed increased serum IL-10, while CFA treatment induced IL-12. FH- but not CFA-treated splenocytes secreted IL-10 upon RBD or LPS stimulation. At 21 dpv, FH-treated mice lacked IFN-γ production but maintained IL-10 and showed elevated IL-4, consistent with a Th2-skewed profile. Although total anti-RBD IgG levels were similar between groups, FH-treated mice exhibited reduced IgG avidity and a higher IgG1/IgG2 ratio. CFA-treated mice showed delayed avidity maturation. Conclusions: Prior exposure to F. hepatica antigens can modulate the early immune response to Comirnaty®, affecting both cellular activation and antibody quality. This altered response may reflect a reduced early protective capacity of the vaccine, which might need to be considered when designing or evaluating vaccination strategies using mRNA vaccines in helminth-endemic regions. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

26 pages, 6162 KiB  
Article
Ethnic Comparisons of Spike-Specific CD4+ T Cells, Serological Responses, and Neutralizing Antibody Titers Against SARS-CoV-2 Variants
by Fani Pantouli, Vanessa Silva-Moraes and Ted M. Ross
Vaccines 2025, 13(6), 607; https://doi.org/10.3390/vaccines13060607 - 4 Jun 2025
Viewed by 1074
Abstract
Background/Objectives: To evaluate how immune responses compare among ethnic groups approximately 2 years after receiving a third dose of COVID-19 vaccine (BNT162b2, mRNA-1273, ChAdOx1or BBIBP-CorV), we tested T cell responses and Spike-specific RBD-antibody titer, and neutralized antibody titer levels utilizing Spectral Flow cytometry, [...] Read more.
Background/Objectives: To evaluate how immune responses compare among ethnic groups approximately 2 years after receiving a third dose of COVID-19 vaccine (BNT162b2, mRNA-1273, ChAdOx1or BBIBP-CorV), we tested T cell responses and Spike-specific RBD-antibody titer, and neutralized antibody titer levels utilizing Spectral Flow cytometry, ELISA, and SARS-CoV-2 pseudotyped-based neutralization assays, respectively. Methods: Forty-four individuals from January–December 2023 were identified within the cohort and were classified into different ethnic backgrounds; Black (N = 13), Asian (N = 14), Caucasian (N = 17). We recognize that the “Asian” group includes diverse subpopulations with distinct genetic and environmental backgrounds, which could not be further stratified due to sample-size limitations. Spike-specific AIM+, CD4+, and CD8+ T cell responses were assessed and evaluated against SARS-CoV-2 variants, including the ancestral Wuhan, Delta, and multiple Omicron subvariants (B1.1529, BA2.86, BA.4/5, and XBB.1). Alongside we tested the RBD-IgG and neutralizing antibody titers against the ancestral Wuhan. Spearman’s correlation analysis was utilized to determine corelative relationships among the AIM+ and CD4+ T cell responses, as well as the RBD-IgG and neutralizing antibody titers. Results: Our results show robust and comparable RBD-IgG and neutralizing antibody titers across all groups, with a significant positive correlation between these two measurements. Significant differences were observed in T-cell activation, with Asian participants exhibiting lower frequencies of Spike-specific CD4+ T cells against SARS-CoV-2 Omicron subvariants and higher frequencies of cytokine-producing CD4+ T cells (TNF-α, IFN-γ, and IL-2) as compared to the Caucasian group. Breakthrough infection status was not fully controlled and may influence these findings. Conclusion: Despite a small sample size and potential confounding by natural infections within our long-time-span sampling, our data suggest persistent cellular and humoral immunity 2 years after vaccination across ethnicities, with notable differences in T cell activation and cytokine profile. These preliminary observations highlight the need for larger, more detailed studies that consider intra-ethnic diversity and hybrid immunity to better understand ethnic differences in COVID-19 vaccine responses. Full article
(This article belongs to the Special Issue 3rd Edition: Safety and Autoimmune Response to SARS-CoV-2 Vaccination)
Show Figures

Figure 1

Back to TopTop