Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = inchworm actuators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3369 KiB  
Article
A Bio-Inspired Data-Driven Locomotion Optimization Framework for Adaptive Soft Inchworm Robots
by Mahtab Behzadfar, Arsalan Karimpourfard and Yue Feng
Biomimetics 2025, 10(5), 325; https://doi.org/10.3390/biomimetics10050325 - 16 May 2025
Viewed by 713
Abstract
This paper presents a data-driven framework for optimizing energy-efficient locomotion in a bio-inspired soft inchworm robot. Leveraging a feedforward neural network, the proposed approach accurately models the nonlinear relationships between actuation parameters (pressure, frequency) and environmental conditions (surface friction). The neural network achieves [...] Read more.
This paper presents a data-driven framework for optimizing energy-efficient locomotion in a bio-inspired soft inchworm robot. Leveraging a feedforward neural network, the proposed approach accurately models the nonlinear relationships between actuation parameters (pressure, frequency) and environmental conditions (surface friction). The neural network achieves superior velocity prediction performance, with a coefficient of determination (R2) of 0.9362 and a root mean squared error (RMSE) of 0.3898, surpassing previously reported models, including linear regression, LASSO, decision trees, and random forests. Particle Swarm Optimization (PSO) is integrated to maximize locomotion efficiency by optimizing the velocity-to-pressure ratio and adaptively minimizing input pressure for target velocities across diverse terrains. Experimental results demonstrate that the framework achieves an average 9.88% reduction in required pressure for efficient movement and a 6.45% reduction for stable locomotion, with the neural network enabling robust adaptation to varying surfaces. This dual optimization strategy ensures both energy savings and adaptive performance, advancing the deployment of soft robots in diverse environments. Full article
Show Figures

Figure 1

16 pages, 8312 KiB  
Article
3D-Printed Soft Bionic Inchworm Robot Powered by Magnetic Force
by Deli Xia, Luying Zhang, Weihang Nong, Qingshan Duan and Jiang Ding
Biomimetics 2025, 10(4), 202; https://doi.org/10.3390/biomimetics10040202 - 26 Mar 2025
Viewed by 604
Abstract
Based on soft body structure and unique gait of bending and stretching, Soft Bionic Inchworm Robots (SBIRs) are used in pipeline inspection and terrain exploration. Many existing SBIRs rely on complex production mechanisms and are cable-driven, which hinders rapid production and smooth movement [...] Read more.
Based on soft body structure and unique gait of bending and stretching, Soft Bionic Inchworm Robots (SBIRs) are used in pipeline inspection and terrain exploration. Many existing SBIRs rely on complex production mechanisms and are cable-driven, which hinders rapid production and smooth movement through complex environments, respectively. To address these challenges, this paper introduces a 3D-printed SBIR, featuring a 3D-printed body actuated by magnetic forces. We introduce the design and production process of the 3D-SBIR and analyze its motion gait. Subsequently, the material composition model and bending deformation model of the robot are developed based on the theory of hyper-elastic materials. The accuracy of the model is validated using simulation analysis and experimental testing of the robot. Meanwhile, we carry out a magnetic simulation analysis and discuss the factors influencing the size of the magnetic force. Finally, a series of experiments are conducted to prove the excellent locomotion capability of the robot. The 3D-SBIR demonstrates remarkable flexibility and multimodal movement capabilities. It can navigate through narrow curved passages with ease, passively overcome obstacles, climb steps up to 0.8 times its body height, and perform a seamless transition while moving across a horizontal plane onto a vertical plane. The 3D-SBIR proposed in this paper is characterized by rapid production, cable-free actuation, and multimodal motion capabilities, making it well suited for moving in unstructured environments. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics: Design, Fabrication and Applications)
Show Figures

Figure 1

15 pages, 8087 KiB  
Article
A Novel Caterpillar-Inspired Vascular Interventional Robot Navigated by Magnetic Sinusoidal Mechanism
by Xinping Zhu, Hanwei Zhou, Xiaoxiao Zhu and Kundong Wang
Actuators 2024, 13(10), 412; https://doi.org/10.3390/act13100412 - 13 Oct 2024
Cited by 1 | Viewed by 4158
Abstract
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can [...] Read more.
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can safely adapt to complex vessel structures. Existing commercial MSCRs primarily employ a magnetic-pull strategy, which suffers from insufficient driving force and a single actuation strategy, limiting their clinical applicability. Inspired by the inchworm crawling locomotion gait, we herein present a novel MSCR that integrates a magnetic sinusoidal actuation mechanism with adjustable frequency and kirigami structures. The developed MSCRs consist of two permanent magnets connected by a micro-spring, which is coated with a silicone membrane featuring a specific notch array. This design enables bio-inspired crawling with controllable velocity and active maneuverability. An analytical model of the magnetic torque and finite element analysis (FEA) simulations of the MSCRs has been constructed. Additionally, the prototype has been validated through two-dimensional in-vitro tracking experiments with actuation frequencies ranging from 1 to 10 Hz. Its stride efficiency has also been verified in a three-dimensional (3D) coronary artery phantom. Diametrically magnetized spherical chain tip enhances active steerability. Kirigami skin is coated over the novel guidewire and catheter, not only providing proximal anchorage for improved stride efficiency but also serving similar function as a cutting balloon. Under the actuation of an external magnetic field, the proposed MSCRs demonstrate the ability to traverse bifurcations and tortuous paths, indicating their potential for dexterous flexibility in pathological vessels. Full article
(This article belongs to the Special Issue Design of Smart Endorobots: Actuators, Sensors and Control Strategies)
Show Figures

Figure 1

29 pages, 11897 KiB  
Article
Research and Implementation of Pneumatic Amphibious Soft Bionic Robot
by Wenchuan Zhao, Yu Zhang, Lijian Yang, Ning Wang and Linghui Peng
Machines 2024, 12(6), 393; https://doi.org/10.3390/machines12060393 - 7 Jun 2024
Cited by 1 | Viewed by 1638
Abstract
To meet the requirements of amphibious exploration, ocean exploration, and military reconnaissance tasks, a pneumatic amphibious soft bionic robot was developed by taking advantage of the structural characteristics, motion forms, and propulsion mechanisms of the sea lion fore-flippers, inchworms, Carangidae tails, and dolphin [...] Read more.
To meet the requirements of amphibious exploration, ocean exploration, and military reconnaissance tasks, a pneumatic amphibious soft bionic robot was developed by taking advantage of the structural characteristics, motion forms, and propulsion mechanisms of the sea lion fore-flippers, inchworms, Carangidae tails, and dolphin tails. Using silicone rubber as the main material of the robot, combined with the driving mechanism of the pneumatic soft bionic actuator, and based on the theory of mechanism design, a systematic structural design of the pneumatic amphibious soft bionic robot was carried out from the aspects of flippers, tail, head–neck, and trunk. Then, a numerical simulation algorithm was used to analyze the main executing mechanisms and their coordinated motion performance of the soft bionic robot and to verify the rationality and feasibility of the robot structure design and motion forms. With the use of rapid prototyping technology to complete the construction of the robot prototype body, based on the motion amplitude, frequency, and phase of the bionic prototype, the main execution mechanisms of the robot were controlled through a pneumatic system to carry out experimental testing. The results show that the performance of the robot is consistent with the original design and numerical simulation predictions, and it can achieve certain maneuverability, flexibility, and environmental adaptability. The significance of this work is the development of a pneumatic soft bionic robot suitable for amphibious environments, which provides a new idea for the bionic design and application of pneumatic soft robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

13 pages, 4646 KiB  
Article
A Single-Clamp Inchworm Actuator with Two Piezoelectric Stacks
by Lu Liu, Zheyang Ji, Yue Zhang, Huan Chen, Weimin Lou and Ming Kong
Micromachines 2024, 15(6), 718; https://doi.org/10.3390/mi15060718 - 29 May 2024
Cited by 5 | Viewed by 1540
Abstract
Inchworm piezoelectric actuators have attracted much attention in the field of precision positioning due to the advantages of a large stroke, high output force, and high resolution. However, traditional inchworm piezoelectric actuators use two sets of clamps and a set of drive structures [...] Read more.
Inchworm piezoelectric actuators have attracted much attention in the field of precision positioning due to the advantages of a large stroke, high output force, and high resolution. However, traditional inchworm piezoelectric actuators use two sets of clamps and a set of drive structures to achieve stepping motion, which generally requires at least three piezoelectric stacks, resulting in a complex structure and the control system. Several methodologies have been advanced to minimize the utilization of piezoelectric stacks. However, there still exists the issue of excessive volume. Therefore, an inchworm piezoelectric actuator with a single-clamp and single drive structure is proposed in the study, which provides a compact size and smaller volume. The clamping mechanism comprises two sets of clamping feet with opposite displacement, which alternate contact with the guide frame and adjustable plate to ensure that the clamping mechanism always has frictional force and accomplishes the stepping motion. The testing of the actuator’s step distance, output force, and other parameters was conducted utilizing a displacement sensor. Experimental results indicate that the actuator achieved a maximum speed of 174.3 μm/s and an output force of 8.6 N when the frequency and voltage were 19 Hz and 150 V. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators)
Show Figures

Figure 1

17 pages, 6974 KiB  
Article
A Structural Design and Motion Characteristics Analysis of an Inchworm-Inspired Soft Robot Based on Shape Memory Alloy Actuation
by Qiong Wei, Ding Ke, Zihang Sun, Zilong Wu, Yue Zhou and Daode Zhang
Actuators 2024, 13(1), 43; https://doi.org/10.3390/act13010043 - 22 Jan 2024
Cited by 6 | Viewed by 2672
Abstract
Inchworms are a widely adopted bio-inspired model for soft crawling robots. Taking advantage of the good controllability of Shape Memory Alloy (SMA), this paper designs and manufactures an inchworm-inspired soft robot driven by SMA. Firstly, in the structural design, the paper compares the [...] Read more.
Inchworms are a widely adopted bio-inspired model for soft crawling robots. Taking advantage of the good controllability of Shape Memory Alloy (SMA), this paper designs and manufactures an inchworm-inspired soft robot driven by SMA. Firstly, in the structural design, the paper compares the heat dissipation performance and driving efficiency of SMA actuators with two assembly forms: embedded and external to the silicone body. The external structure assembly design with superior performance is chosen. Secondly, in the analysis of the motion characteristics of the soft robot, a kinematic model is developed. Addressing the issue of inaccurate representation in traditional constitutive models due to difficult-to-measure parameters, such as martensite volume fraction, this paper derives an exclusive new constitutive model starting from traditional models using methods like the Taylor series and thermodynamic laws. The kinematic model is simulated using the Simulink platform to obtain its open-loop step response and sinusoidal signal response. Finally, an experimental platform is set up to conduct crawling tests on the soft robot in different planes. The experimental results show that the inchworm-inspired soft robot can perform continuous crawling motion, with a crawling speed of 0.041 mm/s on sandpaper under a constant current of 4A. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

38 pages, 6821 KiB  
Review
Inchworm Motors and Beyond: A Review on Cooperative Electrostatic Actuator Systems
by Almothana Albukhari and Ulrich Mescheder
Actuators 2023, 12(4), 163; https://doi.org/10.3390/act12040163 - 4 Apr 2023
Cited by 6 | Viewed by 4367
Abstract
Having benefited from technological developments, such as surface micromachining, high-aspect-ratio silicon micromachining and ongoing miniaturization in complementary metal–oxide–semiconductor (CMOS) technology, some electrostatic actuators became widely used in large-volume products today. However, due to reliability-related issues and inherent limitations, such as the pull-in instability [...] Read more.
Having benefited from technological developments, such as surface micromachining, high-aspect-ratio silicon micromachining and ongoing miniaturization in complementary metal–oxide–semiconductor (CMOS) technology, some electrostatic actuators became widely used in large-volume products today. However, due to reliability-related issues and inherent limitations, such as the pull-in instability and extremely small stroke and force, commercial electrostatic actuators are limited to basic implementations and the micro range, and thus cannot be employed in more intricate systems or scaled up to the macro range (mm stroke and N force). To overcome these limitations, cooperative electrostatic actuator systems have been researched by many groups in recent years. After defining the scope and three different levels of cooperation, this review provides an overview of examples of weak, medium and advanced cooperative architectures. As a specific class, hybrid cooperative architectures are presented, in which besides electrostatic actuation, another actuation principle is used. Inchworm motors—belonging to the advanced cooperative architectures—can provide, in principle, the link from the micro to the macro range. As a result of this outstanding potential, they are reviewed and analyzed here in more detail. However, despite promising research concepts and results, commercial applications are still missing. The acceptance of piezoelectric materials in some industrial CMOS facilities might now open the gate towards hybrid cooperative microactuators realized in high volumes in CMOS technology. Full article
(This article belongs to the Special Issue Cooperative Microactuator Devices and Systems)
Show Figures

Figure 1

22 pages, 23349 KiB  
Article
Non-Inchworm Electrostatic Cooperative Micro-Stepper-Actuator Systems with Long Stroke
by Lisa Schmitt, Peter Conrad, Alexander Kopp, Christoph Ament and Martin Hoffmann
Actuators 2023, 12(4), 150; https://doi.org/10.3390/act12040150 - 30 Mar 2023
Cited by 3 | Viewed by 2478
Abstract
In this paper, we present different microelectromechanical systems based on electrostatic actuators, and demonstrate their capacity to achieve large and stepwise displacements using a cooperative function of the actuators themselves. To explore this, we introduced micro-stepper actuators to our experimental systems, both with [...] Read more.
In this paper, we present different microelectromechanical systems based on electrostatic actuators, and demonstrate their capacity to achieve large and stepwise displacements using a cooperative function of the actuators themselves. To explore this, we introduced micro-stepper actuators to our experimental systems, both with and without a guiding spring mechanism; mechanisms with such guiding springs can be applied to comb-drive and parallel-plate actuators. Our focus was on comparing various guiding spring designs, so as to increase the actuator displacement. In addition, we present systems based on cascaded actuators; these are converted to micromechanical digital-to-analog converters (DAC). With DACs, the number of actuators (and thus the complexity of the digital control) are significantly reduced in comparison to analog stepper-actuators. We also discuss systems that can achieve even larger displacements by using droplet-based bearings placed on an array of aluminum electrodes, rather than guiding springs. By commutating the voltages within these electrode arrays, the droplets follow the activated electrodes, carrying platforms atop themselves as they do so. This process thus introduces new applications for springless large displacement stepper-actuators. Full article
(This article belongs to the Special Issue Cooperative Microactuator Devices and Systems)
Show Figures

Figure 1

19 pages, 8475 KiB  
Article
Design and Experiment of a Clamping-Drive Alternating Operation Piezoelectric Actuator
by Mengxin Sun, Zhenwei Cao and Lukai Zheng
Micromachines 2023, 14(3), 525; https://doi.org/10.3390/mi14030525 - 24 Feb 2023
Cited by 3 | Viewed by 2384
Abstract
In recent years, piezoelectric actuators, represented by inertial and inchworm actuators, have been widely applied because of their high accuracy and excellent responsiveness. Despite the development of various piezoelectric actuators, there remain some flaws in this technology. The sticking point is that the [...] Read more.
In recent years, piezoelectric actuators, represented by inertial and inchworm actuators, have been widely applied because of their high accuracy and excellent responsiveness. Despite the development of various piezoelectric actuators, there remain some flaws in this technology. The sticking point is that the piezoelectric actuators based on the friction driving principle are prone to unwanted backward motion when outputting stepping motion. It is thus urgent to explore solutions from the perspectives of principle and structure. In this paper, a clamping-drive alternating operation piezoelectric actuator is proposed, the two feet of which are driven by two piezoelectric stacks, respectively. Due to double-foot alternate drive guide movement, backward movement is prevented in theory. By adopting the double-layer stator structure, integrated processing and assembly are facilitated. Meanwhile, a double flexible hinge mechanism is installed in the stator to prevent the drive foot from being overturned due to ineffectiveness and premature wear. In addition, the stator is equipped with the corresponding preload mechanism and clamping device. After the cycle action mechanism of one cycle and four steps is expounded, a model is established in this study to further demonstrate the principle. With the prototype produced, a series of experiments are performed. In addition, the amplitude of actuation of the stator is tested through amplitude experiment. The performance of the stator is evaluated by conducting experiments in the alternating step and single step actuation modes. Finally, the test results are analyzed to conclude that the actuator operating in either of these two modes can meet the practical needs of macro and micro actuation. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

12 pages, 2439 KiB  
Article
Design of a Magnetic Soft Inchworm Millirobot Based on Pre-Strained Elastomer with Micropillars
by Yuzhang Wei, Zehao Wu, Ziyi Dai, Bingpu Zhou and Qingsong Xu
Biomimetics 2023, 8(1), 22; https://doi.org/10.3390/biomimetics8010022 - 6 Jan 2023
Cited by 16 | Viewed by 3441
Abstract
Rather than using longitudinal “muscle” as in biological inchworm, the existing magnetic active elastomer (MAE)-based inchworm robots utilize magnetic torque to pull and push the soft body, which hinders its locomotion mobility. In this paper, a new pre-strained MAE inchworm millirobot with micropillars [...] Read more.
Rather than using longitudinal “muscle” as in biological inchworm, the existing magnetic active elastomer (MAE)-based inchworm robots utilize magnetic torque to pull and push the soft body, which hinders its locomotion mobility. In this paper, a new pre-strained MAE inchworm millirobot with micropillars is proposed. The pre-strained elastomer serves as a pre-load muscle to contract the soft body, and the micropillars act as tiny feet to anchor the body during the locomotion. The proposed magnetic inchworm robot features a simple fabrication process that does not require special magnetization equipment. For the first time, the pre-load muscle is introduced in the design of magnetic inchworm robots, making it more like a real inchworm in terms of locomotion mechanism. The locomotion principle and parametric design for the desired locomotion performance have been investigated. Experimental results show that the fabricated magnetic inchworm robot (size: 10 mm × 5 mm, micropillars length: 200 µm, and mass: 262 g) can locomote on a smooth acrylic surface (roughness of 0.3 µm) at the speed of 0.125 body lengths per second, which is comparable with the existing magnetic inchworm robots. Moreover, the locomotion capabilities of the inchworm robot on wet surfaces and inclined planes have been verified via experimental studies. Full article
(This article belongs to the Special Issue Biorobotics)
Show Figures

Figure 1

16 pages, 6004 KiB  
Article
Modeling and Design Optimization of a New Piezoelectric Inchworm Actuator with Screw Clamping Mechanisms
by Haichao Sun, Yunlai Shi, Qiang Wang, Xing Li and Junhan Wang
Micromachines 2022, 13(12), 2038; https://doi.org/10.3390/mi13122038 - 22 Nov 2022
Cited by 3 | Viewed by 2314
Abstract
A new piezoelectric inchworm actuator with screw clamping mechanisms has been developed recently for the wing folding mechanism of a small unmanned aircraft where the actuator power density is a great concern. Considering that the prototype actuator was designed just with engineering intuition [...] Read more.
A new piezoelectric inchworm actuator with screw clamping mechanisms has been developed recently for the wing folding mechanism of a small unmanned aircraft where the actuator power density is a great concern. Considering that the prototype actuator was designed just with engineering intuition and the performance optimization through experimental developments would take a vast amount of cost and time, a mathematical model was developed to investigate the actuator’s critical design parameters and optimize its presently undesirable performance. Based on the lumped parameter method reported previously, and taking full account of the detailed modeling of the complex actuator housing and the actual nonlinear behaviors from the high-force contact and friction occurring at the screw-nut interface, as well as the output performance of the main drive elements including the piezoelectric stack and hollow ultrasonic motors (HUSMs), this model was built and then was experimentally verified for its accuracy and availability. Finally, nine design parameters were studied for their individual effect on the actuator’s output using the proposed model. The simulation results indicate that the performance can be considerably improved by performing a slight modification to the prototype, and the dynamic modeling and parameter optimization methods used in this study can also serve as a useful reference for the design of similar piezoelectric inchworm actuators with intermittent clamping behaviors. Full article
Show Figures

Figure 1

14 pages, 3657 KiB  
Article
An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability
by Han Huang, Yu Feng, Xiong Yang, Liu Yang and Yajing Shen
Micromachines 2022, 13(10), 1578; https://doi.org/10.3390/mi13101578 - 22 Sep 2022
Cited by 12 | Viewed by 3422
Abstract
Inspired by the efficient locomotion of insects in nature, researchers have been developing a diverse range of soft robots with simulated locomotion. These robots can perform various tasks, such as carrying medicines and collecting information, according to their movements. Compared to traditional rigid [...] Read more.
Inspired by the efficient locomotion of insects in nature, researchers have been developing a diverse range of soft robots with simulated locomotion. These robots can perform various tasks, such as carrying medicines and collecting information, according to their movements. Compared to traditional rigid robots, flexible robots are more adaptable and terrain-immune and can even interact safely with people. Despite the development of biomimetic principles for soft robots, how their shapes, morphology, and actuation systems respond to the surrounding environments and stimuli still need to be improved. Here, we demonstrate an insect-scale soft robot with multi-locomotion modes made by Ecoflex and magnetic particles, which can be actuated by a magnetic field. Our robot can realize four distinct gaits: horizontal tumbling for distance, vertical tumbling for height, imitation of gastropod writhing, and inchworm-inspired crawling for cargo delivery. The soft compliant structure and four locomotion modes make the robot ideal for maneuvering in congested or complex spaces. In addition to linear motion (~20 mm/s) and turning (50°/s) on a flat terrain, the robot can also maneuver on various surface conditions (such as gaps, smooth slopes, sand, muddy terrain, and water). These merits, together with the robot’s high load-carrying capacity (5 times its weight), low cost, obstacle-crossing capability (as high as ~50% its length), and pressure resistance (70 kg), allow for a wide variety of applications. Full article
Show Figures

Figure 1

22 pages, 4335 KiB  
Article
A Proprioceptive Soft Robot Module Based on Supercoiled Polymer Artificial Muscle Strings
by Yang Yang, Honghui Zhu, Jia Liu, Haojian Lu, Yi Ren and Michael Yu Wang
Polymers 2022, 14(11), 2265; https://doi.org/10.3390/polym14112265 - 1 Jun 2022
Cited by 15 | Viewed by 3717
Abstract
In this paper, a multi-functional soft robot module that can be used to constitute a variety of soft robots is proposed. The body of the soft robot module made of rubber is in the shape of a long strip, with cylindrical chambers at [...] Read more.
In this paper, a multi-functional soft robot module that can be used to constitute a variety of soft robots is proposed. The body of the soft robot module made of rubber is in the shape of a long strip, with cylindrical chambers at both the top end and bottom end of the module for the function of actuators and sensors. The soft robot module is driven by supercoiled polymer artificial muscle (SCPAM) strings, which are made from conductive nylon sewing threads. Artificial muscle strings are embedded in the chambers of the module to control its deformation. In addition, SCPAM strings are also used for the robot module’s sensing based on the linear relationship between the string’s length and their resistance. The bending deformation of the robot is measured by the continuous change of the sensor’s resistance during the deformation of the module. Prototypes of an inchworm-like crawling robot and a soft robotic gripper are made, whose crawling ability and grasping ability are tested, respectively. We envision that the proposed proprioceptive soft robot module could potentially be used in other robotic applications, such as continuum robotic arm or underwater robot. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

11 pages, 2245 KiB  
Communication
Designing Soft Mobile Machines Enabled by Dielectric Elastomer Minimum Energy Structures
by Fan Liu, Ning An, Wenjie Sun and Jinxiong Zhou
Polymers 2022, 14(7), 1466; https://doi.org/10.3390/polym14071466 - 4 Apr 2022
Cited by 8 | Viewed by 2743
Abstract
Dielectric elastomers (DE) are ideal electro-active polymers with large voltage-induced deformation for the design and realization of soft machines. Among the diversity of configurations of DE-based soft machines, dielectric elastomer minimum energy structures (DEMES) are unique due to their ease of fabrication, readiness [...] Read more.
Dielectric elastomers (DE) are ideal electro-active polymers with large voltage-induced deformation for the design and realization of soft machines. Among the diversity of configurations of DE-based soft machines, dielectric elastomer minimum energy structures (DEMES) are unique due to their ease of fabrication, readiness to extend into multiple segments, and versatility of design configurations. Despite many successful demonstrations of DEMES actuators, these DEMES devices are limited to immobile use. We report several possible implementations of soft mobile machines through the combination of DEMES design, finite element simulation, and experiment. Our designs mimic the biomimetic locomotion of inchworms and marry complex components such as ratchet wheels with soft DEMES actuators. We even elucidate that buckling of DE can be harnessed to achieve asymmetric feet, which is otherwise realized via more complicated means. The examples presented here enrich DE devices’ design and provide valuable insights into the design and fabrication of soft machines that other soft-active materials enable. All the codes and files used in this paper can be downloaded from GitHub. Full article
Show Figures

Figure 1

12 pages, 4780 KiB  
Article
Long Stroke Design of Piezoelectric Walking Actuator for Wafer Probe Station
by Cheng Yang, Yin Wang and Wei Fan
Micromachines 2022, 13(3), 412; https://doi.org/10.3390/mi13030412 - 5 Mar 2022
Cited by 13 | Viewed by 2935
Abstract
In order to develop a high-resolution piezoelectric walking actuator with a long stroke for the wafer probe station, this work presents a design of a piezoelectric walking actuator with two auxiliary clamping feet elastically attached to major clamping feet. Its construction was introduced [...] Read more.
In order to develop a high-resolution piezoelectric walking actuator with a long stroke for the wafer probe station, this work presents a design of a piezoelectric walking actuator with two auxiliary clamping feet elastically attached to major clamping feet. Its construction was introduced and its operating principle was analyzed. Structure design details were discussed and a prototype was proposed. The prototype was fabricated and tested. The experimental results show that the proposed actuator can operate stably along a 20 mm guider. The proposed design is suitable for precision motion control applications. Full article
(This article belongs to the Special Issue Recent Advance in Piezoelectric Actuators and Motors)
Show Figures

Figure 1

Back to TopTop