Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,125)

Search Parameters:
Keywords = incentive mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 401 KiB  
Article
The Impact of Mergers and Acquisitions on Firm Environmental Performance: Empirical Evidence from China
by Thi Hai Oanh Le and Jing Yan
Sustainability 2025, 17(15), 7018; https://doi.org/10.3390/su17157018 (registering DOI) - 1 Aug 2025
Abstract
In this study, we examine the impact of mergers and acquisitions (M&As) on firm environmental performance, aiming to address the gap in research and guide firms, investors, and policymakers toward more environmentally conscious decision-making in M&A. Using panel data from Chinese A-share listed [...] Read more.
In this study, we examine the impact of mergers and acquisitions (M&As) on firm environmental performance, aiming to address the gap in research and guide firms, investors, and policymakers toward more environmentally conscious decision-making in M&A. Using panel data from Chinese A-share listed firms (2008–2022), we estimate a two-way fixed effect model. The Propensity Score Matching and the instrumental variable method address potential endogeneity concerns, and robustness checks validate the findings. We found that M&As have a significantly positive effect on firm environmental performance, with heterogeneous impacts across regions, industries, and M&A types. The environmental benefits are most pronounced in heavily polluting industries and hybrid M&A deals. Eastern China shows more modest improvements. The results of mechanism tests revealed that M&As enhance environmental performance primarily by boosting total factor productivity and fostering innovation. This study offers a novel perspective by linking M&A activities to environmental sustainability, enriching the literature on both M&As and corporate environmental performance. We show that even conventional M&A deals (not sustainability-focused) can improve environmental performance through operational synergies. Expanding beyond polluting industries, we reveal how sector characteristics shape M&A’s environmental impacts. We identify practical mechanisms through which standard M&A activities can advance sustainability goals, helping firms balance economic and environmental objectives. It provides empirical evidence from China, an emerging market with distinct institutional and regulatory contexts. The findings offer guidance for firms engaging in M&A to strategically improve sustainability performance. Policymakers can leverage these insights to design incentives for M&A in pollution-intensive industries, aligning economic growth with environmental goals. By demonstrating that M&As can enhance environmental outcomes, this study supports the potential for market-driven mechanisms to contribute to broader societal sustainability objectives, such as reduced industrial pollution and greener production practices. Full article
20 pages, 3027 KiB  
Article
Evolutionary Game Analysis of Multi-Agent Synergistic Incentives Driving Green Energy Market Expansion
by Yanping Yang, Xuan Yu and Bojun Wang
Sustainability 2025, 17(15), 7002; https://doi.org/10.3390/su17157002 (registering DOI) - 1 Aug 2025
Abstract
Achieving the construction sector’s dual carbon objectives necessitates scaling green energy adoption in new residential buildings. The current literature critically overlooks four unresolved problems: oversimplified penalty mechanisms, ignoring escalating regulatory costs; static subsidies misaligned with market maturity evolution; systematic exclusion of innovation feedback [...] Read more.
Achieving the construction sector’s dual carbon objectives necessitates scaling green energy adoption in new residential buildings. The current literature critically overlooks four unresolved problems: oversimplified penalty mechanisms, ignoring escalating regulatory costs; static subsidies misaligned with market maturity evolution; systematic exclusion of innovation feedback from energy suppliers; and underexplored behavioral evolution of building owners. This study establishes a government–suppliers–owners evolutionary game framework with dynamically calibrated policies, simulated using MATLAB multi-scenario analysis. Novel findings demonstrate: (1) A dual-threshold penalty effect where excessive fines diminish policy returns due to regulatory costs, requiring dynamic calibration distinct from fixed-penalty approaches; (2) Market-maturity-phased subsidies increasing owner adoption probability by 30% through staged progression; (3) Energy suppliers’ cost-reducing innovations as pivotal feedback drivers resolving coordination failures, overlooked in prior tripartite models; (4) Owners’ adoption motivation shifts from short-term economic incentives to environmentally driven decisions under policy guidance. The framework resolves these gaps through integrated dynamic mechanisms, providing policymakers with evidence-based regulatory thresholds, energy suppliers with cost-reduction targets, and academia with replicable modeling tools. Full article
Show Figures

Figure 1

32 pages, 444 KiB  
Article
Does Digital Literacy Increase Farmers’ Willingness to Adopt Livestock Manure Resource Utilization Modes: An Empirical Study from China
by Xuefeng Ma, Yahui Li, Minjuan Zhao and Wenxin Liu
Agriculture 2025, 15(15), 1661; https://doi.org/10.3390/agriculture15151661 - 1 Aug 2025
Abstract
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia [...] Read more.
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia and Gansu, two provinces in China that have long implemented livestock manure resource utilization policies, from December 2023 to January 2024, and employed the binary probit model to analyze how digital literacy influences farmers’ willingness to adopt two livestock manure resource utilization modes, as well as to analyze the moderating role of three policy regulations. This paper also explores the heterogeneous results in different village forms and income groups. The results are as follows: (1) Digital literacy significantly and positively impacts farmers’ willingness to adopt both the “household collection” mode and the “livestock community” mode. For every one-unit increase in a farmer’s digital literacy, the probability of farmers’ willingness to adopt the “household collection” mode rises by 22 percentage points, and the probability of farmers’ willingness to adopt the “livestock community” mode rises by 19.8 percentage points. After endogeneity tests and robustness checks, the conclusion still holds. (2) Mechanism analysis results indicate that guiding policy and incentive policy have a positive moderation effect on the link between digital literacy and the willingness to adopt the “household collection” mode. Meanwhile, incentive policy also positively moderates the relationship between digital literacy and the willingness to adopt the “livestock community” mode. (3) Heterogeneity analysis results show that the positive effect of digital literacy on farmers’ willingness to adopt two livestock manure resource utilization modes is stronger in “tight-knit society” rural areas and in low-income households. (4) In further discussion, we find that digital literacy removes the information barriers for farmers, facilitating the conversion of willingness into behavior. The value of this study is as follows: this paper provides new insights for the promotion of livestock and poultry manure resource utilization policies in countries and regions similar to the development process of northwest China. Therefore, enhancing farmers’ digital literacy in a targeted way, strengthening the promotion of grassroots policies on livestock manure resource utilization, formulating diversified ecological compensation schemes, and establishing limited supervision and penalty rules can boost farmers’ willingness to adopt manure resource utilization models. Full article
(This article belongs to the Special Issue Application of Biomass in Agricultural Circular Economy)
Show Figures

Figure 1

28 pages, 1804 KiB  
Article
The Penetration of Digital Currency for Sustainable and Inclusive Urban Development: Evidence from China’s e-CNY Pilot Using SDID-SCM
by Ying Chen and Ke Zhang
Sustainability 2025, 17(15), 6981; https://doi.org/10.3390/su17156981 (registering DOI) - 31 Jul 2025
Abstract
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs [...] Read more.
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs a staggered difference-in-differences (SDID) design augmented by the synthetic control method (SCM) to rigorously identify the policy effect of the e-CNY pilot. The results show that the pilot program significantly improves urban financial inclusion, contributing to more equitable access to financial services and supporting inclusive socio-economic development. Mechanism analysis suggests that the effect operates mainly through two channels, a merchant-coverage channel and a transaction-scale channel, with the former contributing the majority of the overall effect. Incorporating a migration-based mobility index shows that most studies’ focus on the merchant-coverage effect is amplified in cities under tight mobility restrictions but wanes where commercial networks are already saturated, whereas the transaction-scale channel is largely insensitive to mobility shocks. Heterogeneity tests further indicate stronger gains in non-provincial capital cities and in the eastern and central regions. Overall, the study uncovers a “penetration-inclusion” network logic and provides policy insights for advancing sustainable financial inclusion through optimized terminal deployment, merchant incentives, and diversified scenario design. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

79 pages, 12542 KiB  
Article
Evolutionary Game-Theoretic Approach to Enhancing User-Grid Cooperation in Peak Shaving: Integrating Whole-Process Democracy (Deliberative Governance) in Renewable Energy Systems
by Kun Wang, Lefeng Cheng and Ruikun Wang
Mathematics 2025, 13(15), 2463; https://doi.org/10.3390/math13152463 - 31 Jul 2025
Abstract
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced [...] Read more.
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced by incorporating whole-process democracy (deliberative governance) into decision-making. Our framework captures excess returns, cooperation-driven profits, energy pricing, participation costs, and benefit-sharing coefficients to identify equilibrium conditions under varied subsidy, cost, and market scenarios. Furthermore, this study integrates the theory, path, and mechanism of deliberative procedures under the perspective of whole-process democracy, exploring how inclusive and participatory decision-making processes can enhance cooperation in renewable energy systems. We simulate seven scenarios that systematically adjust subsidy rates, cost–benefit structures, dynamic pricing, and renewable-versus-conventional competitiveness, revealing that robust cooperation emerges only under well-aligned incentives, equitable profit sharing, and targeted financial policies. These scenarios systematically vary these key parameters to assess the robustness of cooperative equilibria under diverse economic and policy conditions. Our findings indicate that policy efficacy hinges on deliberative stakeholder engagement, fair profit allocation, and adaptive subsidy mechanisms. These results furnish actionable guidelines for regulators and grid operators to foster sustainable, low-carbon energy systems and inform future research on demand response and multi-source integration. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

25 pages, 3279 KiB  
Review
Current State of Development of Demand-Driven Biogas Plants in Poland
by Aleksandra Łukomska, Kamil Witaszek and Jacek Dach
Processes 2025, 13(8), 2369; https://doi.org/10.3390/pr13082369 - 25 Jul 2025
Viewed by 374
Abstract
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity [...] Read more.
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity production lead to both overloads and power shortages in transmission and distribution networks. A significant advantage of biogas plants over sources such as photovoltaics or wind turbines is their ability to control electricity generation and align it with actual demand. Biogas produced during fermentation can be temporarily stored in a biogas tank above the digester and later used in an enlarged CHP unit to generate electricity and heat during peak demand periods. While demand-driven biogas plants operate similarly to traditional installations, their development requires navigating regulatory and administrative procedures, particularly those related to the grid connection of the generated electricity. In Poland, it has only recently become possible to obtain grid connection conditions for such installations, following the adoption of the Act of 28 July 2023, which amended the Energy Law and certain other acts. However, the biogas sector still faces challenges, particularly the need for effective incentive mechanisms and the removal of regulatory and economic barriers, especially given its estimated potential of up to 7.4 GW. Full article
Show Figures

Figure 1

27 pages, 4008 KiB  
Article
Evolutionary Dynamics and Policy Coordination in the Vehicle–Grid Interaction Market: A Tripartite Evolutionary Game Analysis
by Qin Shao, Ying Lyu and Jian Cao
Mathematics 2025, 13(15), 2356; https://doi.org/10.3390/math13152356 - 23 Jul 2025
Viewed by 173
Abstract
This study introduces a novel tripartite evolutionary game model to analyze the strategic interactions among electric vehicle (EV) aggregators, local governments, and EV users in vehicle–grid interaction (VGI) markets. The core novelty lies in capturing bounded rationality and dynamic decision-making across the three [...] Read more.
This study introduces a novel tripartite evolutionary game model to analyze the strategic interactions among electric vehicle (EV) aggregators, local governments, and EV users in vehicle–grid interaction (VGI) markets. The core novelty lies in capturing bounded rationality and dynamic decision-making across the three stakeholders, revealing how policy incentives and market mechanisms drive the transition from disordered charging to bidirectional VGI. Key findings include the following: (1) The system exhibits five stable equilibrium points, corresponding to three distinct developmental phases of the VGI market: disordered charging (V0G), unidirectional VGI (V1G), and bidirectional VGI (V2G). (2) Peak–valley price differences are the primary driver for transitioning from V0G to V1G. (3) EV aggregators’ willingness to adopt V2G is influenced by upgrade costs, while local governments’ subsidy strategies depend on peak-shaving benefits and regulatory costs. (4) Increasing the subsidy differential between V1G and V2G accelerates market evolution toward V2G. The framework offers actionable policy insights for sustainable VGI development, while advancing evolutionary game theory applications in energy systems. Full article
Show Figures

Figure 1

15 pages, 1597 KiB  
Article
Customer Directrix Load Method for High Penetration of Winds Considering Contribution Factors of Generators to Load Bus
by Tianxiang Zhang, Yifei Wang, Qing Zhu, Bin Han, Xiaoming Wang and Ming Fang
Electronics 2025, 14(15), 2931; https://doi.org/10.3390/electronics14152931 - 23 Jul 2025
Viewed by 138
Abstract
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This [...] Read more.
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This paper presents a demand response mechanism to enhance renewable energy uptake by defining an optimal load curve for each node, considering the generator’s dynamic impact, system operations, and renewable energy projections. Once the ideal load curve is published, consumers, influenced by incentives, voluntarily align their consumption, steering the actual load to resemble the proposed curve. This strategy not only guides flexible generation resources to better utilize renewables but also minimizes the communication and control expenses associated with large-scale customer demand response. Additionally, a new evaluation metric for user response is proposed to ensure equitable incentive distribution. The model has been shown to lower both consumer power costs and system generation expenses, achieving a 22% reduction in renewable energy wastage. Full article
Show Figures

Figure 1

23 pages, 1856 KiB  
Article
An Evolutionary Game Analysis of AI Health Assistant Adoption in Smart Elderly Care
by Rongxuan Shang and Jianing Mi
Systems 2025, 13(7), 610; https://doi.org/10.3390/systems13070610 - 19 Jul 2025
Viewed by 341
Abstract
AI-powered health assistants offer promising opportunities to enhance health management among older adults. However, real-world uptake remains limited, not only due to individual hesitation, but also because of complex interactions among users, platforms, and public policies. This study investigates the dynamic behavioral mechanisms [...] Read more.
AI-powered health assistants offer promising opportunities to enhance health management among older adults. However, real-world uptake remains limited, not only due to individual hesitation, but also because of complex interactions among users, platforms, and public policies. This study investigates the dynamic behavioral mechanisms behind adoption in aging populations using a tripartite evolutionary game model. Based on replicator dynamics, the model simulates the strategic behaviors of older adults, platforms, and government. It identifies evolutionarily stable strategies, examines convergence patterns, and evaluates parameter sensitivity through a Jacobian matrix analysis. Results show that when adoption costs are high, platform trust is low, and government support is limited, the system tends to converge to a low-adoption equilibrium with poor service quality. In contrast, sufficient policy incentives, platform investment, and user trust can shift the system toward a high-adoption state. Trust coefficients and incentive intensity are especially influential in shaping system dynamics. This study proposes a novel framework for understanding the co-evolution of trust, service optimization, and institutional support. It emphasizes the importance of coordinated trust-building strategies and layered policy incentives to promote sustainable engagement with AI health technologies in aging societies. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

29 pages, 584 KiB  
Article
How Green Data Center Establishment Drives Carbon Emission Reduction: Double-Edged Sword or Equilibrium Effect?
by Jing Luo, Hengyuan Li and Jian Liu
Sustainability 2025, 17(14), 6598; https://doi.org/10.3390/su17146598 - 19 Jul 2025
Viewed by 382
Abstract
As inevitable outcomes of the digital economy’s low-carbon development, green data centers play a crucial role in environmental impact and underlying mechanisms. This study focuses on green data center establishment as a representative practice, utilizing Chinese A-share listed companies and urban data from [...] Read more.
As inevitable outcomes of the digital economy’s low-carbon development, green data centers play a crucial role in environmental impact and underlying mechanisms. This study focuses on green data center establishment as a representative practice, utilizing Chinese A-share listed companies and urban data from 2009 to 2023 to construct a multi-period difference-in-differences model. From a supply chain perspective, we investigate the impact of green data centers on corporate carbon emissions and their mechanisms. The results demonstrate that regional establishment of green data centers significantly promotes corporate carbon emission reduction, with conclusions remaining robust after a series of comprehensive robustness and endogeneity tests. This process primarily operates through two channels: green total factor energy efficiency and green attention. Green data center establishment significantly enhances green total factor energy efficiency and corporate green attention. The more developed the regional digital infrastructure and the higher the computing power development levels, the stronger the incentive effect on corporate carbon reduction. Heterogeneity analysis reveals that green data centers have more significant promoting effects on carbon emission reduction in state-owned enterprises and high-tech enterprises. This research contributes to a deeper understanding of the effects, mechanisms, and regional variations related to green data centers in facilitating corporate carbon emission reduction. Full article
Show Figures

Figure 1

44 pages, 5275 KiB  
Review
The Power Regulation Characteristics, Key Challenges, and Solution Pathways of Typical Flexible Resources in Regional Energy Systems
by Houze Jiang, Shilei Lu, Boyang Li and Ran Wang
Energies 2025, 18(14), 3830; https://doi.org/10.3390/en18143830 - 18 Jul 2025
Viewed by 432
Abstract
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the [...] Read more.
The low-carbon transition of the global energy system is an urgent necessity to address climate change and meet growing energy demand. As a major source of energy consumption and emissions, buildings play a key role in this transition. This study systematically analyzes the flexible resources of building energy systems and vehicle-to-grid (V2G) interaction technologies, and mainly focuses on the regulation characteristics and coordination mechanisms of distributed energy supply (renewable energy and multi-energy cogeneration), energy storage (electric/thermal/cooling), and flexible loads (air conditioning and electric vehicles) within regional energy systems. The study reveals that distributed renewable energy and multi-energy cogeneration technologies form an integrated architecture through a complementary “output fluctuation mitigation–cascade energy supply” mechanism, enabling the coordinated optimization of building energy efficiency and grid regulation. Electricity and thermal energy storage serve as dual pillars of flexibility along the “fast response–economic storage” dimension. Air conditioning loads and electric vehicles (EVs) complement each other via thermodynamic regulation and Vehicle-to-Everything (V2X) technologies, constructing a dual-dimensional regulation mode in terms of both power and time. Ultimately, a dynamic balance system integrating sources, loads, and storage is established, driven by the spatiotemporal complementarity of multi-energy flows. This paper proposes an innovative framework that optimizes energy consumption and enhances grid stability by coordinating distributed renewable energy, energy storage, and flexible loads across multiple time scales. This approach offers a new perspective for achieving sustainable and flexible building energy systems. In addition, this paper explores the application of demand response policies in building energy systems, analyzing the role of policy incentives and market mechanisms in promoting building energy flexibility. Full article
Show Figures

Figure 1

15 pages, 656 KiB  
Article
Green Technology Game and Data-Driven Parameter Identification in the Digital Economy
by Xiaofeng Li and Qun Zhao
Mathematics 2025, 13(14), 2302; https://doi.org/10.3390/math13142302 - 18 Jul 2025
Viewed by 183
Abstract
The digital economy presents multiple challenges to the promotion of green technologies, including behavioral uncertainty among firms, heterogeneous technological choices, and disparities in policy incentive strength. This study develops a tripartite evolutionary game model encompassing government, production enterprises, and technology suppliers to systematically [...] Read more.
The digital economy presents multiple challenges to the promotion of green technologies, including behavioral uncertainty among firms, heterogeneous technological choices, and disparities in policy incentive strength. This study develops a tripartite evolutionary game model encompassing government, production enterprises, and technology suppliers to systematically explore the strategic evolution mechanisms underlying green technology adoption. A three-dimensional nonlinear dynamic system is constructed using replicator dynamics, and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is applied to identify key cost and benefit parameters for firms. Simulation results exhibit a strong match between the estimated parameters and simulated data, highlighting the model’s identifiability and explanatory capacity. In addition, the stability of eight pure strategy equilibrium points is examined through Jacobian analysis, revealing the evolutionary trajectories and local stability features across various strategic configurations. These findings offer theoretical guidance for optimizing green policy design and identifying behavioral pathways, while establishing a foundation for data-driven modeling of dynamic evolutionary processes. Full article
(This article belongs to the Special Issue Dynamic Analysis and Decision-Making in Complex Networks)
Show Figures

Figure 1

33 pages, 433 KiB  
Article
The Price of Poverty: Inequality and the Strategic Use of Clientelism in Divided Democracies
by Andrés Cendales, Hugo Guerrero-Sierra and Jhon James Mora
Economies 2025, 13(7), 205; https://doi.org/10.3390/economies13070205 - 17 Jul 2025
Viewed by 766
Abstract
This article investigates the political cost of poverty in democracies marked by deep social divisions. We develop a probabilistic voting model that incorporates clientelism as a strategic tool employed by elite political parties to secure electoral support from non-elite voters. Unlike models based [...] Read more.
This article investigates the political cost of poverty in democracies marked by deep social divisions. We develop a probabilistic voting model that incorporates clientelism as a strategic tool employed by elite political parties to secure electoral support from non-elite voters. Unlike models based on ideological proximity, our framework conceptualizes party competition as structured by the socioeconomic composition of their constituencies. We demonstrate that in contexts of high inequality and widespread poverty, elite parties face structural incentives to deploy clientelistic strategies rather than universalistic policy agendas. Our model predicts that clientelistic expenditures by elite parties increase proportionally with both inequality (GINI index) and poverty levels, rendering clientelism a rational and cost-effective mechanism of political control. Empirical evidence from a cross-national panel (2013–2019) confirms the theoretical predictions: an increase of the 1 percent in the GINI index increase a 1.3 percent in the clientelism, even after accounting for endogeneity and dynamic effects. These findings suggest that in divided democracies, poverty is not merely a condition to be alleviated, but a political resource that elites strategically exploit. Consequently, clientelism persists not as a cultural residue or institutional failure, but as a rational response to inequality-driven constraints within democratic competition. Full article
31 pages, 2113 KiB  
Article
Electric Multiple Unit Spare Parts Vendor-Managed Inventory Contract Mechanism Design
by Ziqi Shao, Jie Xu and Cunjie Lei
Systems 2025, 13(7), 585; https://doi.org/10.3390/systems13070585 - 15 Jul 2025
Viewed by 158
Abstract
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau [...] Read more.
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau vendor-managed inventory (VMI) model contract incentive and penalty system is the key goal. Connecting the spare parts supply system with its characteristics yields a game theory model. This study analyzes and compares the equilibrium strategies and profits of supply chain members under different mechanisms for managing critical spare parts. The findings demonstrate that mechanism contracts can enhance supply chain performance in a Pareto-improving manner. An in-depth analysis of downtime loss costs, procurement challenges, and order losses reveals their effects on supply chain coordination and profit allocation, providing railway bureaus and OEMs with a theoretical framework for supply chain decision-making. This study offers theoretical justification and a framework for decision-making on cooperation between OEMs and railroad bureaus in the management of spare parts supply chains, particularly for extensive EMU operations. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

23 pages, 2581 KiB  
Article
Tripartite Evolutionary Game Analysis of Waste Tire Pyrolysis Promotion: The Role of Differential Carbon Taxation and Policy Coordination
by Xiaojun Shen
Sustainability 2025, 17(14), 6422; https://doi.org/10.3390/su17146422 - 14 Jul 2025
Viewed by 257
Abstract
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis [...] Read more.
In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis Technology. A Tripartite Evolutionary Game Model involving pyrolysis plants, waste tire recyclers, and government regulators is developed. The model incorporates pollutants from pretreatment and pyrolysis processes into a unified metric—Carbon Dioxide Equivalent (CO2-eq)—based on Global Warming Potential (GWP), and designs a Differential Carbon Taxation mechanism accordingly. The strategy dynamics and stability conditions for Evolutionary Stable Strategies (ESS) are analyzed. Multi-scenario numerical simulations explore how key parameter changes influence evolutionary trajectories and equilibrium outcomes. Six typical equilibrium states are identified, along with the critical conditions for achieving environmentally friendly results. Based on theoretical analysis and simulation results, targeted policy recommendations are proposed to promote standardized waste tire pyrolysis: (1) Establish a phased dynamic carbon tax with supporting subsidies; (2) Build a green market cultivation and price stabilization system; (3) Implement performance-based differential incentives; (4) Strengthen coordination between central environmental inspections and local carbon tax enforcement. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

Back to TopTop