Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = in vitro wear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 7187 KiB  
Review
Surface Coatings on Biomedical Magnesium Alloys
by Jiapeng Ren, Zhenyu Zhao, Hua Li, Dongsheng Wang, Cijun Shuai and Youwen Yang
Materials 2025, 18(14), 3411; https://doi.org/10.3390/ma18143411 - 21 Jul 2025
Viewed by 427
Abstract
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex [...] Read more.
Magnesium (Mg) alloys have demonstrated tremendous potential in biomedical applications, emerging as promising metallic biomaterials due to their biocompatibility, degradability, and favorable mechanical properties. However, their practical implementation faces significant limitations stemming from mechanical performance degradation and premature fracture failure caused by complex physiological interactions, including flow erosion, corrosion fatigue, stress coupling effects, and dynamic wear under bodily conditions. Surface coating technology has been recognized as an effective strategy to prevent direct contact between magnesium substrates and corrosive media. This review systematically examines the fundamental degradation mechanisms of magnesium alloys in both vivo and vitro environments, presents recent advances in surface modification coatings for magnesium alloys, and critically analyses the interaction mechanisms between modified layers and electrolyte solutions. Special emphasis is placed on revealing the formation mechanisms, structural characteristics, and fracture behaviors of conversion coatings. Furthermore, the study discusses the current challenges in biomedical surface modification of magnesium alloys, proposes potential solutions to enhance their clinical applicability, and outlines future research directions to fully exploit the development potential of these advanced biomaterials. Full article
Show Figures

Figure 1

24 pages, 2354 KiB  
Systematic Review
Highly Filled Flowable Composite Resins as Sole Restorative Materials: A Systematic Review
by Konstantinos Tzimas, Eftychia Pappa, Maria Fostiropoulou, Efstratios Papazoglou and Christos Rahiotis
Materials 2025, 18(14), 3370; https://doi.org/10.3390/ma18143370 - 18 Jul 2025
Viewed by 553
Abstract
The continuous need for simplified, minimally invasive restorative procedures with a high precision has led to the advancement of highly filled flowable resin-based materials. These materials present excellent initial outcomes in various clinical applications, including the injection molding technique. Given that several clinical [...] Read more.
The continuous need for simplified, minimally invasive restorative procedures with a high precision has led to the advancement of highly filled flowable resin-based materials. These materials present excellent initial outcomes in various clinical applications, including the injection molding technique. Given that several clinical reports present signs of wear and staining, this systematic review aims to investigate the mechanical and optical properties of highly filled flowable composite resins. A comprehensive literature research was conducted to identify relevant studies from the PubMed, the Cochrane Library, and Scopus databases. Data extraction and screening was performed by two independent evaluators. Both in vitro studies and clinical trials were included. A total of thirty-one studies were included in this review. A total of 27 in vitro studies investigated highly filled flowable composite resins independently, or in comparison with conventional composite resins, traditional flowable composites, bulk-fill flowable composites, glass ionomer cements, and compomers. Additionally, four randomized controlled clinical trials (RCTs) compared highly filled flowable composite resins with their conventional counterparts. Highly filled flowable composite resins exhibit adequate optical properties. Despite their significant improvements, their mechanical properties remain inferior to those of medium-viscosity composite resins. These materials demonstrate a favorable initial performance in the injection molding technique. Based on a limited number of RCTs, these materials demonstrate an adequate performance in class I and II restorations; however these findings should be interpreted with caution. The reported drawbacks in laboratory studies may contraindicate their clinical application in extensive cavities, load-bearing areas, and in cases of excessive tooth wear and parafunctional activity. A careful clinical case selection is strongly recommended. Full article
(This article belongs to the Special Issue Properties of Dental Restorative Materials (Volume II))
Show Figures

Figure 1

10 pages, 2732 KiB  
Article
In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis
by Sıla Yelekçi, Ayben Şentürk and Funda Akaltan
J. Funct. Biomater. 2025, 16(7), 264; https://doi.org/10.3390/jfb16070264 - 16 Jul 2025
Viewed by 456
Abstract
Background: Artificial tooth wear impacts prosthesis durability and function; understanding material–antagonist interactions guides clinical choices. Aim: This in-vitro study aimed to assess the wear behavior of isosit and nanohybrid composite resin artificial teeth when opposed to various antagonist materials using 3D volumetric wear [...] Read more.
Background: Artificial tooth wear impacts prosthesis durability and function; understanding material–antagonist interactions guides clinical choices. Aim: This in-vitro study aimed to assess the wear behavior of isosit and nanohybrid composite resin artificial teeth when opposed to various antagonist materials using 3D volumetric wear analysis. Materials and Methods: Sixty specimens (n = 10 per group) were prepared from two artificial tooth materials and assigned to six antagonist combinations: isosit–isosit, isosit–nanohybrid composite, isosit–porcelain, nanohybrid composite–isosit, nanohybrid composite–nanohybrid composite, and nanohybrid composite–porcelain. Specimens were scanned before and after 600,000 chewing cycles using a structured-light 3D scanner. Volumetric wear was calculated by superimposing pre- and post-test scans. Data were analyzed using two-way ANOVA and Tukey’s HSD test (α = 0.05). Results: Porcelain antagonists produced the highest wear values (p < 0.05). No significant difference was found between isosit and nanohybrid antagonists (p > 0.05). Identical material pairings showed less wear, though differences were not statistically significant. Conclusions: Porcelain as an antagonist increased wear risk. Using identical materials bilaterally, such as isosit–isosit or nanohybrid–nanohybrid, may help reduce artificial tooth wear in removable prostheses. Full article
(This article belongs to the Special Issue State of the Art: Biomaterials and Oral Implantology)
Show Figures

Figure 1

16 pages, 2284 KiB  
Article
Experimental Evaluation of the Tribological Properties of Rigid Gas-Permeable Contact Lens Under Different Lubricants
by Chen-Ying Su, Hsu-Wei Fang, Mousa Nimatallah, Zain Qatmera and Haytam Kasem
Lubricants 2025, 13(6), 256; https://doi.org/10.3390/lubricants13060256 - 11 Jun 2025
Viewed by 1082
Abstract
Myopia patients wear rigid gas-permeable contact lenses during the day to achieve normal vision, but they might feel uncomfortable, since they are made of hard materials that can cause inappropriate friction and adhesion. These forces affect the biological tissues of the cornea and [...] Read more.
Myopia patients wear rigid gas-permeable contact lenses during the day to achieve normal vision, but they might feel uncomfortable, since they are made of hard materials that can cause inappropriate friction and adhesion. These forces affect the biological tissues of the cornea and eyelid. In this study, an in vitro rigid gas-permeable contact lens friction testing method was established to mimic the friction between the eyelid and the rigid contact lens. The lens was rubbed against a gelatin membrane to investigate the tribological properties of artificial tear, saline, and two kinds of care solutions using a dedicated experimental setup. The viscosity, pH value, and surface tension of each lubricant was also analyzed. The friction coefficient of the artificial tear solution was the highest: 0.18 for its static friction and 0.09 for its dynamic friction. In contrast, polysaccharide-containing care solution demonstrated the lowest friction coefficient. The viscosity of artificial tear solutions ranged from 0.97 ± 00 to 1.15 ± 0.16 mPa·s, when the shear rate was increased from 19.2 to 192 1/s, while it ranged from 2.26 ± 1.12 to 2.91 ± 0.00 for polysaccharide-containing care solution. Although the physical–chemical properties of various lubricants could not explain the distinct tribological outcomes, the in vitro tribological testing method for rigid gas-permeable lenses was successfully established in this study. Full article
(This article belongs to the Special Issue Biomaterials and Tribology)
Show Figures

Figure 1

23 pages, 2049 KiB  
Systematic Review
Analysis of Different Lithium Disilicate Ceramics According to Their Composition and Processing Technique—A Systematic Review and Meta-Analysis
by Rubén Guaita-Sáez, Jose María Montiel-Company, Rubén Agustín-Panadero, Carla Fons-Badal, Blanca Serra-Pastor and María Fernanda Solá-Ruiz
Materials 2025, 18(12), 2709; https://doi.org/10.3390/ma18122709 - 9 Jun 2025
Viewed by 534
Abstract
Lithium disilicate ceramics (LDSs) are widely used in restorative dentistry for their excellent aesthetic and mechanical properties. Variants like zirconia-reinforced lithium silicate (ZLS) and advanced lithium disilicate (ALD) were developed to enhance these characteristics. However, differences in their physical and optical properties, as [...] Read more.
Lithium disilicate ceramics (LDSs) are widely used in restorative dentistry for their excellent aesthetic and mechanical properties. Variants like zirconia-reinforced lithium silicate (ZLS) and advanced lithium disilicate (ALD) were developed to enhance these characteristics. However, differences in their physical and optical properties, as well as the influence of processing techniques (heat pressing vs. CAD-CAM), remain unclear. This study aimed to evaluate the physical and aesthetic properties of LDS, ZLS, and ALD ceramics. A systematic review and meta-analysis following PRISMA guidelines were conducted. Studies published in the last ten years were retrieved from PubMed, Web of Science, Scopus, Cochrane, and Scielo. The inclusion criteria encompassed in vitro studies analyzing LDS, ZLS, and ALD ceramics with quantitative data on mechanical and aesthetic properties. Meta-analyses were performed using a random-effects model, with subgroup analyses based on ceramic type and processing technique. Twenty-two studies met the inclusion criteria. Meta-analyses showed significant differences in flexural strength, hardness, surface roughness, wear, and translucency. The processing technique influenced these properties, with CAD-CAM materials exhibiting distinct performance compared to heat-pressed ceramics. Publication bias was assessed using Egger’s test and the Trim and Fill method, and heterogeneity via meta-regression. LDS showed the highest fracture resistance and least wear, while ALD had greater roughness depth. Heat pressing enhanced hardness and reduced roughness, whereas CAD-CAM improved flexural strength. Considering these findings and study limitations, LDS appears the most suitable option for clinical use due to its superior mechanical performance. Full article
Show Figures

Figure 1

12 pages, 2266 KiB  
Article
In Vitro Wear Properties of a New CAD/CAM Dental Resin Composite in a Chewing Simulation Test Opposing Itself
by Camillo D’Arcangelo, Mirco Vadini, Lorenzo Vanini, Giuseppe Daniele Rondoni, Edoardo Sorrentino and Francesco De Angelis
Appl. Sci. 2025, 15(9), 5023; https://doi.org/10.3390/app15095023 - 30 Apr 2025
Viewed by 524
Abstract
Wear resistance is of paramount importance for the long-term success of dental materials, especially when they are used for extensive indirect restorations in full-mouth rehabilitations. The present in vitro study aimed to evaluate the two-body wear resistance of a new and recently introduced [...] Read more.
Wear resistance is of paramount importance for the long-term success of dental materials, especially when they are used for extensive indirect restorations in full-mouth rehabilitations. The present in vitro study aimed to evaluate the two-body wear resistance of a new and recently introduced CAD/CAM resin composite disc (Ena Cad, Micerium S.pA.), to compare it to the wear resistance of other two well-known and already marketed CAD/CAM composites (Brilliant Crios, Coltene/Whaledent AG; Grandio disc, Voco Gmbh) and to a conventional type 3 gold alloy (Aurocast 8, Nobil-Metal). Ten cylindrical specimens (diameter 8 mm, height 6 mm) were manufactured with each material and subjected to a two-body wear test in a dual-axis chewing simulator, performing 120,000 chewing cycles opposing antagonists (2-mm-diameter round tip) made out of the same corresponding materials. The total vertical wear (mm) and the total volumetric loss (mm3) for each sample/antagonist pair were calculated. Representative scanning electron microscope images were also taken. Data were statistically analyzed using one-way analysis of variance tests. No statistically significant differences were recorded among the wear properties of the restorative materials under investigation. The Ena Cad disc showed a wear resistance comparable to the type 3 gold alloy and to the already marketed Brilliant Crios and Grandio disc. Full article
Show Figures

Figure 1

13 pages, 8038 KiB  
Article
Investigation of In Vitro Corrosion and Wear Properties of Biomedical Coatings Applied to Ti6Al4V Alloy Manufactured by Selective Laser Melting
by Ali İhsan Bahçepinar and İbrahim Aydin
Crystals 2025, 15(4), 316; https://doi.org/10.3390/cryst15040316 - 27 Mar 2025
Viewed by 537
Abstract
This study focuses on enhancing the biomedical performance of PBF-LB Ti6Al4V, produced using Selective Laser Melting (SLM), an advanced manufacturing technology widely used for patient-specific medical devices and implants. Hydroxyapatite (HA), titanium (Ti), and bilayer Ti/HA coatings were applied, using the powder flame [...] Read more.
This study focuses on enhancing the biomedical performance of PBF-LB Ti6Al4V, produced using Selective Laser Melting (SLM), an advanced manufacturing technology widely used for patient-specific medical devices and implants. Hydroxyapatite (HA), titanium (Ti), and bilayer Ti/HA coatings were applied, using the powder flame spray coating technique. A comprehensive analysis was conducted to examine the microstructural, chemical, and mechanical properties of the coatings. Surface analysis was performed using a scanning electron microscope (SEM), chemical composition was determined by energy-dispersive spectroscopy (EDS), crystal structure was analyzed via X-ray diffraction (XRD), and surface roughness was evaluated through topographic analyses. Additionally, in vitro wear and corrosion resistance tests, crucial for biomedical applications, were conducted. In wear tests, HA coatings exhibited the lowest wear resistance with the highest wear rate (73.83 × 10−3 mm3/N·m), while Ti coatings showed the highest wear resistance (6.32 × 10−3 mm3/N·m), and Ti/HA coatings demonstrated an intermediate performance (34.22 × 10−3 mm3/N·m). Corrosion tests revealed that bilayer Ti/HA coatings provided the best protection (0.00009 mm/year), followed by Ti coatings (0.0002 mm/year) and HA coatings (0.003 mm/year). The results indicate that Ti/HA coatings offer the most suitable biomedical performance. Full article
Show Figures

Figure 1

15 pages, 7264 KiB  
Article
High-Frequency 64-Element Ring-Annular Array Transducer: Development and Preclinical Validation for Intravascular Ultrasound Imaging
by Xi Liu, Yuanlong Li, Haiguo Qin and Chang Peng
Biosensors 2025, 15(3), 169; https://doi.org/10.3390/bios15030169 - 5 Mar 2025
Viewed by 1707
Abstract
Intravascular ultrasound (IVUS) imaging has become an essential method for diagnosing coronary artery disease. However, traditional mechanically rotational IVUS catheters encounter issues such as mechanical wear and imaging distortions in curved vessels. The ring-annular IVUS array has gained attention because it offers superior [...] Read more.
Intravascular ultrasound (IVUS) imaging has become an essential method for diagnosing coronary artery disease. However, traditional mechanically rotational IVUS catheters encounter issues such as mechanical wear and imaging distortions in curved vessels. The ring-annular IVUS array has gained attention because it offers superior imaging performance without the need for mechanical rotational parts, thereby avoiding rotational imaging distortion. An optimized mechanical micromachining process employing precision dicing technology is proposed in this study, with the objective of achieving higher operating frequencies and minimized outer diameters for a 64-element ring-annular array. This method broadens the range of fabrication options and improves the imaging sensitivity of ring-annular IVUS arrays, as well as eliminating imaging distortion in rotational IVUS catheters, particularly in curved vessels. The probe has a 7.5 Fr (2.5 mm) outer diameter, with key fabrication steps including precision dicing, flexible circuit integration, and Parylene C encapsulation. The ring-annular array has a center frequency of 21.51 MHz with 67.87% bandwidth, with a 56 µm axial resolution and a 276 µm lateral resolution. The imaging performance is further validated by in vitro phantom imaging and ex vivo imaging. Full article
(This article belongs to the Special Issue Biosensors for Biomedical Diagnostics)
Show Figures

Figure 1

28 pages, 774 KiB  
Systematic Review
Mechanical Properties of 3D Printed vs. Subtractively Manufactured Composite Resins for Permanent Restorations: A Systematic Review
by Mauro Mandurino, Silvia Cortili, Luca Coccoluto, Katia Greco, Giuseppe Cantatore, Enrico Felice Gherlone, Alessandro Vichi and Gaetano Paolone
Materials 2025, 18(5), 985; https://doi.org/10.3390/ma18050985 - 24 Feb 2025
Cited by 4 | Viewed by 1763
Abstract
Objective: To conduct a systematic review on the mechanical properties of 3D printed resin-based composites when compared with those of subtractively manufactured resin-based composites. Materials and Methods: In vitro studies comparing the mechanical properties of additively and subtractively manufactured resin-based composites were sought. [...] Read more.
Objective: To conduct a systematic review on the mechanical properties of 3D printed resin-based composites when compared with those of subtractively manufactured resin-based composites. Materials and Methods: In vitro studies comparing the mechanical properties of additively and subtractively manufactured resin-based composites were sought. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), was performed on four databases (PubMed, Embase, Web of Science, and Scopus) for articles published until 23 December 2024. The quality of the studies was assessed with the QUIN tool (risk-of-bias tool for assessing in vitro studies conducted in dentistry) and those assessed with a high risk of bias were excluded. Results: Of the 1058 screened articles, 13 were included in this review. A noticeable heterogeneity emerged in the methodologies employed, mainly regarding samples’ fabrication techniques, materials involved, and parameters analyzed. The most investigated mechanical property was fracture resistance, followed by microhardness, flexural strength, and wear behavior. Among the tested materials, the most used 3D printable resins were VarseoSmile Crown Plus (Bego) and Crowntec (Saremco Dental), whereas for the subtractive groups, the most investigated was Brilliant Crios (Coltène). Conclusions: The mechanical properties of 3D printed resins designed for permanent restorations are still lower than those of their subtractively manufactured counterparts. Moreover, in the long term, the degradation processes that inevitably occur might significantly increase their chances of failure. Full article
(This article belongs to the Special Issue Design of Multifunctional Composites and Their 3D-Printing Technology)
Show Figures

Figure 1

13 pages, 1473 KiB  
Article
Sensitivity of Lumbar Total Joint Replacement Contact Stresses Under Misalignment Conditions—Finite Element Analysis of a Spine Wear Simulator
by Steven M. Kurtz, Steven A. Rundell, Hannah Spece and Ronald V. Yarbrough
Bioengineering 2025, 12(3), 229; https://doi.org/10.3390/bioengineering12030229 - 24 Feb 2025
Cited by 1 | Viewed by 909
Abstract
A novel total joint replacement (TJR) that treats lumbar spine degeneration was previously assessed under Mode I and Mode IV conditions. In this study, we relied on these previous wear tests to establish a relationship between finite element model (FEM)-based bearing stresses and [...] Read more.
A novel total joint replacement (TJR) that treats lumbar spine degeneration was previously assessed under Mode I and Mode IV conditions. In this study, we relied on these previous wear tests to establish a relationship between finite element model (FEM)-based bearing stresses and in vitro wear penetration maps. Our modeling effort addressed the following question of interest: Under reasonably worst-case misaligned conditions, do the lumbar total joint replacement (L-TJR) polyethylene stresses and strains remain below values associated with Mode IV impingement wear tests? The FEM was first formally verified and validated using the risk-informed credibility assessment framework established by ASME V&V 40 and FDA guidance. Then, based on criteria for unreasonable misuse outlined in the surgical technique guide, a parametric analysis of reasonably worst-case misalignment using the validated L-TJR FEM was performed. Reasonable misalignment was created by altering device positioning from the baseline condition in three scenarios: Axial Plane Convergence (20–40°), Axial Plane A-P Offset (0–4 mm), and Coronal Plane Tilt (±20°). We found that, for the scenarios considered, the contact pressures, von Mises stresses, and effective strains of the L-TJR-bearing surfaces remained consistent with Mode I (clean) conditions. Specifically, the mechanical response values fell below those determined under Mode IV (worst-case) boundary conditions, which provided the upper-bound benchmarks for the study (peak contact pressure 83.3 MPa, peak von Mises stress 32.2 MPa, and peak effective strain 42%). The L-TJR was judged to be insensitive to axial and coronal misalignment under the in vitro boundary conditions imposed by the study. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

18 pages, 3977 KiB  
Article
Comparison of the Performance Parameters of BioHPP® and Biocetal® Used in the Production of Prosthetic Restorations in Dentistry—Part I: Mechanical Tests: An In Vitro Study
by Robert Kowalski, Wojciech Frąckiewicz, Magdalena Kwiatkowska, Małgorzata Światłowska-Bajzert and Ewa Sobolewska
Materials 2025, 18(3), 561; https://doi.org/10.3390/ma18030561 - 26 Jan 2025
Viewed by 958
Abstract
The aim of these in vitro studies was to determine and compare the mechanical and tribological performance of two commercially available thermoplastic materials, namely BioHPP and Biocetal, used in dental prosthetics. In order to perform the comparative tests of both materials, the dog-bone [...] Read more.
The aim of these in vitro studies was to determine and compare the mechanical and tribological performance of two commercially available thermoplastic materials, namely BioHPP and Biocetal, used in dental prosthetics. In order to perform the comparative tests of both materials, the dog-bone shaped samples were formed by an injection molding process as in standard polymer materials research, wherein Biocetal samples constituted the research group, and BioHPP samples served as a control group. In the presented studies, their mechanical parameters were reported and analyzed: namely, Shore’s hardness, unnotched impact strength, tensile strength, flexural strength, as well as abrasive wear resistance, obtained within appropriate tribological and mechanical tests. The Shapiro–Wilk test, Q–Q plot analysis, Grubbs test and Student’s t-test (p < 0.05) were used to statistically evaluate the results. The experimental results revealed that BioHPP material is characterized by higher hardness, impact strength, bending strength, and also lower “wet” abrasion wear if compared to Biocetal performance. However, it is subject to higher abrasive wear under “dry” conditions and reveals higher stiffness as well as lower ability to deform, which could affect a patient’s comfort during application. BioHPP, despite being a high-performance polymer material, also has some drawbacks that may affect the poorer long-term use of dentures in people producing less saliva. Full article
(This article belongs to the Special Issue Advanced Dental Materials for Oral Rehabilitation)
Show Figures

Figure 1

11 pages, 2190 KiB  
Article
Therapeutic Potential of Targeting Ferroptosis in Periprosthetic Osteolysis Induced by Ultra-High-Molecular-Weight Polyethylene Wear Debris
by Takuya Ogawa, Shunichi Yokota, Liyile Chen, Yuki Ogawa, Yoshio Nishida, Taiki Tokuhiro, Hend Alhasan, Tomoyo Yutani, Tomohiro Shimizu, Daisuke Takahashi, Takuji Miyazaki, Tsutomu Endo, Ken Kadoya, Mohamad Alaa Terkawi and Norimasa Iwasaki
Biomedicines 2025, 13(1), 170; https://doi.org/10.3390/biomedicines13010170 - 13 Jan 2025
Viewed by 953
Abstract
Background/Objectives: Periprosthetic osteolysis is the primary cause of arthroplasty failure in the majority of patients. Mechanistically, wear debris released from the articulating surfaces of a prosthesis initiates local inflammation and several modes of regulated cell death programs, such as ferroptosis, which represents a [...] Read more.
Background/Objectives: Periprosthetic osteolysis is the primary cause of arthroplasty failure in the majority of patients. Mechanistically, wear debris released from the articulating surfaces of a prosthesis initiates local inflammation and several modes of regulated cell death programs, such as ferroptosis, which represents a promising therapeutic target in various chronic inflammatory diseases. Thus, the current study aimed at exploring the therapeutic potential of targeting ferroptosis in a polyethylene-wear-debris-induced osteolysis model. Methods: Inverted cell culture model was used for stimulating the cells with wear debris in vitro, and calvarial osteolysis model was used for evaluating the therapeutic effects of inhibitors in vivo. Results: The immunostaining of periprosthetic bone tissues demonstrated a number of osteocytes expressing ferroptosis markers. Likewise, the expressions of ferroptosis markers were confirmed in polyethylene-wear-debris-stimulated osteocyte-like cells and primary osteoblasts in a direct stimulation model but not in an indirect stimulation model. Furthermore, polyethylene wear debris was implanted onto calvarial bone and mice were treated with the ferroptosis inhibitors DFO and Fer-1. These treatments alleviated the inflammatory and pathological bone resorption induced by the wear debris implantation. Conclusions: Our data broaden the knowledge of the pathogenesis of periprosthetic osteolysis and highlight ferroptosis as a promising therapeutic target. Full article
(This article belongs to the Special Issue Advances in Aging and Skeletal Diseases)
Show Figures

Figure 1

11 pages, 3788 KiB  
Article
Ceramic–Ceramic Hip Implants: Investigation of Various Factors Associated with Squeaking
by Stefan Schroeder, Luisa Gaedeke, Mustafa Hariri, Therese Bormann, Maurice Weiss, Jan Philippe Kretzer and Maximilian Uhler
Lubricants 2024, 12(12), 438; https://doi.org/10.3390/lubricants12120438 - 9 Dec 2024
Viewed by 1205
Abstract
Despite the low wear rate of ceramic–ceramic hip implants, hard-on-soft bearings remain the most commonly used bearings in North America and Western Europe. A major concern with ceramic–ceramic hip implants is the occurrence of squeaking phenomena, which are still not fully understood. Various [...] Read more.
Despite the low wear rate of ceramic–ceramic hip implants, hard-on-soft bearings remain the most commonly used bearings in North America and Western Europe. A major concern with ceramic–ceramic hip implants is the occurrence of squeaking phenomena, which are still not fully understood. Various factors are mentioned in the literature, but currently, studies mostly focus on only one specific parameter. The goal of this study was to systematically analyze four different factors (cup orientation, protein concentration of the test fluid, contact pressure and head roughness) that may influence the squeaking behavior of this bearing type. An in vitro simulation according to ISO 14242-1 was performed using an AMTI Vivo simulator, and acoustic signals were recorded. No squeaking occurred for any of the four parameters when bovine serum or water was used as the test fluid. Squeaking was observed only under dry conditions with the ceramic–ceramic bearing. Under dry conditions, the maximum resulting torque increased steadily, and squeaking occurred after approximately 300 cycles at a resulting torque of more than 22 Nm. Thus, the resulting torque might be one factor leading to squeaking and should be kept low to reduce the risk of squeaking. Full article
(This article belongs to the Special Issue Biomechanics and Tribology)
Show Figures

Figure 1

14 pages, 924 KiB  
Article
Wear Behavior and Water Sorption of Additively Manufactured Resin-Based Splint Materials
by Johann Wulff, Cordula Leonie Merle, Sebastian Hahnel and Martin Rosentritt
Materials 2024, 17(23), 5880; https://doi.org/10.3390/ma17235880 - 30 Nov 2024
Cited by 2 | Viewed by 885
Abstract
3D printing as an additive manufacturing method has proven to be of great interest for the computerized production of oral splints. Various parameters must be taken into consideration when assessing the durability of oral splints in a wet environment, such as the mouth. [...] Read more.
3D printing as an additive manufacturing method has proven to be of great interest for the computerized production of oral splints. Various parameters must be taken into consideration when assessing the durability of oral splints in a wet environment, such as the mouth. The aim of this in vitro study was to assess the wear behavior and water sorption of two 3D-printed splint materials depending on their building orientation and post-processing parameters. The parameters considered included the type of post-polymerization and the type of cleaning utilized after printing. The average wear depth was between −421.8 μm and −667.5 μm. A significant influence of the building orientation (p < 0.001) but not of the material (p = 0.810), cleaning (p = 0.933), or post-polymerization (p = 0.237) on wear was demonstrated. The water sorption ranged between 13.8 μg/mm3 and 30.3 μg/mm3, featuring a significant dependency on material and building orientation but not on cleaning (p = 0.826) or post-polymerization (p = 0.343). Material and fabrication methods should be carefully selected, because the type of material and building orientation affect the wear and water sorption of additively manufactured splint materials. Full article
(This article belongs to the Special Issue Orthodontic Materials: Properties and Effectiveness of Use)
Show Figures

Figure 1

18 pages, 4647 KiB  
Article
Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses
by María L. Escudero, Maria C. García-Alonso, Belén Chico, Rosa M. Lozano, Luna Sánchez-López, Manuel Flores-Sáenz, Soledad Cristóbal-Aguado, Rafael Moreno-Gómez-Toledano and Soledad Aguado-Henche
Nanomaterials 2024, 14(22), 1815; https://doi.org/10.3390/nano14221815 - 13 Nov 2024
Viewed by 1179
Abstract
Various surface modifications to increase the lifespan of cobalt–chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr [...] Read more.
Various surface modifications to increase the lifespan of cobalt–chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr surfaces, which can act as a solid lubricant. This paper analyzes the biological alterations caused by wear–corrosion phenomena that occur in joints, both from the perspective of the worn surface (in vitro model) and the particles generated during the wear processes (in vivo model). The analysis of the inflammatory response of macrophage was performed on CoCr surfaces modified with graphene oxide and functionalized with hyaluronic acid (CoCr-GO-HA), before and after wear–corrosion processes. The wear particles released during the wear–corrosion tests of the CoCr-GO-HA/CoCr ball pair immersed in 3 g/L hyaluronic acid were intra-articularly injected into the experimental animals. The hematological analysis in vivo was made considering a murine model of intra-articular injection into the left knee in male adult Wistar rats, at increasing concentrations of the collected wear particles dispersed in 0.9% NaCl. Non-significant differences in the inflammatory response to unworn CoCr-GO-HA surfaces and control (polystyrene) were obtained. The wear–corrosion of the CoCr-GO-HA disk increased the inflammatory response at both 72 and 96 h of material exposure compared to the unworn CoCr-GO-HA surfaces, although the differences were not statistically significant. The pro-inflammatory response of the macrophages was reduced on the worn surfaces of the CoCr modified and functionalized with graphene oxide (GO) and hyaluronic acid (HA), compared to the worn surfaces of the unmodified CoCr. The hematological analysis and tissue reactions after intra-articular injection did not reveal pathological damage, with average hematological values recorded, although slight reductions in creatinine and protein within non-pathological ranges were found. Some traces of biomaterial particles in the knee at the highest concentration of injected particles were only found but without inflammatory signs. The results show the potential benefits of using graphene in intra-articular prostheses, which could improve the quality of life for numerous patients. Full article
(This article belongs to the Special Issue Advanced Studies in Bionanomaterials)
Show Figures

Figure 1

Back to TopTop