Design of Smart Endorobots: Actuators, Sensors and Control Strategies

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Actuators for Robotics".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 5513

Special Issue Editors


E-Mail Website
Guest Editor
Centre of Medical Engineering and Technology (CMET), Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee, UK
Interests: endoscopic robots; shape memory alloy actuators; soft robots; control hardware; bio-inspired robots
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Zentrum für Mechatronik und Automatisierungstechnik gGmbH, Universität des Saarlandes, Lehrstuhl für intelligente Materialsysteme, Eschberger Weg 46, 66121 Saarbrücken, Germany
Interests: mechatronic systems; control systems; modeling; energy-based modeling and control; robust control; motion control; interaction control; self-sensing; smart materials; shape memory alloys; dielectric elastomers; soft actuators; soft robotics

E-Mail Website
Guest Editor
Center for Mechatronics and Automation Technologies gGmbH (ZeMA), Saarland University, 66121 Saarbrücken, Germany
Interests: smart material systems; actuators; sensors; electroactive polymers; shape memory alloys; robotics; handling systems; elastocalorics

E-Mail Website
Guest Editor
Institute of Medical Device Design, University of Stuttgart, Stuttgart, Germany
Interests: medical robotics; epecially kinematics; actuation; sensors; materials; low-cost/high performance

Special Issue Information

Dear Colleagues,

Medical endorobots have supported clinicians in the performance of diagnosis and treatment by accessing difficult-to-reach organs through minimal incisions or natural orifices, thus providing safe and reliable platforms, improving precision, and enhancing dexterity, all with an ergonomic user interface. The development of such small devices requires a multidisciplinary team to design actuators, sensors, and control strategies in a synergetic interaction. Limited space inside the human body has required researchers to develop new materials to design novel actuators, such as soft polymers, shape memory alloys, dielectric elastomer, and others. Smart sensors are required to measure the force and torque applied to the surrounding organs and to measure deformations. Actuation and sensing are combined by using smart control strategies to provide a stable, fast, and reliable interface for users.

This Special Issue aims to collect articles, new studies, and reviews on electrodynamic, electromagnetic, shape memory, fluidic, and polymer actuators, sensors, and control solutions for the design of endorobots, including smart materials for both actuation and sensing and hardware and algorithms, as well as novel mechanical designs.

The content of this topic fits the aim and scope of the journal, specifically in terms of robotics, medical instruments, and miniuturisation, including aspects of actuators and control systems. We aim to provide readers with a useful collection of articles on endorobots. The Guest Editors are experts in the field of medical robotics, soft actuators and device, motion control systems, shape memory actuators, and electroactive polymers and have already collaborated together in previous research work.

Dr. Luigi Manfredi
Prof. Dr. Gianluca Rizzello
Prof. Dr. Paul Motzki
Prof. Dr. Peter P. Pott
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 8087 KiB  
Article
A Novel Caterpillar-Inspired Vascular Interventional Robot Navigated by Magnetic Sinusoidal Mechanism
by Xinping Zhu, Hanwei Zhou, Xiaoxiao Zhu and Kundong Wang
Actuators 2024, 13(10), 412; https://doi.org/10.3390/act13100412 - 13 Oct 2024
Viewed by 3167
Abstract
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can [...] Read more.
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can safely adapt to complex vessel structures. Existing commercial MSCRs primarily employ a magnetic-pull strategy, which suffers from insufficient driving force and a single actuation strategy, limiting their clinical applicability. Inspired by the inchworm crawling locomotion gait, we herein present a novel MSCR that integrates a magnetic sinusoidal actuation mechanism with adjustable frequency and kirigami structures. The developed MSCRs consist of two permanent magnets connected by a micro-spring, which is coated with a silicone membrane featuring a specific notch array. This design enables bio-inspired crawling with controllable velocity and active maneuverability. An analytical model of the magnetic torque and finite element analysis (FEA) simulations of the MSCRs has been constructed. Additionally, the prototype has been validated through two-dimensional in-vitro tracking experiments with actuation frequencies ranging from 1 to 10 Hz. Its stride efficiency has also been verified in a three-dimensional (3D) coronary artery phantom. Diametrically magnetized spherical chain tip enhances active steerability. Kirigami skin is coated over the novel guidewire and catheter, not only providing proximal anchorage for improved stride efficiency but also serving similar function as a cutting balloon. Under the actuation of an external magnetic field, the proposed MSCRs demonstrate the ability to traverse bifurcations and tortuous paths, indicating their potential for dexterous flexibility in pathological vessels. Full article
(This article belongs to the Special Issue Design of Smart Endorobots: Actuators, Sensors and Control Strategies)
Show Figures

Figure 1

13 pages, 5977 KiB  
Article
Additively Manufactured Porous Filling Pneumatic Network Actuator
by Giuliano A. Giacoppo, Julia Hötzel and Peter P. Pott
Actuators 2023, 12(11), 414; https://doi.org/10.3390/act12110414 - 7 Nov 2023
Viewed by 1555
Abstract
This research project investigated the additive manufacturing of pneumatic actuators based on the principle of droplet dosing using an Arburg Freeformer 300-3X 3D printer. The developed structure consists of a porous inner filling and a dense, airtight chamber. By selectively varying the filling [...] Read more.
This research project investigated the additive manufacturing of pneumatic actuators based on the principle of droplet dosing using an Arburg Freeformer 300-3X 3D printer. The developed structure consists of a porous inner filling and a dense, airtight chamber. By selectively varying the filling densities of the porous inner filling, different membrane deflections of the actuator were achieved. By linking the actuators, a pneumatic network actuator was developed that could be used in endorobotics. To describe the membrane deflection of an additively manufactured pneumatic actuator, a mathematical model was developed that takes into account the influence of additive manufacturing and porous filling. Using a dedicated test rig, the predicted behavior of the pneumatic actuators was shown to be qualitatively consistent. In addition, a pneumatic network actuator (PneuNet) with a diameter of 17 mm and a height of 76 mm, consisting of nine chambers with different filling densities, could be bent through 82° under a pressure of 8 bar. Our study shows that the variation of filling densities during production leads to different membrane deflections. The mathematical model developed provides satisfactory predictions, although the influence of additive manufacturing needs to be determined experimentally. Post-processing is still a necessary step to realize the full bending potential of these actuators, although challenges regarding air-tightness remain. Future research approaches include studying the deflection behavior of the chambers in multiple directions, investigating alternative materials, and optimizing the printing process to improve mechanical properties and reliability. Full article
(This article belongs to the Special Issue Design of Smart Endorobots: Actuators, Sensors and Control Strategies)
Show Figures

Figure 1

Back to TopTop