Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,089)

Search Parameters:
Keywords = improved local search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4866 KB  
Article
3D Spatial Path Planning Based on Improved Particle Swarm Optimization
by Junxia Ma, Zixu Yang and Ming Chen
Future Internet 2025, 17(9), 406; https://doi.org/10.3390/fi17090406 - 5 Sep 2025
Abstract
Three-dimensional path planning is critical for the successful operation of unmanned aerial vehicles (UAVs), automated guided vehicles (AGVs), and robots in industrial Internet of Things (IIoT) applications. In 3D path planning, the standard Particle Swarm Optimization (PSO) algorithm suffers from premature convergence and [...] Read more.
Three-dimensional path planning is critical for the successful operation of unmanned aerial vehicles (UAVs), automated guided vehicles (AGVs), and robots in industrial Internet of Things (IIoT) applications. In 3D path planning, the standard Particle Swarm Optimization (PSO) algorithm suffers from premature convergence and a tendency to fall into local optima, leading to significant deviations from the optimal path. This paper proposes an improved PSO (IPSO) algorithm that enhances particle diversity and randomness through the introduction of logistic chaotic mapping, while employing dynamic learning factors and nonlinear inertia weights to improve global search capability. Experimental results demonstrate that IPSO outperforms traditional methods in terms of path length and computational efficiency, showing potential for real-time path planning in complex environments. Full article
33 pages, 7900 KB  
Article
Multi-Strategy Improved Red-Billed Blue Magpie Optimization Algorithm and Its Applications
by Yancang Li, Jiaqi Zhi, Xinle Wang and Binli Shi
Biomimetics 2025, 10(9), 592; https://doi.org/10.3390/biomimetics10090592 - 5 Sep 2025
Abstract
To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh–cosh search strategy [...] Read more.
To address the issues of low convergence accuracy, poor population diversity, and susceptibility to local optima in the Red-billed Blue Magpie Optimization Algorithm (RBMO), this study proposes a multi-strategy improved Red-billed Blue Magpie Optimization Algorithm (SWRBMO). First, an adaptive T-distribution-based sinh–cosh search strategy is used to enhance global exploration and speed up convergence. Second, a neighborhood-guided reinforcement strategy helps the algorithm avoid local optima. Third, a crossover strategy is also introduced to improve convergence accuracy. SWRBMO is evaluated on 15 benchmark functions selected from the CEC2005 test suite, with ablation studies on 12 of them, and further validated on the CEC2019 and CEC2021 test suites. Across all test sets, its convergence behavior and statistical significance are analyzed using the Wilcoxon rank-sum test. Comparative experiments on CEC2019 and CEC2021 demonstrate that SWRBMO achieves faster convergence and higher accuracy than RBMO and other competitive algorithms. Finally, four engineering design problems further confirm its practicality, where SWRBMO outperforms other methods by up to 99%, 38.4%, 2.4%, and nearly 100% in the respective cases, highlighting its strong potential for real-world engineering applications. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

31 pages, 3219 KB  
Review
Data-Driven Integration of Remote Sensing, Agro-Meteorology, and Wireless Sensor Networks for Crop Water Demand Estimation: Tools Towards Sustainable Irrigation in High-Value Fruit Crops
by Fernando Fuentes-Peñailillo, María Luisa del Campo-Hitschfeld, Karen Gutter and Emmanuel Torres-Quezada
Agronomy 2025, 15(9), 2122; https://doi.org/10.3390/agronomy15092122 - 4 Sep 2025
Abstract
Despite advances in precision irrigation, no systematic review has yet integrated the roles of remote sensing, agro-meteorological data, and wireless sensor networks in high-value, water-sensitive crops such as mango, avocado, and vineyards. Existing research often isolates technologies or crop types, overlooking their convergence [...] Read more.
Despite advances in precision irrigation, no systematic review has yet integrated the roles of remote sensing, agro-meteorological data, and wireless sensor networks in high-value, water-sensitive crops such as mango, avocado, and vineyards. Existing research often isolates technologies or crop types, overlooking their convergence and joint performance in the field. This review fills that gap by examining how these tools estimate crop water demand and support sustainable, site-specific irrigation under variable climate conditions. A structured search across major databases yielded 365 articles, of which 92 met the inclusion criteria. Studies were grouped into four categories: remote sensing, agro-meteorology, wireless sensor networks, and integrated approaches. Remote sensing techniques, including multispectral and thermal imaging, enable the spatial monitoring of vegetation indices and stress indicators, such as the Crop Water Stress Index. Agro-meteorological data feed evapotranspiration models using temperature, humidity, wind, and radiation inputs. Wireless sensor networks provide continuous, localized data on soil moisture and canopy temperature. Integrated approaches combine these sources to improve irrigation recommendations. Findings suggest that combining remote sensing, wireless sensor networks, and agro-meteorological inputs can reduce water use by up to 30% without yield loss. Challenges include sensor calibration, data integration complexity, and limited scalability. This review also compares methodologies and highlights future directions, including artificial intelligence systems, digital twins, and affordable Internet of Things platforms for irrigation optimization. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

20 pages, 2103 KB  
Article
Tourist Flow Prediction Based on GA-ACO-BP Neural Network Model
by Xiang Yang, Yongliang Cheng, Minggang Dong and Xiaolan Xie
Informatics 2025, 12(3), 89; https://doi.org/10.3390/informatics12030089 - 3 Sep 2025
Abstract
Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model [...] Read more.
Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model based on a hybrid genetic algorithm (GA) and ant colony optimization algorithm (ACO), called the GA-ACO-BP model. First, we comprehensively considered multiple key factors related to tourist flow, including historical tourist flow data (such as tourist flow from yesterday, the previous day, and the same period last year), holiday types, climate comfort, and search popularity index on online map platforms. Second, to address the tendency of the BP model to get easily stuck in local optima, we introduce the GA, which has excellent global search capabilities. Finally, to further improve local convergence speed, we further introduce the ACO algorithm. The experimental results based on tourist flow data from the Elephant Trunk Hill Scenic Area in Guilin indicate that the GA-AC*O-BP model achieves optimal values for key tourist flow prediction metrics such as MAPE, RMSE, MAE, and R2, compared to commonly used prediction models. These values are 4.09%, 426.34, 258.80, and 0.98795, respectively. Compared to the initial BP neural network, the improved GA-ACO-BP model reduced error metrics such as MAPE, RMSE, and MAE by 1.12%, 244.04, and 122.91, respectively, and increased the R2 metric by 1.85%. Full article
(This article belongs to the Topic The Applications of Artificial Intelligence in Tourism)
Show Figures

Figure 1

37 pages, 5365 KB  
Article
Prediction of Sulfur Dioxide Emissions in China Using Novel CSLDDBO-Optimized PGM(1, N) Model
by Lele Cui, Gang Hu and Abdelazim G. Hussien
Mathematics 2025, 13(17), 2846; https://doi.org/10.3390/math13172846 - 3 Sep 2025
Abstract
Sulfur dioxide not only affects the ecological environment and endangers health but also restricts economic development. The reasonable prediction of sulfur dioxide emissions is beneficial for formulating more comprehensive energy use strategies and guiding social policies. To this end, this article uses a [...] Read more.
Sulfur dioxide not only affects the ecological environment and endangers health but also restricts economic development. The reasonable prediction of sulfur dioxide emissions is beneficial for formulating more comprehensive energy use strategies and guiding social policies. To this end, this article uses a multiparameter combination optimization gray prediction model (PGM(1, N)), which not only defines the difference between the sequences represented by variables but also optimizes the order of all variables. To this end, this article proposes an improved algorithm for the Dung Beetle Optimization (DBO) algorithm, namely, CSLDDBO, to optimize two important parameters in the model, namely, the smoothing generation coefficient and the order of the gray generation operators. In order to overcome the shortcomings of DBO, four improvement strategies have been introduced. Firstly, the use of a chain foraging strategy is introduced to guide the ball-rolling beetle to update its position. Secondly, the rolling foraging strategy is adopted to fully conduct adaptive searches in the search space. Then, learning strategies are adopted to improve the global search capabilities. Finally, based on the idea of differential evolution, the convergence speed of the algorithm was improved, and the ability to escape from local optima was enhanced. The superiority of CSLDDBO was verified on the CEC2022 test set. Finally, the optimized PGM(1, N) model was used to predict China’s sulfur dioxide emissions. From the results, it can be seen that the error of the PGM(1, N) model is the smallest at 0.1117%, and the prediction accuracy is significantly higher than that of other prediction models. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

54 pages, 3025 KB  
Article
DRIME: A Distributed Data-Guided RIME Algorithm for Numerical Optimization Problems
by Jinghao Yang, Yuanyuan Shao, Bin Fu and Lei Kou
Biomimetics 2025, 10(9), 589; https://doi.org/10.3390/biomimetics10090589 - 3 Sep 2025
Abstract
To address the shortcomings of the RIME algorithm’s weak global exploration ability, insufficient information exchange among populations, and limited population diversity, this work proposes a distributed data-guided RIME algorithm called DRIME. First, this paper proposes a data-distribution-driven guided learning strategy that enhances information [...] Read more.
To address the shortcomings of the RIME algorithm’s weak global exploration ability, insufficient information exchange among populations, and limited population diversity, this work proposes a distributed data-guided RIME algorithm called DRIME. First, this paper proposes a data-distribution-driven guided learning strategy that enhances information exchange among populations and dynamically guides populations to exploit or explore. Then, a soft-rime search phase based on weighted averaging is proposed, which balances the development and exploration of RIME by alternating with the original strategy. Finally, a candidate pool is utilized to replace the optimal reference point of the hard-rime puncture mechanism to enrich the diversity of the population and reduce the risk of falling into local optima. To evaluate the performance of the DRIME algorithm, parameter sensitivity analysis, policy effectiveness analysis, and two comparative analyses are performed on the CEC-2017 test set and the CEC-2022 test set. The parameter sensitivity analysis identifies the optimal parameter settings for the DRIME algorithm. The strategy effectiveness analysis confirms the effectiveness of the improved strategies. In comparison with ACGRIME, TERIME, IRIME, DNMRIME, GLSRIME, and HERIME on the CEC-2017 test set, the DRIME algorithm achieves Friedman rankings of 1.517, 1.069, 1.138, and 1.069 in different dimensions. In comparison with EOSMA, GLS-MPA, ISGTOA, EMTLBO, LSHADE-SPACMA, and APSM-jSO on the CEC-2022 test set, the DRIME algorithm achieves Friedman rankings of 2.167 and 1.917 in 10 and 30 dimensions, respectively. In addition, the DRIME algorithm achieved an average ranking of 1.23 in engineering constraint optimization problems, far surpassing other comparison algorithms. In conclusion, the numerical optimization experiments successfully illustrate that the DRIME algorithm has excellent search capability and can provide satisfactory solutions to a wide range of optimization problems. Full article
31 pages, 1150 KB  
Review
Agricultural Plastic Waste Challenges and Innovations
by Alina Raphael, David Iluz and Yitzhak Mastai
Sustainability 2025, 17(17), 7941; https://doi.org/10.3390/su17177941 - 3 Sep 2025
Abstract
Agricultural plastic waste is a growing global concern, as the widespread use of plastics in farming paired with limited waste management infrastructure has led to environmental pollution, resource inefficiency, and practical challenges in rural communities. This review systematically analyzes international policy frameworks and [...] Read more.
Agricultural plastic waste is a growing global concern, as the widespread use of plastics in farming paired with limited waste management infrastructure has led to environmental pollution, resource inefficiency, and practical challenges in rural communities. This review systematically analyzes international policy frameworks and technological advancements aimed at improving agricultural plastic waste management, drawing on peer-reviewed literature and policy documents identified through targeted database searches and screened by transparent inclusion criteria. Comparative analysis of national strategies, such as extended producer responsibility, regional management models, and technology-driven incentives, is combined with a critical evaluation of recycling and biodegradable innovations. The results reveal that while integrated policies can enhance collectthion efficiency and funding stability, their implementation often encounters high costs, logistical barriers, and variability in stakeholder commitment. Advanced recycling methods and emerging biodegradable materials demonstrate technical promise, but face challenges related to field performance, cost-effectiveness, and scalability. The review concludes that sustainable management of agricultural plastics requires a multi-faceted approach, combining robust regulation, economic incentives, technological innovation, and ongoing empirical assessment. These findings emphasize the importance of adapting strategies to local contexts and suggest that the successful transition to circular management models will depend on continued collaboration across policy, technology, and stakeholder domains. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

32 pages, 5483 KB  
Article
Dual Modal Intelligent Optimization BP Neural Network Model Integrating Aquila Optimizer and African Vulture Optimization Algorithm and Its Application in Lithium-Ion Battery SOH Prediction
by Xingxing Wang, Shun Liang, Junyi Li, Hongjun Ni, Yu Zhu, Shuaishuai Lv and Linfei Chen
Machines 2025, 13(9), 799; https://doi.org/10.3390/machines13090799 - 2 Sep 2025
Viewed by 176
Abstract
To enhance the accuracy and robustness of lithium-ion battery state-of-health (SOH) prediction, this study proposes a dual-mode intelligent optimization BP neural network model (AO–AVOA–BP) which integrates the Aquila Optimizer (AO) and the African Vulture Optimization Algorithm (AVOA). The model leverages the global search [...] Read more.
To enhance the accuracy and robustness of lithium-ion battery state-of-health (SOH) prediction, this study proposes a dual-mode intelligent optimization BP neural network model (AO–AVOA–BP) which integrates the Aquila Optimizer (AO) and the African Vulture Optimization Algorithm (AVOA). The model leverages the global search capabilities of AO and the local exploitation strengths of AVOA to achieve efficient and collaborative optimization of network parameters. In terms of feature construction, eight key health indicators are extracted from voltage, current, and temperature signals during the charging phase, and the optimal input set is selected using gray relational analysis. Experimental results demonstrate that the AO–AVOA–BP model significantly outperforms traditional BP and other improved models on both the NASA and CALCE datasets, with MAE, RMSE, and MAPE maintained within 0.0087, 0.0115, and 1.095%, respectively, indicating outstanding prediction accuracy and strong generalization performance. The proposed method demonstrates strong generalization capability and engineering adaptability, providing reliable support for lifetime prediction and safety warning in battery management systems (BMS). Moreover, it shows great potential for wide application in the health management of electric vehicles and energy storage systems. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

34 pages, 2542 KB  
Article
Uncertainty-Based Design Optimization Framework Based on Improved Chicken Swarm Algorithm and Bayesian Optimization Neural Network
by Qiang Ji, Ran Li and Shi Jing
Appl. Sci. 2025, 15(17), 9671; https://doi.org/10.3390/app15179671 - 2 Sep 2025
Viewed by 87
Abstract
As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has exposed problems of low efficiency and slow [...] Read more.
As the complexity and functional integration of mechanism systems continue to increase in modern practical engineering, the challenges of changing environmental conditions and extreme working conditions are becoming increasingly severe. Traditional uncertainty-based design optimization (UBDO) has exposed problems of low efficiency and slow convergence when dealing with nonlinear, high-dimensional, and strongly coupled problems. In response to these issues, this paper proposes an UBDO framework that integrates an efficient intelligent optimization algorithm with an excellent surrogate model. By fusing butterfly search with Levy flight optimization, an improved chicken swarm algorithm is introduced, aiming to address the imbalance between global exploitation and local exploration capabilities in the original algorithm. Additionally, Bayesian optimization is employed to fit the limit-state evaluation function using a BP neural network, with the objective of reducing the high computational costs associated with uncertainty analysis through repeated limit-state evaluations in uncertainty-based optimization. Finally, a decoupled optimization framework is adopted to integrate uncertainty analysis with design optimization, enhancing global optimization capabilities under uncertainty and addressing challenges associated with results that lack sufficient accuracy or reliability to meet design requirements. Based on the results from engineering case studies, the proposed UBDO framework demonstrates notable effectiveness and superiority. Full article
(This article belongs to the Special Issue Data-Enhanced Engineering Structural Integrity Assessment and Design)
Show Figures

Figure 1

33 pages, 1511 KB  
Systematic Review
Prolotherapy as a Regenerative Treatment in the Management of Chronic Low Back Pain: A Systematic Review
by Stelian-Ilie Mociu, Andreea-Dalila Nedelcu, Andreea-Alexandra Lupu, Andreea-Bianca Uzun, Dan-Marcel Iliescu, Elena-Valentina Ionescu and Madalina-Gabriela Iliescu
Medicina 2025, 61(9), 1588; https://doi.org/10.3390/medicina61091588 - 2 Sep 2025
Viewed by 209
Abstract
Background: Chronic low back pain markedly impairs quality of life and imposes a significant economic burden on public health. The complex pathophysiology of chronic low back pain arises from the complex anatomical configuration of the lumbar region, which includes a diverse array [...] Read more.
Background: Chronic low back pain markedly impairs quality of life and imposes a significant economic burden on public health. The complex pathophysiology of chronic low back pain arises from the complex anatomical configuration of the lumbar region, which includes a diverse array of structures. Consequently, etiologies may involve intervertebral disc degeneration, facet joint osteoarthritis, spinal stenosis, spondylosis, and spondylolisthesis. Therapeutic interventions for chronic low back pain are equally varied, ranging from pharmacological treatments to physiotherapy, kinetotherapy, balneotherapy, and image-guided local injectable procedures such as prolotherapy. Prolotherapy is a regenerative injection technique designed to stimulate the body’s healing processes by applying a regenerative treatment (typically dextrose), which aims to modulate neurogenic inflammation and diminish nociceptive signaling. Methods: A systematic review of the literature was performed in alignment with the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Studies published within the last ten years evaluating the effects of prolotherapy on pain reduction in individuals with chronic low back pain were included, following a search across six databases. Results: The review revealed several studies evaluating the influence of prolotherapy on pain in chronic low back pain patients. Findings were heterogeneous, with some studies indicating significant pain reduction and others showing minimal or no improvement. Conclusions: The current evidence regarding the efficacy of prolotherapy for pain relief in chronic low back pain remains inconclusive, highlighting the necessity for further in-depth research. Continued and updated investigations into prolotherapy’s role are imperative for enhancing the quality of life of affected patients. Full article
Show Figures

Figure 1

16 pages, 2391 KB  
Article
Hybrid Trajectory Planning for Energy-Augmented Skip–Glide Vehicles via Hierarchical Bayesian Optimization
by Lianxing Wang, Yuankai Li, Guowei Zhang and Xiaoliang Wang
Symmetry 2025, 17(9), 1430; https://doi.org/10.3390/sym17091430 - 2 Sep 2025
Viewed by 147
Abstract
In this paper, a hierarchical optimization framework combining Bayesian and pseudospectral approaches is developed to solve the challenging problem of hybrid trajectory planning for energy-augmented hypersonic skip–glide vehicles that have plane symmetry. Traditional trajectory optimization methods usually deal with discrete energy injection timing [...] Read more.
In this paper, a hierarchical optimization framework combining Bayesian and pseudospectral approaches is developed to solve the challenging problem of hybrid trajectory planning for energy-augmented hypersonic skip–glide vehicles that have plane symmetry. Traditional trajectory optimization methods usually deal with discrete energy injection timing and continuous flight control variables separately, yielding suboptimal solutions. To achieve global optimality, this proposed framework optimizes the discrete and continuous variables simultaneously, conducting Bayesian optimization for discrete global search and hp-adaptive pseudospectral algorithm for local continuous optimization. A rigorous dynamic model, considering Earth’s oblateness, rotation, aerodynamic interactions, and thrust dynamics, is established to ensure high-fidelity trajectory simulation. Numerical simulation through three representative tests indicates significant improvements: The hp-adaptive pseudospectral method achieves over 20% higher computational efficiency and accuracy compared to standard pseudospectral methods. Bayesian optimization demonstrates rapid global convergence within 22 iterations, achieving the optimal single augmentation timing that enhances flight range by up to 55.08%. Further, comprehensive joint optimization with double energy augmentation yields an additional 7.5% range extension compared to randomly selected augmentation timings. The results verify that the proposed hierarchical framework substantially improves the planned trajectory performance and adaptability to the skip–glide trajectories with hybrid maneuver. Full article
Show Figures

Figure 1

37 pages, 7976 KB  
Article
A Fusion Multi-Strategy Gray Wolf Optimizer for Enhanced Coverage Optimization in Wireless Sensor Networks
by Zhenkun Liu, Yun Ou, Zhuo Yang and Shuanghu Wang
Sensors 2025, 25(17), 5405; https://doi.org/10.3390/s25175405 - 2 Sep 2025
Viewed by 238
Abstract
Wireless sensor networks (WSNs) are fundamental to applications in the Internet of Things, smart cities, and environmental monitoring, where coverage optimization is critical for maximizing monitoring efficacy under constrained resources. Conventional approaches often suffer from low global coverage efficiency, high computational overhead, and [...] Read more.
Wireless sensor networks (WSNs) are fundamental to applications in the Internet of Things, smart cities, and environmental monitoring, where coverage optimization is critical for maximizing monitoring efficacy under constrained resources. Conventional approaches often suffer from low global coverage efficiency, high computational overhead, and a tendency to converge to local optima. To address these challenges, this study proposes the fusion multi-strategy gray wolf optimizer (FMGWO), an advanced variant of the Gray Wolf Optimizer (GWO). FMGWO integrates various strategies: electrostatic field initialization for uniform population distribution, dynamic parameter adjustment with nonlinear convergence and differential evolution scaling, an elder council mechanism to preserve historical elite solutions, alpha wolf tenure inspection and rotation to maintain population vitality, and a hybrid mutation strategy combining differential evolution and Cauchy perturbations to enhance diversity and global search capability. Ablation studies validate the efficacy of each strategy, while simulation experiments demonstrate FMGWO’s superior performance in WSN coverage optimization. Compared to established algorithms such as PSO, GWO, CSA, DE, GA, FA, OGWO, DGWO1, and DGWO2, FMGWO achieves higher coverage rates with fewer nodes—up to 98.63% with 30 nodes—alongside improved convergence speed and stability. These results underscore FMGWO’s potential as an effective solution for efficient WSN deployment, offering significant implications for resource-constrained optimization in IoT and edge computing systems. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

15 pages, 446 KB  
Systematic Review
The Integration of Artificial Intelligence into Robotic Cancer Surgery: A Systematic Review
by Agnieszka Leszczyńska, Rafał Obuchowicz, Michał Strzelecki and Michał Seweryn
J. Clin. Med. 2025, 14(17), 6181; https://doi.org/10.3390/jcm14176181 - 1 Sep 2025
Viewed by 267
Abstract
Background/Objectives: This systematic review aims to synthesize recent studies on the integration of artificial intelligence (AI) into robotic surgery for oncological patients. It focuses on studies using real patient data and AI tools in robotic oncologic surgery. Methods: This systematic review [...] Read more.
Background/Objectives: This systematic review aims to synthesize recent studies on the integration of artificial intelligence (AI) into robotic surgery for oncological patients. It focuses on studies using real patient data and AI tools in robotic oncologic surgery. Methods: This systematic review followed PRISMA guidelines to ensure a robust methodology. A comprehensive search was conducted in June 2025 across Embase, Medline, Web of Science, medRxiv, Google Scholar, and IEEE databases, using MeSH terms, relevant keywords, and Boolean logic. Eligible studies were original research articles published in English between 2024 and 2025, focusing on AI applications in robotic cancer surgery using real patient data. Studies were excluded if they were non-peer-reviewed, used synthetic/preclinical data, addressed non-oncologic indications, or explored non-robotic AI applications. This approach ensured the selection of studies with practical clinical relevance. Results: The search identified 989 articles, with 17 duplicates removed. After screening, 921 were excluded, and 37 others were eliminated for reasons such as misalignment with inclusion criteria or lack of full text. Ultimately, 14 articles were included, with 8 using a retrospective design and 6 based on prospective data. These included articles that varied significantly in terms of the number of participants, ranging from several dozen to several thousand. These studies explored the application of AI across various stages of robotic oncologic surgery, including preoperative planning, intraoperative support, and postoperative predictions. The quality of 11 included studies was very good and good. Conclusions: AI significantly supports robotic oncologic surgery at various stages. In preoperative planning, it helps estimate the risk of conversion from minimally invasive to open colectomy in colon cancer. During surgery, AI enables precise tumor and vascular structure localization, enhancing resection accuracy, preserving healthy tissue, and reducing warm ischemia time. Postoperatively, AI’s flexibility in predicting functional and oncological outcomes through context-specific models demonstrates its value in improving patient care. Due to the relatively small number of cases analyzed, further analysis of the issues presented in this review is necessary. Full article
Show Figures

Figure 1

20 pages, 1192 KB  
Article
Elman Network Classifier Based on Hyperactivity Rat Swarm Optimizer and Its Applications for AlSi10Mg Process Classification
by Rui Ni, Hanning Chen, Xiaodan Liang, Maowei He, Yelin Xia and Liling Sun
Processes 2025, 13(9), 2802; https://doi.org/10.3390/pr13092802 - 1 Sep 2025
Viewed by 162
Abstract
Classification prediction technology, which utilizes labeled data for training to enable autonomous decision, has emerged as a pivotal tool across numerous fields. The Elman neural network (ENN) exhibits potential in tackling nonlinear problems. However, its computational process faces inherent limitations in escaping local [...] Read more.
Classification prediction technology, which utilizes labeled data for training to enable autonomous decision, has emerged as a pivotal tool across numerous fields. The Elman neural network (ENN) exhibits potential in tackling nonlinear problems. However, its computational process faces inherent limitations in escaping local optimum and experiencing a slow convergence rate. To improve these shortcomings, an ENN classifier based on Hyperactivity Rat Swarm Optimizer (HRSO), named HRSO-ENNC, is proposed in this paper. Initially, HRSO is divided into two phases, search and mutation, by means of a nonlinear adaptive parameter. Subsequently, five search actions are introduced to enhance the global exploratory and local exploitative capabilities of HRSO. Furthermore, a stochastic roaming strategy is employed, which significantly improves the ability to jump out of local positions. Ultimately, the integration of HRSO and ENN enables the substitution of the original gradient descent method, thereby optimizing the neural connection weights and thresholds. The experiment results demonstrate that the accuracy and stability of HRSO-ENNC have been effectively verified through comparisons with other algorithm classifiers on benchmark functions, classification datasets and an AlSi10Mg process classification problem. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 1541 KB  
Review
Topical and Systemic Therapeutic Approaches in the Treatment of Oral Herpes Simplex Virus Infection: A Systematic Review
by Antonio Mancini, Angelo Michele Inchingolo, Grazia Marinelli, Irma Trilli, Roberta Sardano, Carmela Pezzolla, Francesco Inchingolo, Andrea Palermo, Gianna Dipalma and Alessio Danilo Inchingolo
Int. J. Mol. Sci. 2025, 26(17), 8490; https://doi.org/10.3390/ijms26178490 - 1 Sep 2025
Viewed by 201
Abstract
Herpes Simplex Virus (HSV) infections, caused primarily by HSV-1 and HSV-2, are among the most prevalent viral diseases worldwide, with recurrent manifestations that significantly affect quality of life. Therapeutic strategies include both topical and systemic interventions, each with distinct goals. This systematic review [...] Read more.
Herpes Simplex Virus (HSV) infections, caused primarily by HSV-1 and HSV-2, are among the most prevalent viral diseases worldwide, with recurrent manifestations that significantly affect quality of life. Therapeutic strategies include both topical and systemic interventions, each with distinct goals. This systematic review was conducted according to PRISMA guidelines. A comprehensive search of PubMed, Scopus, and Web of Science (2005–2025) identified studies evaluating topical or systemic treatments for HSV. Eligible studies included randomized controlled trials and observational studies reporting validated clinical outcomes. Topical treatments, including acyclovir cream, docosanol, and newer formulations, primarily reduce lesion duration and alleviate local symptoms when applied early. These interventions have limited systemic absorption and generally do not influence recurrence frequency. Novel delivery methods and combination strategies, such as acyclovir–hydrocortisone formulations or photodynamic therapy, may enhance local efficacy and symptom control. Systemic Therapies: Systemic antivirals, such as acyclovir, valacyclovir, and famciclovir, target both lesion resolution and recurrence prevention. Evidence from randomized trials supports their use for episodic and suppressive therapy, including short-course, high-dose regimens that improve adherence while controlling symptoms. Systemic therapy is particularly indicated for recurrent, disseminated, or high-risk infections. Topical and systemic therapies serve complementary roles in HSV management. Topical agents are useful for localized or initial episodes, while systemic therapy addresses broader clinical objectives, including recurrence reduction. Future research should focus on mechanism-based therapies, novel delivery systems, and standardized outcome measures to guide personalized treatment strategies. Emerging therapies targeting viral latency, immune modulation, and gene-editing technologies hold promise for long-term suppression and personalized management of HSV infections. Full article
Show Figures

Figure 1

Back to TopTop