Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,284)

Search Parameters:
Keywords = in situ degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1698 KB  
Article
Non-Invasive Assessment of Grape Berry Development and Metabolic Maturation Under Tropical Field Conditions
by Eduardo Monteiro, Gleidson Morais de Souza and Ricardo Bressan-Smith
Agronomy 2026, 16(2), 181; https://doi.org/10.3390/agronomy16020181 - 11 Jan 2026
Viewed by 48
Abstract
Non-destructive monitoring of fruit ripening is essential for optimising harvest time, yet its application to tropical viticulture remains largely unexplored. This study evaluated in situ chlorophyll a fluorescence as a non-invasive physiological marker to track berry development and metabolic maturation in two table [...] Read more.
Non-destructive monitoring of fruit ripening is essential for optimising harvest time, yet its application to tropical viticulture remains largely unexplored. This study evaluated in situ chlorophyll a fluorescence as a non-invasive physiological marker to track berry development and metabolic maturation in two table grape cultivars (Vitis labrusca L. var. Niagara Rosada and var. Romana) under tropical field conditions, characterised by the latitude position, absence of chilling-induced dormancy, and variable rainfall during ripening. Berries’ fluorescence parameters (Fo, Fm, Fv and Fv/Fm) were monitored weekly from the pea-size stage to commercial harvest (67–123 days after pruning) using a portable modulated fluorometer, along with chlorophyll and quality trait measurements. A decline in fluorescence parameters during maturation coincided with chlorophyll degradation and the accumulation of glucose and fructose. The maximum quantum yield of PSII (Fv/Fm) remained stable (≈0.75) throughout development, indicating sustained photochemical efficiency despite chloroplast disassembly. Significant correlations (r > 0.80) were established between fluorescence parameters and key maturity indices, with distinct cultivar-specific patterns evident between the NR and RM cultivars. Therefore, chlorophyll a fluorescence provided a reliable, portable, non-destructive tool for monitoring ripening dynamics and estimating quality parameters in table grapes, offering practical advantages for tropical viticulture where environmental variability demands flexible monitoring. Full article
Show Figures

Figure 1

16 pages, 15928 KB  
Article
High-Temperature Tribological and Oxidation Performance of a Cr-Al-C Composite Coating on H13 Steel by Laser Cladding
by Shengshu Zuo, Shibo Li, Yixiong Zhang, Xuejin Zhang, Guoping Bei, Faqiang Chen and Dong Liu
Coatings 2026, 16(1), 88; https://doi.org/10.3390/coatings16010088 - 10 Jan 2026
Viewed by 60
Abstract
Laser cladding is an effective surface engineering technique to enhance the high-temperature performance of metallic materials. In this work, a Cr-Al-C composite coating was in situ fabricated on H13 steel by laser cladding to alleviate the performance degradation of H13 steel under severe [...] Read more.
Laser cladding is an effective surface engineering technique to enhance the high-temperature performance of metallic materials. In this work, a Cr-Al-C composite coating was in situ fabricated on H13 steel by laser cladding to alleviate the performance degradation of H13 steel under severe thermomechanical conditions, particularly in high-temperature piercing applications. The phase composition, microstructure, microhardness, high-temperature oxidation behavior, and tribological performance of the coating were systematically investigated. The coating is mainly composed of a B2-ordered Fe-Cr-Al phase reinforced by uniformly dispersed M3C2/M7C3-type carbides, which provides a synergistic combination of oxidation protection and mechanical strengthening, offering a microstructural design that differs from conventional Cr-Al or Cr3C2-based laser-clad coatings. Cyclic oxidation tests conducted at 800–1000 °C revealed that the oxidation behavior of the coating followed parabolic kinetics, with oxidation rate constants significantly lower than those of the H13 substrate, attributed to the formation of a dense and adherent Al2O3/Cr2O3 composite protective scale acting as an effective diffusion barrier. Benefiting from the stable oxide layer and the thermally stable carbide-reinforced microstructure, the wear rate of Cr-Al-C coating is significantly reduced compared to H13 steel. At room temperature, the wear rate of the coating is 6.563 × 10−6 mm3/(N·m), about two orders of magnitude lower than 8.175 × 10−4 mm3/(N·m) for the substrate. When the temperature was increased to 1000 °C, the wear rate of the coating remained as low as 5.202 × 10−6 mm3/(N·m), corresponding to only 1.9% of that of the substrate. This work demonstrates that the Cr-Al-C laser-cladded coating can effectively improve the high-temperature oxidation resistance and wear resistance of steel materials under extreme service conditions. Full article
Show Figures

Figure 1

14 pages, 4258 KB  
Article
Highly Efficient Photocatalytic Degradation of Bisphenol A Under UV–Visible Light Irradiation Using Au/Zn3In2S6 Schottky Junction Photocatalyst
by Di Chen, Aoyun Meng, Zhen Li and Jinfeng Zhang
Int. J. Mol. Sci. 2026, 27(2), 705; https://doi.org/10.3390/ijms27020705 - 10 Jan 2026
Viewed by 120
Abstract
Designing and constructing heterojunctions has emerged as a pivotal strategy for improving the photocatalytic efficiency of semiconductors. In this study, we report the controlled synthesis of an Au/Zn3In2S6 Schottky junction through a combination of hydrothermal and in situ [...] Read more.
Designing and constructing heterojunctions has emerged as a pivotal strategy for improving the photocatalytic efficiency of semiconductors. In this study, we report the controlled synthesis of an Au/Zn3In2S6 Schottky junction through a combination of hydrothermal and in situ photodeposition methods. The structural, morphological, and photoelectrochemical properties of the catalyst were meticulously characterized using a suite of techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), photoelectrochemical (PEC) measurements, and electron spin resonance (ESR) spectroscopy. The optimized 3% Au/Zn3In2S6 composite exhibited a remarkable enhancement in both photocatalytic activity and stability, achieving a 90.4% removal of bisphenol A (BPA) under UV–visible light irradiation within 100 min. The corresponding first-order reaction rate constant was approximately 1.366 h−1, nearly 4.37 times greater than that of the pristine Zn3In2S6. This substantial improvement can be attributed to several key factors, including increased BPA adsorption, enhanced light absorption, and the efficient charge separation facilitated by the Au/Zn3In2S6 heterojunction. Photogenerated holes, superoxide radicals, and hydroxyl radicals were identified as the primary reactive species responsible for the BPA degradation. This work highlights the potential of metal-modified semiconductors for advanced photocatalytic applications, offering insights into the design of highly efficient materials for environmental remediation. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

49 pages, 13564 KB  
Review
Cryogenic Performance and Modelling of Fibre- and Nano-Reinforced Composites: Failure Mechanisms, Toughening Strategies, and Constituent-Level Behaviour
by Feng Huang, Zhi Han, Mengfan Wei, Zhenpeng Gan, Yusi Wang, Xiaocheng Lu, Ge Yin, Ke Zhuang, Zhenming Zhang, Yuanzhi Gao, Yu Su, Xueli Sun and Ping Cheng
J. Compos. Sci. 2026, 10(1), 36; https://doi.org/10.3390/jcs10010036 - 8 Jan 2026
Viewed by 130
Abstract
Composite materials are increasingly required to operate in cryogenic environments, including liquid hydrogen and oxygen storage, deep-space structures, and polar infrastructures, where long-term strength, toughness, and reliability are essential. This review provides a unique contribution by systematically integrating recent advances in understanding cryogenic [...] Read more.
Composite materials are increasingly required to operate in cryogenic environments, including liquid hydrogen and oxygen storage, deep-space structures, and polar infrastructures, where long-term strength, toughness, and reliability are essential. This review provides a unique contribution by systematically integrating recent advances in understanding cryogenic behaviour into a unified multi-scale framework. This framework synthesises four critical and interconnected aspects: constituent response, composite performance, enhancement mechanisms, and modelling strategies. At the constituent level, fibres retain stiffness, polymer matrices stiffen but embrittle, and nanoparticles offer tunable thermal and mechanical functions, which collectively define the system-level performance where thermal expansion mismatch, matrix embrittlement, and interfacial degradation dominate failure. The review further details toughening strategies achieved through nano-addition, hybrid fibre architectures, and thin-ply laminates. Modelling strategies, from molecular dynamics to multiscale finite element analysis, are discussed as predictive tools that link these scales, supported by the critical need for in situ experimental validation. The primary objective of this synthesis is to establish a coherent perspective that bridges fundamental material behaviour to structural reliability. Despite these advances, remaining challenges include consistent property characterisation at low temperature, physics-informed interface and damage models, and standardised testing protocols. Future progress will depend on integrated frameworks linking high-fidelity data, cross-scale modelling, and validation to enable safe deployment of next-generation cryogenic composites. Full article
Show Figures

Figure 1

30 pages, 1216 KB  
Review
Bioactive Hydroxyapatite–Collagen Composite Dressings for Wound Regeneration: Advances in Fabrication, Functionalization and Antimicrobial Strategies
by Bogdan Radu Dragomir, Alina Robu, Ana-Iulia Bita and Daniel Sipu
Appl. Sci. 2026, 16(2), 576; https://doi.org/10.3390/app16020576 - 6 Jan 2026
Viewed by 391
Abstract
Chronic and complex wounds, including diabetic foot ulcers, venous leg ulcers, burns and post-surgical defects, remain difficult to manage due to persistent inflammation, impaired angiogenesis, microbial colonization and insufficient extracellular matrix (ECM) remodeling. Conventional dressings provide protection, but they do not supply the [...] Read more.
Chronic and complex wounds, including diabetic foot ulcers, venous leg ulcers, burns and post-surgical defects, remain difficult to manage due to persistent inflammation, impaired angiogenesis, microbial colonization and insufficient extracellular matrix (ECM) remodeling. Conventional dressings provide protection, but they do not supply the necessary biochemical and structural signals for effective tissue repair. This review examines recent advances in hydroxyapatite–collagen (HAp–Col) composite dressings, which combine the architecture of collagen with the mechanical reinforcement and ionic bioactivity of hydroxyapatite. Analysis of the literature indicates that in situ and biomimetic mineralization, freeze-drying, electrospinning, hydrogel and film processing, and emerging 3D printing approaches enable precise control of pore structure, mineral dispersion, and degradation behavior. Antimicrobial functionalization remains critical: metallic ions and locally delivered antibiotics offer robust early antibacterial activity, while plant-derived essential oils (EOs) provide broad-spectrum antimicrobial, antioxidant and anti-inflammatory effects with reduced risk of resistance. Preclinical studies consistently report enhanced epithelialization, improved collagen deposition and reduced bacterial burden in HAp–Col systems; however, translation is limited by formulation variability, sterilization sensitivity and the lack of standardized clinical trials. Overall, HAp–Col composites represent a versatile framework for next-generation wound dressings that can address both regenerative and antimicrobial requirements. Full article
Show Figures

Figure 1

19 pages, 5014 KB  
Article
In Situ Electrochemical Detection of Silicon Anode Crystallization for Full-Cell Health Management
by Hyeon-Woo Jung, Ga-Eun Lee and Heon-Cheol Shin
Energies 2026, 19(1), 279; https://doi.org/10.3390/en19010279 - 5 Jan 2026
Viewed by 142
Abstract
In this study, we investigate the relationship between the progressive lowering of the silicon (Si) anode potential during lithiation and the accompanying crystallization reaction to enable in situ electrochemical detection in Si-based full cells. Si–Li half cells were first analyzed by differential capacity [...] Read more.
In this study, we investigate the relationship between the progressive lowering of the silicon (Si) anode potential during lithiation and the accompanying crystallization reaction to enable in situ electrochemical detection in Si-based full cells. Si–Li half cells were first analyzed by differential capacity (dQ/dV), revealing a crystallization feature near 0.05 V vs. Li+/Li, commonly associated with crystallization to Li15Si4. In the initial cycle, this signal was obscured by a dominant amorphization peak near 0.1 V; however, once amorphization was completed and the end-of-lithiation potential dropped below ~0.05 V in later cycles, a distinct crystallization peak became clearly resolvable. Under capacity-limited cycling that mimics full-cell operation, degradation-induced lowering of the Si-anode potential led to the appearance of the crystallization signal when the anode potential crossed this threshold. Based on these results, we extended the analysis to LiFePO4–Si three-electrode full cells and, by reparameterizing dQ/dV as a function of charge time, separated electrode-specific contributions and identified the Si crystallization feature within the full-cell response when N/P ≈ 1. A simple degradation-modeling scenario further showed that in cells initially designed with N/P > 1, loss of anode active material can reduce the effective N/P, drive the Si potential into the crystallization window, and introduce a new peak in the full-cell dQ/dV curve associated with Si crystallization. These combined experimental and modeling results indicate that degradation-driven lowering of the Si-anode potential triggers crystallization and that this process can be detected in full cells via dQ/dV analysis. Practically, the emergence of the Si-crystallization feature provides an in situ marker that the effective N/P has drifted toward unity due to anode-dominated aging and may inform charge cut-off strategies to mitigate further Si-anode degradation. Full article
(This article belongs to the Special Issue Advanced Electrochemical Energy Storage Materials)
Show Figures

Figure 1

20 pages, 4098 KB  
Article
Relationships Between Ultrasonic-Based Elastic Modulus Loss, Mass Loss and Strength Loss in Two Hardwoods Commonly Used in Northern Chinese Timber Heritage
by Panpan Liu, Yijie Gao, Sok Yee Yeo, Xingxia Ma and Hiroatsu Fukuda
Buildings 2026, 16(1), 237; https://doi.org/10.3390/buildings16010237 - 5 Jan 2026
Viewed by 97
Abstract
Assessing decay-induced mechanical deterioration in hardwood components is essential for the conservation of northern Chinese timber heritage, where structural members such as the Dou and Gong have been exposed to complex environments for centuries. Within a unified experimental framework, this study systematically investigated [...] Read more.
Assessing decay-induced mechanical deterioration in hardwood components is essential for the conservation of northern Chinese timber heritage, where structural members such as the Dou and Gong have been exposed to complex environments for centuries. Within a unified experimental framework, this study systematically investigated the mechanical degradation behavior of two hardwood species commonly used in traditional timber buildings in northern China—elm (Ulmus pumila L.) and Chinese scholar tree (Styphnolobium japonicum (L.) Schott)—subjected to controlled brown-rot fungal decay (Gloeophyllum trabeum) over decay durations of 0–6 months. Four mechanical loading configurations were considered: tension, bending, compression parallel to grain and compression perpendicular to grain. Decay progression was quantitatively characterized using mass loss rate (MLR), ultrasonic elastic modulus loss rate (ELR) and strength loss ratio (SLR). The two hardwoods exhibited distinct material- and loading-dependent deterioration patterns. Elm showed faster and more variable degradation, with clearer time-dependent strength loss under tension and bending, whereas Chinese scholar tree displayed slower and more scattered strength deterioration. For both species, elastic modulus reduction generally preceded measurable mass loss, indicating that modulus-based indicators are more sensitive to decay progression under the tested conditions. Correlation analyses further indicate that ELR tends to show more stable and consistent associations with strength loss than MLR across most loading modes. Overall, the results suggest that elastic modulus–based ultrasonic indicators have potential advantages for characterizing mechanical deterioration under controlled decay conditions. However, the findings are limited to the tested materials, decay scenarios and loading configurations, and further validation on aged or naturally decayed components is required before in situ application to heritage structures can be established. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 5205 KB  
Article
Ecological Niche Differentiation and Distribution Dynamics Revealing Climate Change Responses in the Chinese Genus Dysosma
by Rui Chen, Fangming Luo, Weihao Yao, Runmei Yang, Lang Huang, He Li and Mao Li
Plants 2026, 15(1), 162; https://doi.org/10.3390/plants15010162 - 5 Jan 2026
Viewed by 251
Abstract
The genus Dysosma, a group of perennial herbaceous plants with significant medicinal value and a relatively narrow ecological niche, is potentially at risk due to the combined pressures of habitat degradation and climate change. As their habitats continue to degrade, all species [...] Read more.
The genus Dysosma, a group of perennial herbaceous plants with significant medicinal value and a relatively narrow ecological niche, is potentially at risk due to the combined pressures of habitat degradation and climate change. As their habitats continue to degrade, all species of this genus have been included in the National Key Protected Wild Plants List (Category II). Investigating the impacts of climate change on the distribution of Dysosma resources is vital for their sustainable utilization. In this study, the potential distribution dynamics of seven Dysosma species under current and three future climate scenarios (SSP126, SSP245, SSP585) were quantified using 534 occurrence points and 25 environmental variables in a MaxEnt model, accompanied by the ecological niche overlap index (Schoener’s D), dynamic metrics (relative change rate [RCR], change intensity [CI], stability index [SI], spatial displacement rate [SDR]), and centroid migration analysis. The results indicated that (1) areas of high habitat suitability were consistently concentrated in the mountainous and hilly regions of southwestern Guizhou, Chongqing, and Hubei, with the minimum temperature of the coldest month (Bio6) and the mean diurnal temperature range (Bio2) being identified as the primary driving factors. (2) The future suitable habitat areas remained highly stable overall (SI > 97.89%), though dynamic changes varied across scenarios. Under SSP126, only slight fluctuations were observed, with an average CI of approximately 3.78% and RCR ranging from −0.46% to 1.97%. Under the SSP245 scenario, suitable habitat areas showed a continuous, slight expansion (RCR = 0.45% to 1.54%), whereas under the high-emission SSP585 scenario, a typical “mid-term expansion–late-term contraction” pattern was observed, with RCR shifting from positive (1.32%, 1.44%) to negative (−0.92%). The SI reached its lowest value of 97.89% in the late term, and the spatial displacement rate increased, signaling a reorganization of the distribution pattern. (3) High ecological niche differentiation was observed within the genus, with the highest overlap index being only 0.562, and approximately one-third of species pairs exhibiting completely non-overlapping niches. (4) Dysosma tsayuensis, a niche-specialist species, exhibited a distribution that was highly dependent on the annual mean ultraviolet-B radiation (UVB, contribution rate 52.9%), displaying an adaptation strategy markedly different from that of conservative species. (5) Centroid analysis indicated that, although the overall centroid remained stable in Guizhou, the presence of niche-specialist species under the high-emission SSP585 scenario resulted in migration paths opposite to those observed under other scenarios. The findings reveal the potential vulnerability and differential response patterns of Dysosma species under rapid climate warming, thereby providing a scientific basis for targeted conservation, in situ and ex situ conservation strategies, and population restoration. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

14 pages, 2516 KB  
Article
Temperature and Fluence Dependence Investigation of the Defect Evolution Characteristics of GaN Single Crystals Under Radiation with Ion Beam-Induced Luminescence
by Xue Peng, Wenli Jiang, Ruotong Chang, Hongtao Hu, Shasha Lv, Xiao Ouyang and Menglin Qiu
Quantum Beam Sci. 2026, 10(1), 2; https://doi.org/10.3390/qubs10010002 - 4 Jan 2026
Viewed by 109
Abstract
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or [...] Read more.
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or single-temperature luminescence—we in situ tracked dynamic luminescence changes throughout irradiation, directly capturing the real-time responses of luminescent centers to coupled temperature-dose variations—a rare capability in prior work. To clarify how irradiation and temperature affect the luminescent centers of GaN, we integrated density functional theory (DFT) calculations with literature analysis, then resolved the yellow luminescence band into three emission centers via Gaussian deconvolution: 1.78 eV associated with C/O impurities, 1.94 eV linked to VGa, and 2.2 eV corresponding to CN defects. Using a single-exponential decay model, we further quantified the temperature- and dose-dependent decay rates of these centers under dual-variable temperature and dose conditions. Experimental results show that low-temperature irradiation such as at 100 K suppresses the migration and recombination of VGa/CN point defects, significantly enhancing the radiation tolerance of the 1.94 eV and 2.2 eV emission centers; meanwhile, it reduces non-radiative recombination center density, stabilizing free excitons and donor-bound excitons, thereby improving near-band-edge emission center resistance. Notably, the 1.94 eV emission center linked to gallium vacancies exhibits superior cryogenic radiation tolerance due to slower defect migration and more stable free exciton/donor-bound exciton states. Collectively, these findings reveal a synergistic regulation mechanism of temperature and radiation fluence on defect stability, addressing a key gap in static studies, providing a basis for understanding degradation mechanisms of gallium nitride-based devices under actual operating conditions (coexisting temperature fluctuations and continuous radiation), and offering theoretical/experimental support for optimizing radiation-hardened gallium nitride devices for extreme environments such as space or nuclear applications. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

33 pages, 6282 KB  
Article
Numerical Simulation of Liquefaction Behaviour in Coastal Reclaimed Sediments
by Pouyan Abbasimaedeh
GeoHazards 2026, 7(1), 8; https://doi.org/10.3390/geohazards7010008 - 3 Jan 2026
Viewed by 153
Abstract
This study presents a validated numerical investigation into the seismic liquefaction potential of fine-grained reclaimed sediments commonly encountered in coastal, containment, and reclamation projects. Fine-grained reclaimed sediments pose a particular challenge for seismic liquefaction assessment due to their low permeability, high fines content, [...] Read more.
This study presents a validated numerical investigation into the seismic liquefaction potential of fine-grained reclaimed sediments commonly encountered in coastal, containment, and reclamation projects. Fine-grained reclaimed sediments pose a particular challenge for seismic liquefaction assessment due to their low permeability, high fines content, and complex cyclic response under earthquake loading. A fully coupled, nonlinear finite element model was developed using the Pressure-Dependent Multi-Yield (PDMY) constitutive framework, calibrated against laboratory Cyclic Direct Simple Shear (CDSS) tests and verified using in situ Cone Penetration Tests with pore pressure measurement (CPTu). The model effectively captured the dynamic response of saturated sediments, including excess pore pressure generation, cyclic mobility, and post-liquefaction behavior, under three earthquake ground motions: Livermore, Chi-Chi, and Loma Prieta. Results showed that near-surface layers (0–2.3 m) experienced full liquefaction within two to three cycles, with excess pore pressure ratios (Ru) approaching 1.0 and peak pressures closely matching laboratory data with less than 10% deviation. The numerical approach revealed that traditional CPT-based cyclic resistance methods underestimated liquefaction susceptibility in intermediate layers due to limitations in accounting for pore pressure redistribution, evolving permeability, and seismic amplification effects. In contrast, the finite element model captured progressive strength degradation, revealing strength gain in deeper layers due to consolidation, while upper zones remained vulnerable due to low confinement and resonance effects. A critical threshold of Ru ≈ 0.8 was identified as the onset of rapid shear strength loss. The findings confirm the advantage of advanced numerical modeling over empirical methods in capturing the complex cyclic behavior of reclaimed sediments and support the adoption of performance-based seismic design for such geotechnically sensitive environments. Full article
Show Figures

Figure 1

15 pages, 6098 KB  
Article
Ecoparque: An Example of Nature-Based Solutions Implementation at Tijuana a Global South City
by Lina Ojeda-Revah and Gabriela Muñoz-Meléndez
Land 2026, 15(1), 89; https://doi.org/10.3390/land15010089 - 1 Jan 2026
Viewed by 269
Abstract
Nature-Based Solutions (NBS) are recognized as urban strategies to face environmental degradation and climate change vulnerability to address social challenges. However, NBS are context-dependent and must be based on evidence. Thus, this document details the NBS implementation in a global south city such [...] Read more.
Nature-Based Solutions (NBS) are recognized as urban strategies to face environmental degradation and climate change vulnerability to address social challenges. However, NBS are context-dependent and must be based on evidence. Thus, this document details the NBS implementation in a global south city such as Tijuana, a semiarid city at the Mexico–USA border, which has rapidly grown under poor urban planning, widespread irregular settlements, increase in air and water pollution, and limited green spaces. In response, six hectares of a severely eroded slope have been transformed by El Colef into Ecoparque, an Urban Resilience Laboratory. This academic initiative aims to enhance residents’ quality of life by analyzing environmental problems, raising awareness, and engaging the community, in addition to identifying opportunities for implementing NBS. This paper presents the 32 years’ experience of implementing NBS at Ecoparque, such as a constructed wetland as part of a wastewater treatment, reforestation with native plants grown in an in situ nursery, soil restoration using its own-produced compost, and urban ecosystem rehabilitation. Moreover, main challenges and upscaling opportunities are identified to adopt NBS in a Global South city. Results showed that the most relevant problems have been insufficient human and financial resources, as well as the lack of a proper legal framework. This study provides an analytical significance that could be useful to apply under similar contexts. Full article
(This article belongs to the Topic Nature-Based Solutions-2nd Edition)
Show Figures

Figure 1

21 pages, 5522 KB  
Article
Performance and Mechanism of Monolithic Co-Doped Nickel–Iron Foam Catalyst for Highly Efficient Activation of PMS in Degrading Chlortetracycline in Water
by Yiqiong Yang, Xuyang Gao, Juan Han, Mingkun Cao, Li Qing, Liren Yu and Xiaodong Zhang
Catalysts 2026, 16(1), 39; https://doi.org/10.3390/catal16010039 - 1 Jan 2026
Viewed by 249
Abstract
Metal–organic framework (MOF) materials were extensively studied in the removal of pollutants in wastewater. However, catalysts in the powder form usually suffered from the strong tendency to agglomerate and the intricate operation for recycling, which significantly limited their practical application. In comparison, monolithic [...] Read more.
Metal–organic framework (MOF) materials were extensively studied in the removal of pollutants in wastewater. However, catalysts in the powder form usually suffered from the strong tendency to agglomerate and the intricate operation for recycling, which significantly limited their practical application. In comparison, monolithic catalysts with their high macroscopic operability and recoverability as well as impressive specific surface area have attracted tremendous attention in recent years. To address these issues, a monolithic Fe-based catalyst was prepared via in situ synthesis, using nickel–iron foam (NFF) as the substrate with cobalt (Co) incorporation. XPS analysis showed that Co doping enhanced the synergistic interaction among Fe, Ni, and Co, accelerating the redox cycle among species, thus improving electron transfer and laying a kinetic foundation for efficient peroxymonosulfate (PMS) activation. Quenching experiments and EPR indicated singlet oxygen (1O2) as the main reactive species; Co doping shifted the degradation pathway from radicals to non-radicals. Under optimized conditions (PMS: 0.08 mmol/L; catalyst: 1 cm2; initial Chlortetracycline (CTC): 50 mg/L), 95.7% CTC degradation was achieved within 60 min, and efficiency only dropped to 90.5% after 5 cycles. This catalyst provided theoretical and technical support for the application of monolithic MOF-derived catalysts and highly efficient PMS activators. Full article
(This article belongs to the Special Issue Porous Catalytic Materials for Environmental Purification)
Show Figures

Graphical abstract

15 pages, 1299 KB  
Article
Leachate Analysis of Biodried MSW: Case Study of the CWMC Marišćina
by Anita Ptiček Siročić, Dragana Dogančić, Igor Petrović and Nikola Hrnčić
Processes 2026, 14(1), 141; https://doi.org/10.3390/pr14010141 - 31 Dec 2025
Viewed by 284
Abstract
A major factor in worldwide ecological harm is the large quantity of municipal solid waste generated because of rapid industrialization and population growth. Nowadays, there are numerous mechanical, biological, and thermal waste treatment processes that can reduce the amount of landfilled waste. A [...] Read more.
A major factor in worldwide ecological harm is the large quantity of municipal solid waste generated because of rapid industrialization and population growth. Nowadays, there are numerous mechanical, biological, and thermal waste treatment processes that can reduce the amount of landfilled waste. A variety of analytical tests are conducted to evaluate the potential risks that landfills pose to human health and the environment. Among these, laboratory leaching tests are commonly employed to assess the release of specific waste constituents that may become hazardous to the environment. Municipal solid waste (MSW) management poses significant environmental risks due to leachate contamination in bioreactor landfills, where acidic conditions (pH ≈ 5) can mobilize heavy metals. This study evaluates the reliability of leaching tests for biodried reject MSW from CWMC Marišćina, Croatia, by comparing standard EN 12457-1 and EN 12457-2 methods (L/S = 2 and 10 L/kg) with simulations of aerobic degradation using acetic acid (10 g/L) to maintain pH = 5 over 9 days. Waste composition analysis revealed plastics (35%), paper/cardboard (25%), metals (15%), and glass (10%) as dominant fractions. Although the majority of parameters determined through standard leaching tests remain below the maximum permissible limits for non-hazardous waste, simulations under acidic conditions demonstrated substantial increases in eluate concentrations between days 6 and 9: Hg (+1500%), As (+1322%), Pb (+1330%), Ni (+786%), and Cd (+267%), with TDS rising 33%. These results highlight the underestimation of risks by conventional tests, emphasizing the need for pH-dependent methods to predict in situ leachate behavior in MBO-treated waste and support improved EU landfill regulations for enhanced environmental protection. Full article
(This article belongs to the Special Issue Innovations in Solid Waste Treatment and Resource Utilization)
Show Figures

Figure 1

14 pages, 4219 KB  
Article
In Situ Metal Sulfide-Modified N/S-Doped Carbon for High-Performance Oxygen Reduction
by Mingyuan Zhang, Jinru Wang, Caihan Zhu, Yuning Zhang, Dewei Li and Shuozhen Hu
Int. J. Mol. Sci. 2026, 27(1), 434; https://doi.org/10.3390/ijms27010434 - 31 Dec 2025
Viewed by 204
Abstract
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co [...] Read more.
Developing efficient and durable oxygen reduction reaction (ORR) catalysts is crucial for advancing fuel cell technology and sustainable energy conversion. In this study, a scalable strategy was employed to synthesize ZIF-derived nitrogen-sulfur co-doped carbon nanosheets embedded with in situ generated ZnS and Co9S8 nanoparticles. The synergistic effect of heteroatom doping and metal sulfide modification effectively modulated the electronic structure, optimized charge transfer pathways, and enhanced structural stability. The optimized catalyst exhibited a half-wave potential of 0.83 V vs. RHE, close to that of commercial 20 wt% Pt/C (0.85 V), excellent 4e ORR selectivity, and exceptional stability, with only a ~15 mV degradation after 10,000 cycles. These results demonstrate that the combination of nitrogen sulfur co-doping and in situ metal sulfide addition pro-vides an effective approach for designing highly active and durable non-precious metal catalysts for the ORR. This synthetic concept provides practical guidance for the scalable preparation of multifunctional nanomaterial-based catalysts for electrochemical energy applications. Full article
(This article belongs to the Special Issue Molecular Insight into Catalysis of Nanomaterials)
Show Figures

Figure 1

16 pages, 2448 KB  
Article
Synergistic Biochar–NBPT–DCD Coating Modulates Nitrogen Dynamics, Mitigates Leaching, and Enhances Yield and Quality of Choy Sum in Sustainable Vegetable Production
by Lixin Lin, Yang Tang, Huang Li, Haili Lv, Bangyu Huang, Haibin Chen and Jianjun Du
Sustainability 2026, 18(1), 383; https://doi.org/10.3390/su18010383 - 30 Dec 2025
Viewed by 265
Abstract
Conventional urea nitrogen (N) fertilizers are characterized by low use efficiency, resulting in substantial economic losses and environmental degradation. To address this issue, we developed a novel carbon-based stabilized coated urea by incorporating biochar, the urease inhibitor NBPT, and the nitrification inhibitor DCD [...] Read more.
Conventional urea nitrogen (N) fertilizers are characterized by low use efficiency, resulting in substantial economic losses and environmental degradation. To address this issue, we developed a novel carbon-based stabilized coated urea by incorporating biochar, the urease inhibitor NBPT, and the nitrification inhibitor DCD through a low-energy in situ coating process. This study evaluated the effects of this fertilizer on N transformation and loss via soil column leaching and ammonia volatilization experiments, as well as its impact on choy sum (Brassica chinensis L.) yield, N use efficiency (NUE), and product quality under field conditions. Results indicated that coatings containing both NBPT and DCD (specifically, formulations with 0.5%NBPT + 1.0%DCD, and 1.0%NBPT + 1.5%DCD) significantly reduced cumulative ammonium-N leaching by 41.5–53.8% and nitrate-N leaching by 45.3–59.4% compared to conventional urea. All coated treatments suppressed ammonia volatilization by over 10%, with the highest inhibition (26.92%) observed in the treatment with 1.0%NBPT + 1.5%DCD. The synergistic coating also modulated key soil enzyme activities involved in N cycling. Field trials demonstrated that the formulations with 0.5%NBPT + 1.0%DCD and 0.5%NBPT + 1.5%DCD increased choy sum yield by 56.1% and 58.1%, respectively, while significantly improving NUE and agronomic efficiency. Moreover, these treatments enhanced vegetable quality by reducing nitrate content and increasing vitamin C and soluble sugar concentrations. In conclusion, this carbon-based stabilized coated urea, which integrates biochar with NBPT and DCD, represents a promising strategy for minimizing N losses, improving NUE, and advancing sustainable vegetable production. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop